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A one-dimensional model is used in the continuum approximation to investigate soliton states 
in a Peierls system with a commensurability close to three. The equations used in this 
investigation allow for the commensurability effects. These effects violate the exact 
integrability of the problem and a self-consistent solution is obtained using perturbation 
theory. It is shown that four types of amplitude-phase solitons are possible in such a system 
and the formation of these solitons does not require that the charge excess or deficiency, 
relative to a state which is filled exactly to one-third, should be an integer. Each soliton carries 
a single filled localized state. 

1. The properties of a Peierls system depend strongly on 
the number of electrons p in a unit cell in the normal metal 
phase. The value ofp (0 < p  < 2) is known to have both ra- 
tional and irrational values. The nature of the resultant state, 
regarded as a function of the parameterp, is governed by the 
relationship between two factors: the effects of elastic defor- 
mation, tending to couple the structure to a wave vector 
Q = 2k, = n-p/a, which in principle may be incommensura- 
ble, and umklapp processes or commensurability effects 
which favor a commensurable phase with a wave vector Q, 
somewhat different from Q. Among the many rational val- 
ues of p = m/n, where m and n are integers, the greatest 
interest lies in those which are characterized by the smallest 
value of n for a given m, for example, p = 1, 2/3, 1/2, etc., 
which correspond, respectively, to a doubly commensurate 
case, triply commensurate case, etc. In such cases the com- 
mensurability effects are strongest and these values stand 
out from the rest. 

In this connection we have to consider the problem of 
singularities of a Peierls state in the vicinity of some specific 
value ofp. This problem has been discussed in greatest detail 
for values ofp close to unity. It should be pointed out that a 
commensurability of two is exceptional: the order parameter 
A(x) is real if the commensurability effects are not demon- 
strated explicitly (both direct and first-order umklapp pro- 
cesses are equally important). Numerical calculations of lin- 
ear chains1 and analytic solutions of the corresponding 
c o n t i n ~ o u s ~ . ~  and discrete4 models have establshed the im- 
portant role played in the determination of the nature of the 
ground state and excitation spectrum by particle-like enti- 
ties of the soliton type, which have a definite charge and spin, 
and they have shown that in the range Ip - 1 / 1 there is a 
spatially inhomogeneous state formed by solitons of this 
type. In the case of a commensurability of three, numerical 
calculations of linear chains have also been made5s6 and have 
shown that one-soliton states with definite charge and spin 
ratios are possible. Attempts to solve this problem analyti- 
cally in the continuum approximation7 have not given cor- 
rect results, as pointed out in Ref. 6. The case of triple com- 
mensurability is somewhat special. It is shown in Ref. 8 that 
for rational values ofpf  1 a Peierls state exhibits not only 
displacements corresponding to the wave vector Q,, but also 
displacements corresponding to the vectors 2Q0, 3Q0, etc. 
These displacements corresponding to multiple harmonics 
make a contribution of the same order as the commensurabi- 

lity  effect^,^ which complicates the problem greatly. When 
p = 2/3 (4/3) there are no multiple harmonic displace- 
ments and the commensurability effects seem to appear in 
their "pure" form. 

We shall use the continuum approximation to investi- 
gate the characteristics of a Peierls system with commensur- 
ability close to three. The equations obtained allow correctly 
for commensurability effects. In contrast to the case when 
Ip - 1 / 4 1, our equations are not exactly soluble, since the 
commensurability effects violate the exact integrability of 
the problem. Therefore, these effects will be allowed for us- 
ing perturbation theory. It is shown that four types of ampli- 
tude-phase solitons are possible in this system. The results 
obtained are in agreement with those deduced by numerical 
calculations. 

2. We shall consider specifically the case of p close to 
p, = 2/3. The state in the range lp - p, 1 4 1 will be described 
as the result of spatial modulation of a triply commensurate 
phase. The complete system of equations describing this 
state and allowing for the commensurability effects was ob- 
tained in Ref. 8 and in the representation of the crystal quasi- 
momentum k it has the following form (we shall assume that 
f i =  1): 

where 

E,=E ( k f  (1-1) Q o ) ,  E ( k )  =-to cos ka+to cos kR0a, 

Ti (i = 1,2,3 ) are the wave functions of electrons, andR are 
the eigenvalues. The quantity A is related to static displace- 
ments u ( x )  by 

u (z) = [ A  (5) esp ( iQ ,x )  Sc.c.1 lu,. (2)  

