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Peculiarities in the dynamics of 3He-A (anomalous current, non-analyticity of the gradient 
expansion, nonconservation of the superfluid current at T = 0, the orbital-angular-momentum 
paradox) are due to the vanishing of the gap in the energy spectrum of the fermionic 
excitations at two points on the Fermi sphere. Near these points, the Bogolyubov equations for 
the fermions become linearized and are transformed into the Weyl equations for zero-mass 
right-hand "electrons" that move in an "electromagnetic" field and in a "gravitational" field; 
the fields are formed by fluctuations of the order parameter. This makes it possible to relate the 
peculiarities in the 3He-A dynamics with the chiral anomaly, the zero-charge, the nonlinear 
polarization of the vacuum, and production of electron-positron pairs in strong fields in 
quantum electrodynamics with zero-mass chiral fermions. The local gauge invariance and the 
general covariance of the obtained Weyl equations permit a substantial simplification of the 
derivation of various action peculiarities for 3He-A, including that of the Wess-Zumino action. 

INTRODUCTION 

The dynamics of 3He has at low temperatures a number 
of unusual features due to the vanishing of the energy gap in 
the fermion-excitation spectrum at two points on the Fermi 
surface. These are the presence of an anomalous current, the 
orbital-angular momentum paradox, the non-analyticity of 
the gradient expansion, the nonconservation of the super- 
fluid flow at T = 0, the existence of a normal component at 
T = 0, and others (see Sec. I ) .  We consider here the anaIogy 
between these phenomena and those in quantum electrody- 
namics (QED). The connection between 3He-A and QED 
was first noted by Combescot and Dombre (see Ref. 1 and 
the citations therein), who pointed out that the fermion- 
excitation spectrum in the field of the anisotropy vector 1 is 
similar to the spectrum of a charged Dirac particle in a mag- 
netic field. This has enabled them to calculate correctly the 
density of states on the Fermi surface, and by the same token 
the density of the normal component at T = 0. It was shown 
in later that the dynamics of fermion excitations 
that interact in 3He-A with collective boson modes of a mul- 
ticomponent order parameter is similar in many respects to 
the dynamics of chiral zero-mass fermions that interact with 
electromagnetic, weak, and gravitational fields. This has 
made it possible to relate the peculiarities of the 3HE-A dy- 
namics to the zero-charge and chiral anomaly phenomena, a 
relation which we discuss here in greater detail. 

It is shown in Sec. I1 that the Bogolyubov equation for 
fermion excitations reduces near the zeros on the Fermi sur- 
face (boojums) to the Weyl equation for chiral fermions. 
These chiral fermions are located in an order-parameter 
field, and some of the components of the order parameter act 
on the fermion in the same manner as an electromagnetic or 
gravitational field. As a result, the Bogolyubov equations 
acquire near the boojums a local gauge invariance and a gen- 
eral covariance, thereby substantially simplifying the deri- 
vation of the features connected with the zeros of the gap. 

In Sec. I11 is discussed, as applied to 3He-A, the zero- 
charge phenomenon in a system of fermions interacting with 
a gauge field.' It is shown that this phenomenon leads to a 

non-analytic expansion of the 3He-A energy at T =  0 in 
terms of the spatial and temporal gradients of the order pa- 
rameter. 

In Sec. IV we track the connection between the chiral 
anomaly in QED with zero-mass fermions (nonconserva- 
tion of the chiral current, see, e.g., Ref. 9) ,  and the noncon- 
servation of the superfluid flow in 3He-A at T = 0. It is 
shown that the Schwinger source of the current in QED is 
the analog, in 3He-A of momentum transfer from the super- 
fluid to the normal subsystem of the fermion excitation, a 
transfer that takes place even at T = 0, in view of the non- 
zero density of the fermion states in the presence of a mag- 
netic field. 

In Sec. V is discussed, for the 3He-A dynamics, the 
Wess-Zumino action that describes the chiral anomaly and 
the orbital-momentum paradox in 3He-A, and also the con- 
nection of this action with the @-term in QED. 

I. ANOMALIES IN THE DYNAMICS OF =He-A AT T=O 

Cooper pairing takes place in superfluid 3He in a state 
with orbital momentum I = 1 relative to the motion of the 
3He atoms in the pair (p-pairing) and with a pair spin s = 1 
(see the review in Ref. 10). Superfluid phases differ from one 
another in their symmetry which governs the possible spin 
and orbital-momentum projections. The state established in 
3He-A has a projection m = 1 ofthe orbital momentum Ion a 
quantization axis whose direction is designated by the unit 
vector 1 and with zero projection of the spins on a quantiza- 
tion axis whose direction is labeled by the unit vector d. The 
vectors 1 and d define respectively the axes of the orbital 
(liquid-crystal) and magnetic (spin) anisotropy in 3He-A. 
In addition, the vector 1 indicates the common rotation di- 
rection of the Cooper pairs about their axes. Owing to this 
internal rotation, the entire liquid has, even in a homogen- 
eous state, an angular momentum ( 1/2)Nfil, where N is the 
number of the 3He atoms (N/2 pairs, each with an angular 
momentum fi in the 1 direction). 