In Eq. (2) v, is the matrix element of the electron-phonon 
interaction operator. The system ( 1 ) is supplemented by the 
self-consistency condition 

The summation in Eq. (3)  is over all the occupied states and 
w, is the frequency of a phonon with a wave vector Q,. The 
energy levels R are measured from the position of the Fermi 
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level of the initial metal phase. Linearization of E, (k )  near 
the point k = k 0, and introduction of the momentum opera- 
tor in the continuum limit yields the following system ob- 
tained from ( 1 ) : 

Here, u, = t,a sin k ;a, E~ = 3/2to, and Y j = d q i  /dx. Ex- 
pressing Y, in Eqs. (3 )  and (4)  in terms of Y, and Y,, we 
finally obtain the following equations in the continuum ap- 
proximation (we shall assume that u, = 1 ) : 

In going over from the system (4)  to the system (5),  we have 
dropped terms of the order ofA /E, 4 1, since this condition is 
satisfied throughout the range of energies that we are investi- 
gating. The systems (5)  and (6)  are identical with those 
obtained by a different method in Ref. 7. We shall supple- 
ment the systems (5)  and (6) by the condition that the num- 
ber of electrons be constant, 

where No is the number of atoms in a chain of length 
L = N,a. In this problem the order parameter is complex: 

and it is necessary to consider the spatial changes not only in 
the ampliude f(x),  but also in the phase p (x ) .  The terms 
proportional to A*2/~,g 1, and A2/€,g 1 in the system (5)  
describe the contribution of the commensurability effects. 
The diagonal terms of the lAI2/~, type in the system (5)  
describe the general shift of the energy and play no signifi- 
cant role in the problem under discussion. We can readily see 
from the systems ( 1 ) and (5)  that ifp = po, then the ground 
state is homogeneous and triply degenerate in the initial 
phase p :. It is convenient to identify a small parameter 
yo = IA: I/E~, where A: denotes the value of A correspond- 
ing top  = p,. 

It follows from the system (4) that in this approxima- 
tion we allow for the interaction of the two branches of the 
spectrum closest to k g, E, (k)  and E, (k) ,  so that even in the 
homogeneous case the initial three-band structure can be 
approximated by a two-band scheme. Some of the states then 
lie within the continuous spectrum; this aspect will be con- 
sidered later. 

3. If terms of order yo are ignored, the system of equa- 
tions (5)-(6) is known to be exactly solvable and belongs to 
a class of finite-band potentials. The terms responsible for 
the commensurability effects violate the exact integrability 
of the problem but the nonintegrable corrections can be re- 
garded as a small perturbation which acts on a given finite- 
band solution. This makes it possible to allow for the com- 

mensurability effects using perturbation theory. It should be 
pointed out that, as can be seen from the structure of the 
system of equations (5) ,  perturbation theory can describe 
only the "amplitude" solitons which are affected mainly by 
spatial changes in the amplitude f(x) .  In describing "phase" 
solitons, when the main role is played by spatial radiations of 
the phase, we have to go outside the perturbation theory 
framework because the nontrivial dependence on the phase 
is now governed by terms of order yo. 

The perturbation theory of finite-band solutions has 
been considered in Refs. 9 and 10 and we shall follow them in 
future. Moreover, a discrete analog of the Peierls model in its 
most general form was used in Ref. 10 to investigate the 
commensurability effects and, in particular, the limit of a 
half-filled band. As already pointed out, since the system of 
equations (5)  and (6) ,  strictly speaking, is valid to within 
terms of order Y2,, we shall confine ourselves to the first order 
of perturbation theory. We solve the problem employing the 
usual self-consistency procedure: we initially determine the 
potential Ao(x) and the function '4, of the unperturbed 
problem and then we use them to find from Eq. ( 6 )  the first- 
approximation (iteration) potential to within terms of order 
yo inclusive; this is followed by finding the first-approxima- 
tion functions, etc., until the self-consistency condition is 
satisfied in a given order. 