The simplest system having the same internal symme- 
try as 3He-A is a Bose condensate of isolated boson molecules 
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having an angular momentum fil. We consider initially the 
dynamics of this system, which is free of anomalies, and then 
proceed to a realistic model for 3He-A, viz, a Fermi gas with 
weak pairing interaction, and examine the anomalies that 
appear in the orbital dynamics as a result of the appearance 
of a Fermi surface having points at which the energy gap 
vanishes. 

The dynamics of a Bose condensate of molecules at 
T = 0 is determined by phenomenological equations unique- 
ly obtained either from a Lagrange formalism that uses the 
internal symmetry of 3He-A (Ref. 11) or from a Poisson- 
bracket algebra determined by Lie algebra of the symmetry 
group in 3He-A (see, e.g., Ref. 12). The hydrodynamic vari- 
ables in 3He-A at T = 0 are the density and the soft variables 1 
and v, that describe the coherent motion of the Bose conden- 
sate and are connected with spontaneous violation of the 
gauge invariance and of the invariance to spatial rotations. 
The solenoidal, and its curl is expressed in terms of the gradi- 
ents of the vector 1 by the Mermin-Ho relation13: 

rot v,= (fi/4m3) ei,,li[ Vl,, .V1,1, (1.1) 

where m3 is the mass of the 3He atom. The superfluid motion 
is not potential because of the combined rotational-gauge 
symmetry that is preserved in 3He-A (see Ref. lo), as aresult 
of which v, is expressed in terms of orbital variables. The 
angular part of the wave function of the orbital motion of the 
molecule with I = 1 and m = 1 takes the form n, + in,, 
where n is the direction of the radius vector between the 
atoms in the molecule, while x and y are axes perpendicular 
to 1. The directions of these axes are designated A, and A,: 

so that n, + in, = n(A, + iA,). The complex vector 
A, + iAZ, which is the same for all Bose-condensate mole- 
cules, is the orbital part of the order parameter in 3He-A. The 
superfluid velocity is expressed in terms of this order param- 
eter as follows: 

from which follows relation ( 1.1 ) . 
The hydrodynamics equations for the variablesp, 1, and 

v, of a Bose condensate of isolated molecules include the 
internal-angular-momentum conservation law L = ( f i /  
2m3 )pl and an equation for v, : 

Here F is the free energy that depends on p, v, , and 1, and 
p = GF/Gp is the chemical potential. Variation with respect 
to 68 denotes variation with respect to an infinitely small 
rotation of the order parameter A, + A,, such that 

61= [68, 11, 6v,=- (A/2m3)liV6Bi. 
Equation ( 1.3a) contains both the particle-number conser- 
vation law, which is obtained by scalar multiplication of the 
equation by 1: 

dtp+Vj=O, j=6F/6v8, (1.4) 

and an equation obtained for the variable 1 from that part of 
( 1.3a) which is transverse to 1: 

The particle flux j is fully coherent at T = 0 and consists of 
two parts: one transported with supersonic velocity v, , and 
the other (the orbital current) caused by the incomplete 
cancellation of the internal rotational motion of the mole- 
cules if 1 is not uniform: 

jCoh=pv,+'/, rot L, L= (li/2m3)pl. (1.6) 

The liquid flow is equal to the momentum density, and 
should therefore be conserved. Equation ( 1.3) ensures both 
momentum conservation 

and energy conservation, and is thereby completely closed. 
We proceed now to real 3He-A, where the isolated Bose 

molecules are replaced by Cooper pairs produced on the Fer- 
mi surface. In this system, the hydrodynamics equations, at 
least in linerized form, can be obtained either from the 
Gor'kov equations, or from the matrix transport equation 
(see Ref. 14). This gives rise to unexpected deviations from 
Eqs. (1.3), the reason being that in the energy spectrum 
E(k) of the Fermi quasiparticles 

E2 (k) =E' (k)  +I A (k) 1 2 ,  ~ = k ~ / 2 m ~ - - k ~ ~ / 2 m ~ ,  ( 1.8) 
A (k) = (Aolk~)k(A,+iA2) 

the gap A (k )  vanishes at two points on the poles of the Fermi 
surface, k = f k,l (here A, is the maximum gap obtainable 
on the equator of the Fermi sphere). Those poles at which 
the gaps vanish are vortical singularities (boojums) of the 
phase Q, of the gap: 

A (k) = lA(k) leio(k), (1.9) 

namely, Q, changes by 277 on circling around the pole on the 
Fermi surface. At the pole itself the phase Q, is indetermin- 
ate, so that the modulus of the gap must vanish. Boojums are 
topologically stable to small stirrings of the order param- 
eter,15 therefore the zeros in the gaps do not vanish at small 
deviations from the A-phase in dynamic processes, and the 
singularities in the 3He-A dynamics are stable. 

The following phenomena are caused by the zeros of the 
gap. 

1. Non-analyticity in the expansion of the free energy F 
in terms of the gradients of the vector 1. Namely, the coeffi- 
cient K3 in the expansion 

F { I ) =  JBI I{K~(VI )~+K~( I  rot l)lf ~ ~ [ ~ r o t ~ l ~ )  (1.10) 

goes to infinity logarithmically as T-0 (Ref. 16): 

implying the presence, in the gradient expansion, of a non- 
analytic term17 

AO2 
[lrotl]'ln- (1.12) 

[I rot 11' 
2. The coherent current of particles contains an addi- 

tional anomalous term (see, e.g., Ref. 18 ) : 

jcoh=pvs+'lZ rot Ltj,,, 

j = - / ~ ~ l l  rot 1 ,  Co=kP3/3n2. (1.13) 
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The anomalous current is expressed in terms of the differ- 
ence of the mixed derivatives with respect to the phase 
cP(k,r), Ref. 19: 

and this difference is not equal to zero only at the boojums 
points, where cP has a vortical singularity. 

3. The coefficient of a,I  in (1.5) contains not the pair 
density p/2m3, but the quantity L, = l/2fi(p/m3 - C,) ,  
which is small to the extent that the gap is small compared 
with the Fermi energy. Neglecting the Fermi-liquid correc- 
tions, this quantity takes the form'6s20 

As a result, Eqs. ( 1.4) snd ( 1.5) do not combine to form the 
general equation ( 1.3a); this attests to the nonlocality of the 
dynamic angular momentum. If it is assumed that, as before, 
the coherent angular momentum of the Cooper pairs is equal 
to L = ?+l/2m3, then Eq. ( 1.3a) acquires a right-hand side 
(source of the angular momentum): 

4. Equations ( 1.16) and ( 1.3b) are no longer closed, 
since they do not conserve the coherent current ( 1.13). The 
equation for the current acquires a right-hand part (momen- 
tum source) 19: 

~ , j ~ " h + d k n ~ ~ h = - 3 / 2 h ~ o l i  ( a l l ,  r o t  1). (1.17) 

Nonconservation of the coherent momentum at T = 0 has 
led to the conclusion that 3He-A should have even at T = 0 a 
normal component transported with normal velocity v, to- 
gether with the momentum. This is a system of fermion exci- 
tations that are produced in coherent motion of the conden- 
sate as a result of the vanishing of the gap.'9 

5. At T = 0 there exists an additional incoherent cur- 
rent of fermion excitations 

j n c  = kv  ( E  (k) +k (v,-v.) ) . 
where v ( E )  = 0( - E) is a step-function fermion distribu- 
tion function at T = 0 and differs from zero at arbitrarily 
small v ,  - v, , owing to the absence of a gap in the spectrum. 
Calculation of the current ( 1.18 ) leads to the following val- 
ue of the normal-component density at T = 0 in the case of a 
constant field 1 (Refs. 10 and 21 ) : 

and if 1 is not uniform the normal density p,, acquires one 
more 

(Pr) ) i , = 3 / l p l , l j ( h ~ Q / A O )  I [ l  r o t  11 I. (1 .19~)  

Investigtion of the dynamics of the excitations near boojums 

in the hydrodynamic regime has indeed shown1 that the 
source of the coherent current I  in the right-hand side of 
( 1.17) is the drain for the incoherent current: 

i n c  
d t i f " c f d k n i k  =-Ii, I=-3/,AC,1(d,l, r o t  l ) ,  ( 1.20) 

so that the total momentum of the coherent and incoherent 
motions is conserved. 

All the phenomena described here are the results of van- 
ishing of the gap at two points on the Fermi sphere. To clar- 
ify the physical meaning of these phenomena it is therefore 
necessary to investigate the dynamics of the fermion excita- 
tions near the boojums where, as will be shown in the next 
section, the fermions in the field of the inhomogeneous order 
parameter in 3He-A are perfectly similar to chiral fermions 
in electromagnetic and gravitational fields. 

II. CHIRAL FERMIONS IN JHe-A 

The model BCS action that describes triplet Cooper 
pairing in 3He is given by 

where \Va (r,t) is the spinor annihilation operator of the 3He 
atom, A is the constant of thep-harmonic of the pairing inter- 
action, and the asterisk denotes symmetrization with respect 
to the spin indices. 

Below the temperature T, of the superfluid transition, a 
coherent superfluid state sets in, with a nonzero quasi-aver- 
age 

A ~ ~ = ~ ( ' I ~ Y ~ ~ Y B ) ,  (2.2 

that is symmetric in the spinor indices and can therefore be 
expressed in terms of a symmetric combination of the Pauli 
matrices & , and of the metric spinor g as follows: 

The complex 3 x 3 matrix A, =Api is called the order pa- 
rameter. It transforms like a vector with respect to the sec- 
ond (Latin) subscript in spatial rotations and like a vector 
with respect to the first (Greek) subscript in spin rotations. 
The spin-orbit interaction in superfluid 3He is exceedingly 
small and does not influence the considered effects, so that 
the two rotations can be treated independently. 

Transformation from pure fermion fields to coherent 
boson fields and to fermion excitations against the back- 
ground of a new superfluid vacuum is possible, for example, 
by functional integration (see Ref. 24) on introduction of an 
additional Gaussian integral over the Bose fields: 

I ~ A +  dA exp ($5  d3r dt AtA ) .  