We shall consider the unperturbed problem described 
by the reduced equations (5)  and (6).  These equations have 
been used earlier to describe, for example, the range 
Ip - l l g l  (Refs. 2 and 3 ) ,  in which case the field A ( x )  is 
real, and an incommensurate ~ y s t e m , ~  in which case this 
field is complex. We can show that in the reached system of 
equations in the class of finite-band complex potentials of 
interest to us the two-band potential corresponds to the ex- 
tremal state. Solitons in an incommensurate system are de- 
scribed in Ref. 2 using a particular solution of the reduced 
equations corresponding to the symmetric positions of the 
band edges relative to a selected reference system. A similar 
solution was also used in Ref. 7 to describe a triply commen- 
surate system and, as pointed out above, it gave an incorrect 
result. The correct boundary conditions can be satisfied only 
when the degeneracy of a discrete level is not an integer. 
Solutions of this type are valid if a system is characterized by 
an electron-hole symmetry and in this case the self-trapping 
of an electron or a hole gives the same result. In the problem 
under discussion the energy spectrum does not have this 

FIG. 1. 
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symmetry and it is necessary to employ a general solution of 
the reduced system of equations. 

The general solution of this system is given in Ref. 11. 
According to Ref. 11, the three-band state of interest to us 
(Fig. 1 ) is described by six parameters: the edges of the ener- 
gy bands Ei (i = 1, ..., 41, an initial phase p :, and a quantity 
V, governing the position of the soliton lattice. The function 
A,(x) is given byH 

0 ,  ( i v+ iq -2w)  
Ao ( x )  =iI A I e s p { i ( c p o O + ~ x ) )  

0 ,  ( i v + i q )  . (9)  

The following notation is used in Eq. (9) : 

(E3-El)'" 
sin ?c = 

(EL-El) "' ' 

where Bi ( v )  is the Jacobi theta function; Bi = Bi (0); K(k ' )  
and F(x ,k  ') are, respectively, complete and incomplete el- 
liptic integrals of the first kind; and Z(x,k ') is the Jacobi 
zeta function." It is convenient to use normalized functions 
Y ,, and Y,,, which are given by 

Here, 

where E (k )  is a complete elliptic integral of the second kind. 
In Eqs. (11) and (12) 

is an Abel integral of the first kind normalized by the condi- 
tion 

where a ,  is an a cycle defined in the usual way," and 
& 

h2-'/2&lh+~ a ( h ) = j  ( p o ( h ) ) ' h  dh, I do-0 
El 01 

is an Abel integral of the second kind. 
Equation (9) is not quite convenient, because it does 

not allow us to separate explicitly the phase p,(x), so that 
we shall use an alternative form for A,(x) representing the 
solution of the following differential equation": 

We find from Eq. ( 15) that 

'12 

(Po ( x )  = ~ ~ O ~ + ~ / , E ~ X +  ] n ( a , a 2 , k ) .  (17) 

In Eqs. ( 16) and ( 17) the notation is as follows: 

= ( 2 - z )  x  sin 6=sn ( u + V o ;  k ) ,  a2= ( z , - z2 )  / z3 ,  

sn (u;  k )  is an elliptic sine, II(S, a2, k)  is an ellipitc integral 
of the third kind, and the parameters z,, z,, and z3 are given 
by 

(E4+E3-EZ-Ei)' (E,-E3+E2-El) '  
z1 = , z 2 = -  

4 4  7 

Equation (9)  describes in general a quasiperiodic function. 
A periodic function with a period 

lo=2K ( k )  / (z l -zs) '"  (19) 

is defined by the modulus of f , ( x ) .  Nevertheless, the param- 
eter I ,  is singled out and for the functions Y ,, and Y,, there is 
an analog of the Floquet theorem in which the role of the 
quasimomentum p,(A) is played by the quantity 
po(A) = w ( A )  4- (277/10) U(A), so that the differential of 
the quasimomentum is defined uniquely. I t  follows from 
Eqs. (9), (16), and (17) that the function A,(x) describes a 
lattice of amplitude-phase solitons with a constant phase 
shift Ap, in one period I,. The quantity Ap, is given by 

A(po=!310+ 4 n o =  ( Z ~ Z ~ / Z ~ ) ' ~ ~ ~ + X  ( 1 -A20(6 , ;  k))], (20) 

where sin 6, = (z3/z2) ' I 2  and A0(6,; k )  is the Heuman 
lamda function. It should be noted that the solution A,(x) is 
degenerate with respect to the initial case p and the param- 
eter V,. 