A shift AaB -AaB - 1/2A\V, p\VB is carried out in this inte- 
gral to cancel out fourth-order terms in the action (2.1 ); the 
effective fermion-boson action takes then a form quadratic 
in the fermions: 
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This action describes the fermion quasiparticles in the 
field of an 18-component matrixA,, , which is itself a dynam- 
ic variable. The most interesting is interaction between fer- 
mion and boson fields in the case when the superfluid 3He is 
in the A phase, i.e., the vacuum manifold is described by 
matrices of the form: 

The vacuum manifold of the A phase is five-dimensional 
(two angles of the magnetic-anisotropy d and three orbital- 
subsystem angles that describe the rigid-body rotation of the 
unit vectors A,, A,, and 1 = A,XA2). Thus, five of the 18 
boson variables in 3He-A are Goldstone variables, and the 
remaining 13 have mass, since they lead out of the vacuum 
manifold. 

We shall consider hereafter only those boson variables 
that are directly connected with anomalies in the orbital dy- 
namics, i.e., we confine ourselves to the vacuum manifold 
(25 ) , and fix the vector d, leaving only the three degrees of 
freedom of the unit vectors A,, A, and 1. We have excluded 
thereby from consideration the " Wbosons" and the "gra- 
vitons",' which have mass. 

If the vector d is directed along they axis, the action for 
the fermions (2.4) breaks up into two independent actions, 
separate for fermions with spin alongz and for fermions with 
opposite spin, i.e., along - z. We write down the action for 
each of the spin directions, leaving out the spin subscripts: 

Introducing, finally, the Bogolyubov spinor in the particle- 
hole space 

and the corresponding Pauli matrices ra, we obtain 

If the order parameter A, + iA2 is homogeneous in 
space, the fermion spectrum is obtained by squaring the 
Hamiltonian: 

E2(k) = E i L ( k ) = ( k 3 / 2 m 3 - p ) Z + ( A o ' / k ~ 2 )  [(A,k)'+(A2k)']. 

(2.8) 
The energy of the Bogolyubov quasiparticles E ( k )  vanishes 

at two points on the Fermi sphere: k, = + kFl, where 
k ;/2m, = p. Near these points, which we shall distinguish 
by a subscript e that takes on the values + 1 and - 1 (i.e., 
k, = ekFl), the spectrum takes the form 

E,2(k) = (e,, k-eA)'+(e,, k-eA)'+(e,, k-eA) 
=g"( ki-eAi) (k,-eAj), (2.9) 

where 

This corresponds to a spectrum of zero-mass particles that 
move in an electromagnetic field (with vector potential A )  
and in a gravitational field (metric tensor g'' made up of the 
triads e;) with the fermions having positive "charge" 
e = + 1 near the north pole and negative e = - 1 near the 
south pole. 

A similar expansion in $ - eA can be carried out direct- 
ly in the Hamiltonian (2.7). Neglecting then the term qua- 
dratic in $ - eA and rotating through an angle T (  1 - e)/2 
about the third axis in the particle-hole space (the Nambu 
space), we obtain for the Hamiltonian (2.7) 

A==i /2e~a  [e," (p,-eAi) + (p,-eAi) e,'] . (2.11) 

The equations for the fermion field x near the poles 

are thus Weyl equations for charged chiral fermions, and 
owing to the factor e in the Hamiltonian (2.1 1 ) the particles 
close to different poles have different chiralities, viz., right- 
hand for positively charged particles and left-hand for nega- 
tively charged. Since the sign of the charge is the same as that 
of the parity, the chiral current in such a QED coincides with 
the electric current. 

Compared with the general Bogolyubov equation far 
from the poles, the Weyl equation near the poles has a prop- 
erty that will be found very useful: it has both local gauge 
invariance and invariance to general transformations of the 
coordinates in the sense that the transformations of the vec- 
tor potential A and of the triads e: can be so defined that they 
cancel out the local tranformations of the spinor X. Of 
course, such local transformations are not invariant to boson 
action, but nonetheless the fact that invariance to fermion 
action does take place is very important for the following 
reason. 

The effective boson action obtained by integrating over 
the fermion vacuum can be broken up into two parts. Some 
terms in this action are obtained by integration over all the 
fermions, icluding those far from the poles, where the Bogol- 
yubov Hamiltonian (2.7) differs from the Weyl Hamilto- 
nian (2.1 1 ) . There is no invariance for such terms. The ac- 
tion terms of interest to us, however, which describe the 
chiral anomaly and the zero-charge, are obtained by inte- 
grating exclusively over the fermions near the poles of the 
Fermi sphere; the contribution of the remaining regions of 
the Fermi surface is of no importance for them. In this case 
they can be obtained by using the Weyl equation, therefore 
these terms in the boson action will of necessity be expressed 
in terms of such combinations of A, and e: which are invar- 
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iant to transformations that cancel out local transformations 
of the spinor. 

To determine these combinations, Eqs. (2.12) and 
(2.1 1 ) must be rewritten in an explicitly covariant form7: 

where a and a run now through the four values O,1,2, and 3. 
The matrices y" are equal to 

the triads e: are augmented to tetrads by introducing the 
components e6 = ey = et = e: = 0 and eg = 1, so that the 
metric tensor becomes four-dimensional: 

The covariant derivative 

is expressed in terms of the electromagnetic potentialA, and 
in terms of the connection coefficient w (see, e.g., Ref. 25): 

Oa, ob=eov (daeva-Fa>%), (2.17) 

where r are Christoffel symbols expressed in the usual fash- 
ion in terms of the metric tensor. The electromagnetic poten- 
tial A differs from the previously introduced A 2) = (O,k,l) 
by the value of the torsion A, ,, : 

Aa=Aa(0)+1/8(-g)-'hgaBePTuvA7, pv, 

In the principal approximation in 1 and v, , i.e., neglect- 
ing their gradients, the gauge field takes the form 

Aw=(Ao, A), Ao=kp1vs, A=kpI. (2.19) 

Note that A, is an axial gauge field: A, is transformed by 
space (P) and time (T) inversions, as follows: 

Variation of the action with respect to A, leads therefore to a 
chiral current, i.e, the "electric" charge of the fermions coin- 
cides with the chiral charge. 

Equation (2.13) is not altered by a local gauge transfor- 
mation or by general coordinate transformations if it is as- 
sumed that A, and < are transformed like the components 
of an electromagnetic field and like tetrads in general relativ- 
ity theory. Integration over the fermions near the poles 
should lead therefore to an effective boson action that de- 
pends only on locally invariant variables, such as the electric 
field strength: 

F,,=apAv-avAu, 
or on the Reimann curvature (see Ref. 7). This property 
permits a substantial simplification of the calculation of var- 
ious anomalies in the dynamics of 3He-A. 

Thus, a local gauge invariance and a general covariance 
have been produced simultaneously in a locally noninvariant 
medium consisting of uncharged atoms, such as liquid 3He. 
This takes place only for low-energy levels and its cause is 
that the Bogolyubov equation becomes linear in the spatial 
and temporal gradients near the gap. Superfluid 3He is no 
exception in this respect; there exist also other systems in 

which the symmetry is not broken but, conversely, increases 
in the low energy limit (see Ref. 26). 

Ill. ZERO-CHARGE AND NON-ANALYTICITY OF THE 
GRADIENT EXPANSION IN 3He-A 

An example of a locally invariant term in effective bo- 
son action for 3He-A is the logarithmically diverging term in 
the gradient expansion ( 1.10) : since the logarithm builds up 
on account of levels with arbitrarily low energy, this term is 
completely determined by integration over the QED fermion 
vacuum. This is none other than logarithmic polarization of 
the fermion vacuum or the zero-charge phenomenon.' 

The external electromagnetic field restructures the fer- 
mion vacuum and thus becomes screened. If the fermions 
have zero mass, the screening is complete, i.e., the initial 
"bare" charge e decreases logarithmically to zero at large 
distances or at low frequencies: 

A2 
e:rr=3n/ln - 

o2 ' (3.1) 

where A is the ultraviolet cutoff parameter. For 3He-A the 
parameter A should be equal to A, but not to E,, since the 
Weyl equations are valid only at w < A,. The QED polarized- 
vacuum electromagnetic energy, which is invariant to gen- 
eral coordinate transformation, should be of the form 

where the index is raised and lowered by the metric tensor 
(2.15). Recognizing that 

(-g) "= ~/c , , c ,~ ,  

F,FpV=2kpZclz[clz(rot 1),,2+c11z(rot 1)12--(dtl)z], (3.3) 

and neglecting the longitudinal (along 1) magnetic field 
k, (VXl) compared with the transverse one, since c, <c,, , 
we obtain for the electromagnetic energy the expression: 

The first term in (3.4), i.e., the "magnetic" energy, is 
precisely the non-analytic term, calculated by Cross,I6 in the 
gradient expansion ( 1.10) and ( 1.1 1 ). The second term, 
which corresponds to the energy of the electric field 
E = k,d,l (neglecting the superfluid velocity v, ), was ob- 
tained for 3He-A in an investigation of the so-called orbital 
susceptibility, i.e., the response of the system ofd, 1 (Refs. 27 
and 28). 

At low temperatures, the electromagnetic Lagrangian 
(3.4) is dominant in the action that describes the dynamics 
of the vector 1. The remaining noninvariant terms [the first 
two of ( 1.10) ] can be disregarded in the logarithmic approx- 
imation. This Lagrangian determines also the spectrum of 
the "photons" of the electromagnetic field, i.e, of the collec- 
tive oscillations of the vector 1 (of the so-called orbital 
waves). In a spatially inhomogeneous medium with 
1 = 1"' = const this spectrum takes the form 

In the static case ( w  = 0)  the logarithm in (10) and 
( 11 ) is already cut off at T = 0 by the very texture of the 
vector 1 [see ( 1.2) 1. To calculate the "magnetic" energy in 
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the static limit, i.e., the change of the energy of the fermion 
vacuum under the action of the "magnetic" field Bi 
-kF (Vxl ) ' ,  it is necessary to sum over the negative ener- 
gies of the fermions (see, e.g., Ref. 9 )  : 

Fm = [ E  ( B )  -E (B=O) I. 