Using the functions Y, and A,(x), we find from Eq. 
(6), to within terms of order yo inclusive, the first approxi- 
mation to the potential A, (x) .  The summation of the occu- 
pied states in Eq. ( 6 )  is carried out in the usual manner13 and 
the states in the ground band ( A G E , )  have a population 
multiplicity v = 2 if the spin degeneracy is allowed for and 
the states in the "soliton" band (E,(A<E3) will be ascribed 
temporarily an arbitrary occupation multiplicity v, 
(O<v0<2). Since the number of electrons in a system is 
fixed, we shall truncate the width of the ground band at the 
value E,: lEol & (Ei I. We shall determine the parameter E, 
using the condition (7 ) ,  which in the case of an unperturbed 
system becomes 

L ,,2L { [ (EL-Eo)  (E3-E,)  (E i -Eo)  '" 
Ner=vo - + - 

lo n  E2-Eo 1 
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where 

Substituting V, and A,(x) into Eq. (6)  and summing over 
1 ,  we obtain 

Equation (22) is valid subject to the following conditions: 

The following quantities are introduced in Eq. (22): 
g, = vi/rraw, is a dimensionless coupling constant which in 
the continuum limit obeys the inequality g,g 1; y, = N,,/L 
is the electron density. Terms of ordergoy, will be ignored. It 
follows from the first condition in Eq. (23) that the case 
v, = 1 is nontrivial, i.e., the formation of one soliton gives 
rise to a singly filled discrete level formed from a state split 
off from the continuous spectrum. 

4. Substituting Eq. (22) in place of A(x) in the system 
(5), we obtain an equation for the determination of lowest- 
order functions. We shall select the perturbing potential 
#(x)  in the form 

where v, = (A,(x) ('/E,, and v, = 3A: ( x ) / E ~  In perturba- 
tion theory the problem reduces to finding first-order cor- 
rections with respect to the parameter yo to the function V, 
and to the potential A,(x).  We shall show later that the 
greatest interest lies in the case of a soliton lattice with large 
internal distances and obeying the condition 

and we shall confine our attention to this case. The condition 
(25) means that the distance between solitons is much larger 
that the characteristic scale of the system, which is the co- 
herence length 6, = a /~y , .  

The spectrum of the operator of the unperturbed prob- 
lem has two lacunae (forbidden bands) with edges at Ei , and 
also doubly degenerate points em (representing lacunae con- 
tracted to a point), the positions of which are given by the 
equation 

The points em lie in the regions A < E, and A > E, (Fig. 1 ). 
The effect of perturbing Eq. (24) is generally a shift of the 
"old" band edges and the appearance at the points em of new 
lacunae of width Ae, (Fig. 1 ) . We can expect Ae, to be of 
the order of yo. According to Ref. 9, the corrections of inter- 
est to us can be found by linearizing the solutions for the 
three-band potential in the vicinity of the two-band poten- 
tial. The Appendix gives the expressions for the lowest-order 
functions TI1' [Eq. (A.2) ] and for the second-order poten- 
tial A,(x) [Eq. (A.6)]. These expressions include the 
"shifted" band edges, which should be regarded as new pa- 
rameters of the problem. The self-consistent potential ob- 
tained in the first order of perturbation theory is given by Eq. 

(A.6). The quantities 'Ae, can be determined using stan- 
dard perturbation theory for a degenerate level. We then 
obtain 

where W ( A )  = (P,(R) ) '12/LD and the angular brackets in 
the above equation denote averaging over a period. Using 
Eq. ( 2 5 ) ,  we find that k ''4 1, and in this limit Eq. (27) 
yields the following expression valid in the range A <E l :  

In the same limit the quantity E, - em is described by the 
following estimate obtained from Eq. (26): 

As expected,the widths of the newly formed lacunae depend 
also on the oscillation period of the perturbing potential and 
the greatest contribution comes from the lacunae with low 
values of m (m <I,y,/a). It follows from Eqs. (25) and (28) 
that the condition Ae, / I  A: I <yo, is satisfied, i.e., the cor- 
rections due to the overlap of the new lacunae include contri- 
butions of lower order than yo, since it is clear from Eq. 
(A.6) that the formation of each new lacunae gives rise to an 
additional phase shift which in one period amounts to 
4.rrw1Aem /\A: 1, where w, is defined by Eq. (A.5). In other 
words, in the case of a soliton lattice with large internal spac- 
ings the influence of the nonintegrable correction to the 
states in the ground bands can be ignored in the first order of 
perturbation theory. This conclusion agrees with the results 
of Ref. 10. The corrections due to opening up of new lacunae 
will be ignored in future, because they do not play a signifi- 
cant role. In this approximation the correction to the 
ground-state energy is governed by the average value of the 
perturbing potential of Eq. (24). 