The spectrum of the anisotropic Weyl fermions in 3He-A in 
the presence of the field B was obtained in Ref. 1 [see Eq. 
(46) of that reference]. It is convenient to rewrite this spec- 
trum in the following invariant form: 

where 

B2=BiBi=i/2FtkFki=k,2~12(~12(1 r o t  1)Z+c112[1 rot  11 '). 

(3.8) 

The spectrum depends on three quantum numbers: the com- 
ponent of the momentum k along the direction of the field Bi 
(designated k, ), the number n of the Landau level, and the 
quantity Q that assumes the role of spin. This is the projec- 
tion of the Bogolyubov spin in Nambu space, in contrast to 
the usual 3He nuclear spin which assumes the role of isospin 
in this analogy between 'He-A and the electric weak interac- 
tion (see Ref. 5 ) . 

Substitution of (3.7) in (3.6) and summation over the 
quantum number leads to the following expression (see Ref. 
- ,  

8 ( - g ) "  dk, 
F m  = --- J -x En,,B ,Q -z E (B=O) 

2n 2n .<o, E<O 

where the ultraviolet cutoff parameter must again be set 
equal to A,. Neglecting the longitudinal magnetic field by 
virtue of the smallness c, gc, ,  , we obtain a term analogous to 
(1.12) 

This static limit can be arrived at also with the aid of (3.4) by 
replacing in it w2 under the logarithm sign by the square of 
the "Larmor" frequency 

m2+~L2=2B=2AocllI [1 rot 1] I .  (3.11) 

Finally, we write down the static electromagnetic ener- 
gy (3.9) in a Lorentz-invariant form, including also the de- 
pendence on the static "electric" field: 

It is meaningful only at Fp,Fpv > 0, i.e., at E < B. This indi- 
cates that in a constant electric field stronger than the mag- 
netic a vacuum of zero-mass fermions loses stability to for- 
mation of electron-positron pairs.29 

We note in conclusion one technical detail. In the calcu- 
lations of (3.4) and (3.9) we did not sum over the ordinary 

spins (i.e., over the isospin in the weak-interaction theory). 
This, however, was offset by the fact that we implicitly took 
into account twice as many states as in the Bogolyubov equa- 
tion. Namely, in place of the Bogolyubov vacuum of a Ma- 
jorana field (see also Ref. 30 on this subject) we have consid- 
ered a vacuum of fermions and antifermions, which contain 
jointy twice as many states as the Bogolyubov vacuum. 

IV. CHIRAL ANOMALY AND NONCONSERVATION OF THE 
SUPERFLUID CURRENT 

Another example of phenomena describable by invar- 
iant equations is momentum transfer from coherent super- 
fluid motion into incoherent motion of fermion excitations, 
since this transfer is effected only near Fermi-surface poles, 
where the Weyl equations (2.1 1)-(2.13) are valid. In terms 
of QED, the role of the Fermi-excitation momentum jinc 
( 1.18) is played by the chiral density of the Weyl fermi~ns. '~  
Therefore the nonconservation of the superfluid momentum 
in 3He-A is closely connected with nonconservation of the 
chiral 4-current J i n  the presence of an electromagnetic field, 
known as the chiral anomaly in QED (see Refs. 9 and 3 1): 

We shall show that this equation coincides with Eq. 
( 1.20) for the momentum of the fermion excitations in 3He- 
A. According to (2.13) the chiral current J K ,  obtained by 
varying the fermion action with respect to the gauge field 
A,, is equal to 

wherex, and we denote respectively the annihilation opera- 
tor and the density for right-hand "positrons" and left-hand 
"electrons," (e = + 1 and e = - 1, respectively), and the 
summation is over both signs of the charge. We recall now 
that the "positrons" and "electrons" have respectively mo- 
mentum kFl and - kFl, i.e., the momentum of each of these 
particles is equal to ek,l. Therefore, multiplying Jyn by k,l 
we obtain none other than the incoherent momentum of the 
low-energy excitations: 

while the equation for jinc is obtained by multiplying (4.1 ) 
by kFl 

where the momentum-flux tensor of the incoherent motion 
is given by 

It is easy to verify that in an approximation quadratic in 
the spatial and temporal derivatives of the vector 1, the right- 
hand side of (4.4) coincides with the source of the incoher- 
ent momentum in ( 1.20). 

As applied to 3He-A, the chiral anomaly means that a 
description of the low-frequency dynamics of a liquid at 
T = 0 only in terms of the coherent vacuum variables p, 1, 
and v is incomplete: the dynamics of the vacuum is accompa- 
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nied by creation and annihilation of chiral fermion excita- 
tions, as a result of which transfer of momentum (of chiral or 
electric charge in QED) from coherent vacuum (super- 
fluid) motion into incoherent (normal) motion of fermion 
excitations takes place. The total momentum 

is, on the other hand, conserved, since the momentum 
sources in Eqs. (4.4) and (1.17) cancel one another. Note 
that these momentum sources were obtained independently 
by two opposite approaches. The vacuum-current source 
was obtained from the general phenomenology of the vacu- 
um m ~ t i o n , ~ . ' ~  whereas the incoherent source was obtained 
from (4.1 ), i.e., from a microscopic analysis of the dynamics 
of the Fermion excitations near the poles of the Fermi 
sphere, a dynamics equivalent to that of fermions in QED. 

The situation is similar in QED, where the source of the 
incoherent chiral current can be represented as the total 
four-dimensional divergence of a coherent vacuum current 
JCoh ; this divergence is expressd in terms of boson variables 
(see, e.g., Ref. 9), so that the total chiral current is con- 
served: 

a, ( l ~ n O + ~ L h )  =0, 
e2 e2 

I C O ~  ' = - - ewaBA,d,A,, I,:, = - -A r o t  A. 
4x2 4nZ 

There is, of couse, a substantial difference between the 
coherent chiral density JEoh in QED and the superfluid cur- 
rent jCoh in 3He-A. Whereas the sources of these currents and 
their incoherent parts J L ,  and jinC are equal (accurate to the 
factor k,l), the coherent currents themselves differ from 
one another. Indeed, if JEoh is multiplied by k,  and ex- 
pressed in terms of 1, we obtain the expression 

which not only is not equal to jCoh , but differs even by a factor 
3 from the anomalous part j,, of the coherent current 
(1.13). 

The reason is that the vacuum currents, unlike their 
sources, depend subsantially on the vacuum structure, 
which is different in QED and 3He-A; in the latter, only a 
small part of the iacuum near the poles imitates the QED 
vacuum. The value (4.8) is obtained if gauge-invariant cut- 
off is used in the summation over the Dirac vacuum when the 
vacuum current is calculated. The value ( 1.13 ) is obtained 
in summation over the entire 3He-A v a c u ~ m ~ . ~ . ~ ~  that effects 
by the same token one of the possible gauge-noninvariant 
regularizations of the divergences in QED. 

The incoherent current jinc of low-energy fermion exci- 
tations, on the contrary, is concentrated near the poles at 
sufficiently low temperatures and frequencies of the motion, 
and therefore is equal to J;,, in QED apart from the factor 
k,l. Its calculation in 3He-A is therefore of definite interest 
for QED. The dependence of jinc in the velocity v, of the 
normal component (provided, of course, that the hydrody- 
namic aproximation can be used for the normal motion, i.e., 
~ r <  1, where r is the free-path time of the excitations) was 
obtained in Refs. 19, 17, 23, 10, and 21 [see Eq. (1.1911. 
Equations (1.9) can be written in "electromagnetic" vari- 
ables in the following form: 

(Note that the currents J::' and J::' pertain to two differ- 
ent limiting cases and they can, generally speaking, not be 
added.) Here 

Whereas the scalar potential A, is connected with the super- 
fluid flow, the quantity A ,,,, introduced in (4.10) is conect- 
ed with the normal motion, i.e., with the distribution func- 
tion of the excitations. The distribution function in a 
quasi-equilibrium (hydrodynamic) regime is characterized 
by a finite set of hydrodynamic variables, which conserve the 
collision integral. In other words, the distribution function 
takes in this regime the appearance of an equilibrium distri- 
bution function in the field of supplementary variables such 
as v, . The supplementary boson variables have therefore the 
same structure as the external fields, for example, A ,,,, has 
the same structure as A, and is therefore also transformed by 
a local gauge transformation. The difference A, - A ,,,, is 
thus a gauge invariant and expressions (4.9) are fully appli- 
cable also in QED, if the latter admits of a hydrodynamic 
regime for the excitations produced in the chiral anomaly. 
Just as in 3He-A, the existence of J&, in the hydrodynamic 
regime is due to the fact that the density of the fermion states 
becomes different from zero both in the presence of a mag- 
netic field and in the presence of a "countercurrent" 
A, -A,,,, if the fermions have zero mass. The term of type 
Jyi:) in (4.9), which describes the nonlinear screening of the 
electric charge by the electron-positron vacuum, was recent- 
ly obtained by Gribov" for QED with zero-mass fermions 
[at A,,,, = 01. 

Expressions (4.9) do not describe the incoherent cur- 
rent completely, since they are not of general-covariant 
form. To recover the Lorentz invariance it is necessary to 
add an electric field, and also introduce a vector part of the 
normal variable A,,,, = (A ,,,, , A,,, ), and then 

A similar variable was already considered for 3He-A, viz., 
the distribution function is described not only by the hydro- 
dynamic variable v, but also by the quasi-equilibrium vector 
1, ." This is the orbital-anisotropy vector that characterizes 
the instantaneous distribution function of the excitations. If 
the excitations follow without delay the variable vector 1, 
then 1, = 1, otherwise 1, is an additional dynamic variable. 
It is this variable that leads to the appearance of A,,, : 

Thus, QED with zero-mass chiral fermions is described 
in the quasi-equilibrium regime by the variables A, and 
A,,,, . The closed system of equations for these variables 
should contain, besides the Maxwell equations 
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also the equation that follows for A /;,, from the transport 
equation for the excitations. 