We shall now give some relationships which will be re- 
quired later. These relationships and the expressions given 
later are valid for a soliton lattice with large internal spac- 
ings, when the quantities occurring in the problem under 
consideration can be expanded in powers of k l2  g 1. The fol- 
lowing relationship between the parameter E, and the Fermi 
energy of the normal metal E, = rrp/2a is obtained from Eq. 
(21 ) if an allowance is made for Eq. (23) : 

The expressions in Eq. (23) give definite relationships 
between the parameters Ei which can be expressed in terms 
of the quantities z, (i, 1, 2, 3) : 

Averaging the perturbing potential of Eq. (24) over the 
functions \V, , we obtain (including the leading terms), the 
following expression for the correction 6 1  to the eigenvalues 
of the unperturbed problem: 
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m sin (3v00-2i3xo) 

I 
I+-kf2), 2 (31) 

where ;8 = 30/2, B = y/sh y, y = n-p /(z, - 2,) ' I 2 ,  and 
m = L /Io is the number of solitons. The last term in Eq. (3  1 ) 
governs the contribution of the diagonal perturbation v , ;  we 
can see that this term gives rise only to a general energy shift 
and can be omitted. In the first term of Eq. (31) we shall 
retain a contribution of the order of 0 ( yi ), the role of which 
we shall discuss later. 

5. We shall calculate the energy of the system Fgiven by 

F =  ' (X+6A)  + qj 1 A ( x )  1 dx .  
L V e  

Substituting Eq. (22) into Eqs. (3 1 ) and (32), integrating 
with respect to x ,  and summing over A we find that Eqs. 
(21), (23), and (29) yield the following expression for the 
change in the energy SF  relative to the metal state with the 
same number of particles: 

where Sp = n(p  -po)/2a is the deviation of the chemical 
potential from the value corresponding topo = 2/3. The last 
term in Eq. (33) depends on the parameters p and xo and it 
determines the energy of the commensurability of the sys- 
tem, the value of which is proportional to l/go. It follows 
from Eq. (33) that an extremal state corresponds to 

Therefore, the addition of the commensurability energy 
gives a fixed value of the parameterx, and of the initial phase 
q, E, i.e., it results in pinning of the soliton lattice. 

We still do not know the parameter p and the quantity 
Sp, which determines the excess (or deficiency )-compared 
with p = p,-in the electron density necessary for the for- 
mation of solitons. In fact, the change in the phase over one 
period is not known either. In this approximation it follows 
from Eqs. (9)  and (22) that the phase p ( x )  is given by 

2 f o ( x )  sin 3 s .  ( r )  , cp ( I )  = c p o  ( X I  + - 
Eo 

where the quantity p0(x)  is given by Eq. (17) which for 
k = 1 (isolated soliton) becomes 

We can see that in the soliton region the phase changes rap- 
idly by T. We shall introduce the average wave vector of the 
superstructureq, given by q = Ap /L, where Ap = p ( L  /2) 

- p( - L /2) is the total change in the phase. Using Eqs. 
(20) and (35), we can transform Eq. (33) to 

- 2Ri - 2 sin ( 3 / , q lo )  
3 (q-rill,) 3 ( q - n / l o )  (37) 

where B, is found from B by the replacing 0 with q - n-/lo. 
We now consider the case of isolated solitons with 

k = 1, E, = E,, and 2, = L. We shall identify the contribu- 
tions made to the leading term of Eq. (37). The contribution 
proportional to 244 is responsible for the elastic deformation 
effects which favor a structure with the wave vector 
Q = 2k, = Q, + 2Sp, whereas the umklapp processes tend 
to balance the linear increase in the phase by an abrupt 
change of the phase by an amount n-. The value of the vector 
q is the result of a compromise between these two effects and, 
according to Eq. (37), it is given by 

Therefore, the complete change in the phase depends on 
Sp = p - p,, which thus determines the so-called topologi- 
cal charges of the solitons. In the system under discussion, 
the ground state of which is triply degenerate, there can be 
three types of soliton for each sign of Sp and they differ in 
their topological charges, but (as already pointed out) with- 
in the framework of the approach adopted here, we can de- 
scribe only amplitude-phase solitons. We shall determine 
the types of these solitons and the corresponding values of Sp 
by superimposing on the phase of the order parameter cer- 
tain boundary conditions, which in the case of a triply com- 
mensurate system can be derived from Eq. (35): 

This yields the following values of Ap: Ap = 0, 27~, 27~/3, 
4n-/3. It follows from Eq. (38) that the corresponding values 
of the quantity Sn = No& are Sn = + 1, + 1/3. We can 
assume that the values of Sn expressed in suitable units are 
equal to the topoldgical charges of tko l i tons .  Solitons with 
different values of& are essentially different objects and the 
energies of formation of these objects are also different, as 
will be shown below. In all cases the formation of a soliton 
gives rise to a singly occupied discrete level, the position of 
which is described by the equation 

Consequently, the spin of each soliton is 1/2. 
For four types of solitons the behavior of the amplitude 

f(x) is practically the same (the difference between the 
terms is of order yo) ,  as shown in Fig. 2. On the other hand, 
the behavior of the phase p ( x )  is different even in the zeroth 
order and the functions p ( x )  for each case are plotted in 
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charge in the bulk energy SF,, given by 

FIG. 2. 

Figs. 3a-3d. It is clear from Eq. (22) [see also Eq. (35)] 
that the corrections due to the commensurability effects give 
rise to small (of order yo) and smooth (with a characteristic 
period of order q,,) modulations of the functions f ( x )  and 
( x )  over distances Isgo.  

We shall now consider in greater detail the individual 
cases. 

a )  Sn = 1/3, q = 2?r/3L,P = - 1r/3L, q, = ~ / 6 .  A c  
cording to the terminology of Refs. 5 and 6, this is a type-I 
kink. Among the rational values ofp  we can assign to this 
casep = (N,, + l ) / (No + 1) on the basis of Ref. 6. How- 
ever, if the change in the parameter p is due to doping, the 
charge transfer should be of order 1/3. We shall determine 
the energy of formation of solitons R as a contribution of 
one-particle terms. The value of R,/, can be obtained from 
Eq. (37): 

2 
Rg = - I Aool (1-yo+ h(02/3go). 

27 
(41a) 

b)  Sn = - 1/3, q = 4?r/3L, fi = 1~/3L, q,: = - ?r/6. 
This state represents a type-I1 kink, which corresponds to 
p = (N,, - 1 )/(No - 1 ). The value of R- is given by 

A comparison of Eqs. (41a) and (41b) shows that R ,,, and 
R -, are different; in the present model the difference is of 
the order of yz. Both kink states correspond to the same 

FIG. 3. 

c l a n =  l ,q=O,f i=  -n-/L,q~; =~/6.Thisisasym- 
metric type-I polaron characterized by p = (N,, + I ) /& 
and, to within terms of order 1/L, we now have R, zR,,,. 

d )  Sn = - 1, q = 27~/L, /3 = - T/L, p = - ~ / 6 .  
This is the case of a symmetric type-I1 polaron correspond- 
ing top  = (N,, - 1 )/No, R -, ZR - ,/,. Both polaron states 
are characterized by the same change in the bulk energy: 

Comparison of Eqs. (42) and (43) shows that the po- 
laron state is energetically less favorable. We note that mini- 
mization of Eq. (37) with respect to the parameter Sp gives a 
similar result. 

We can show that in the case of an unperturbed system 
the charge of solitons is delocalized and the commensurabi- 
lity effects give rise to a small charge of order yo, localized in 
a fairly wide range 1%..5,; in this case the core of a soliton 
remains uncharged. 

We shall now compare our results with those of the 
numerical calculations reported in Refs. 5 and 6. The two 
approaches yield four types of amplitude-phase solitons with 
different topological charges. The behavior of the amplitude 
and phase of the order parameter is in agreement with the 
results of numerical calculations. The soliton formation en- 
ergies are practically identical. The main difference is in the 
number of discrete levels which appear as a result of forma- 
tion of a soliton. In the present model there is always only 
one discrete level, whereas numerical calculations based on 
the three-band scheme yield two and three discrete levels for 
each band gap in the case of kinks and polarons, respectively. 
This circumstance is manifested most strongly by a local 
charge of a soliton core. According to the numerical calcula- 
tions reported in Ref. 6, this core has a local charge because 
of the stronger polarization of the states in the continuous 
spectrum due to the formation of additional discrete levels. 

The commensurability effects were analyzed also in 
Ref. 2 on the basis of an analogy between these effects and 
the interchain interaction. This interaction is described in 
terms of a certain model phase Hamiltonian. A comparison 
of the results allows us to draw the conclusion that qualita- 
tive agreement does exist and, in particular, this applies to 
the behavior of the order parameter and of the soliton 
charge. In view of the specific features of the various prob- 
lems and because different methods are used to solve them, 
we cannot attempt any quantitative comparison; for exam- 
ple, in the present study, as in Ref. 10, commensurability 
effects are treated by means of perturbation theory and nu- 
merical contributions are small with respect to parameter yo. 
A "symmetric" solution approach is used in Ref. 2 to de- 
scribe the behavior of the phase in the case of an amplitude 
soliton in a triply commensurate system. A direct calcula- 
tion of the remaining parameters of this soliton was not car- 
ried out, but nevertheless the results of numerical calcula- 
tions and those given above suggest that this soliton is of the 
amplitude type with Sn = 1/3. 

We shall now consider briefly the general situation 
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which arises in Ip - po 1 4 1. If the values of the parameter p 
are such that lSnl = m/3 or 16nl = n,  then lattices of m 
kinks or n polarons appear, respectively. The lattice periods 
are described by 

The formulas in the two preceding sections provide a com- - plete account of these states. It follows from Eq. (37) that 
deviation of the parameterp from this valuepo = 2/3 makes 
the inhomogeneous state less and less favorable from the 
energetic point of view and the commensurability energy de- 
creases rapidly. An analysis shows that if 

then energetic considerations favor a homogeneous state 
formed by a superstructure with a wave vector Q = 2k,, 
although we cannot exclude the possibility that a commen- 
surate phase of higher order may be more favorable in this 
range. Therefore, soliton states discussed above are possible 
only in a small region in the vicinity of the pointp =po  and 
these states can be described quite satisfactorily using the 
approximation of a soliton grating with large internal spac- 
ings. 

The numerical calculations of Refs. 5 and 6 show that 
this system can also have phase solitons and we can describe 
them in the continuum approximation if we dispense with 
perturbation theory. According to Refs. 5 and 6, two types of 
solitons with Sn = 2/3 are possible and both have zero 
spin; the energy of formation of these solitons is considerably 
less than that required for amplitude solitons. However, this 
does not mean that the properties of the system are deter- 
mined briefly by phase solitons; it is most likely, as pointed 
out in Ref. 6, that mixed states are formed from phase and 
amplitude solitons. 

The author is grateful to A. R. Its for discussing a num- 
ber of topics. 

APPENDIX 

We shall now obtain expressions for the first-approxi- 
mation wave functions Y,"' and the second-approximation 
potential A,(x). In the first order of perturbation theory in 
respect of the parameter yo we can obtain expressions for 
Y,'" by linearization of the relevant formulas for the three- 
band potential corresponding to opening up a small lacunae 
of width Ae, . Following Ref. 11, we shall introduce two- 
component vectors g(x)  = (g,, g,), U(A) = (U,, U,), 
r = (rl ,  r2).  This linearization corresponds to partial degen- 
eracy of a hyperelliptic curve of the second kind and the Abel 
differentials occurring in the problem have to be calculated 
in the appropriate limit. Consequently, the two-dimensional 
Riemann 0 function 0(g) is described by the formula 

where 

x (.g) =03(g,+ 2 ~ 1 )  exp (2nicgl)+0,(g2-2w,) exp (-2nicg,). 
(A.3) 

Suitable calculations yield the following expression for the 
first-approximation function TI1): 

The following notation is used in Eqs. (A.2)-(A.4): 

(ES-El) (E,-em) 
sin x3= 

@-El)  (E,-e,,) 
(A.5) 

where the quantities v, u,, and w are defined by Eqs. (10) 
and (12). The expression for Yil) is obtained from Eq. 
(A.4) by replacing Y ,, with Y,, and the argument of the 8 
function g(x)  - U with g(x)  - U + 2r. The summation in 
Eq. (A.4) is carried out over all doubly degenerate points, 
but since an increase in m causes a rapid reduction of the 
contributions of such points, we can confine ourselves to a 
finite number of terms. Substituting the functions *I1' into 
the self-consistency equation (6),  we find that when the con- 
ditions of Eq. (23) are satisfied, the following expression 
describes the second-order potential: 
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