Attention is called to the fact that (4.1 1 ) is meaningful 
only if F,,Fpv is positive, i.e., the electric field is weaker 
than the magnetic one. Otherwise the vacuum is unstable to 
creation of electron-positron pairs29 and the fermions no 
longer have an equilibrium distribution, or else another 
equilibrium regime sets in. The very same instability is re- 
sponsible also for the paradox of the orbital angular momen- 
tum in 3He-A (Ref. 6 ) ,  viz., creation of excitations by the 
electric field E = k,a,l transfers the angular momentum to 
the noncoherent subsystem. 

Note one more analogy between chiral anomalies in 
QED and 3He-A. In the latter, chiral excitations are pro- 
duced by flow of the Fermi sea through "openings" in at the 
poles of the Fermi sphere (see Fig. 1). A positive chiral 
charge is produced, for example, by flow of particles, in mo- 
mentum space, from the south pole through the region of 
large (i.e., far from the poles) momenta to the north pole, 
where the particles emerge from under the Fermi surface 
and form chiral excitations that have positive charge ("posi- 
trons"). Hole excitations ( "anti-electrons" ), likewise with 
positive charge, are then produced near the south pole. In 
QED, similarly, the chiral anomaly is described as a particle 
of particles from the large-momentum region of a Dirac 

V. WESS-ZUMINO ACTION IN 'He-A 

The system of equations (1.16) and (1.3b) for the vari- 
ablesp, v, and 1 in 3He-A at T = 0 is not closed, since it does 
not take into account the dynamics of the produced normal 
excitations that carry away the momentum and the angular 
momentum. There exists, however, a regime in which this 
system becomes closed. This occurs if the normal motion is 
set by external conditions, e.g., in a narrow layer between 
plates we have u, = 0 in the case of 3He-A because of the 
interaction with the walls. The fact that this system does not 
conserve the momentum is of no importance in the present 
situation: the momentum is returned to the walls through 
the normal subsystem. Nonconservation of the momentum, 
however, means that the system of equations cannot be ob- 

FIG. 1. Formation of chiral charge in 3He-A or of the momentum of 
fermion excitations. The Fermi particles, shaded, leaking out from the sea 
inside the Fermi sphere through the poles on the Fermi sphere, where the 
gap in the spectrum of the fermion excitations (solid line) vanishes. The 
formation of a positive chiral charge is shown: the excitations with posi- 
tive charge e = + 1 ("positrons") are formed near the north pole, where- 
as near the south pole are formed holes ("antielectrons") which also have 
positive chiral charge. 

tained via the standard Lagrangian formalism, in which the 
momentum is automatically conserved. It is therefore neces- 
sary to introduce in the Lagrangian action a modification 
that relaxes the stringent requirements of the usual formal- 
ism. 

Such a relaxation was observed in Ref. 12 in the frame- 
work of a Hamiltonian formalism that uses a Poisson- 
bracket algebra. It was found that the group properties of the 
dynamic variables, while imposing strong constraints on the 
structure of the equations, admit of a certain leeway due to 
introduction of a dynamic invariant Co that commutes with 
all the remaining variablesp, v,, and 1. The system of equa- 
tions conserves the momentum only at C, = 0 and can be 
obtained in the framework of the usual Lagrangian formal- 
ism (as was done in Ref. 1 1 ). It can be shown that for a 
Lagrangian description of the system of equations at Co # 0 it 
is necesary to supplement the Lagrange action by an action 
of the Wess-Zumino type34: 

HereS'O'is that action which leads to Eqs. ( 1.3)-( 1.7) for a 
Bose condensate of molecules, i.e., at Co = 0, and the addi- 
tional action S, can be written down only using the auxil- 
iary five-dimensional space: 

s,..,=R jd3xl:td~5c0i[a,i, a5i] 
2 

h + - j aa d t  C. (lv.) 11 rot I]. 
2 

This space is chosen such that its boundary is a physical 
four-dimensional space-time continuum, and the variation 
ofthe action should land outside the boundary. This require- 
ment leads to dynamic invariance of the parameter Co, i.e., 
d, Co = d,C, = 0, and the requirement that the amplitude 
exp(iS/fi) be independent of the choice of the extension to a 
five-dimensional space leads to quantization of the quantity 
No = Jd 3 ~ C 0  (Ref. 6). These conditions are undoubtedly 
less stringent than simply the condition Co = 0 for a Bose 
condensate of molecules. 

The Wess-Zumino action describes phenomena con- 
nected with the anomaly. Variation ofS, with respect to v, 
leads to an additional anomalous current in (1.13), vari- 
ation with respect to the order-parameter rotation angle 0 
leads to a source of angular momentum in the right-hand 
side of ( 1.16), and all this alters the dynamics equations in 
such a way that a momentum source, likewise proportional 
to the parameter Co, appears in the right-hand side of ( 1.17). 

This action can be obtained not only from the general 
phenomenology. Use can be made of the fact that the action 
S,, which describes the transfer of the momentum and of 
the angular momentum into the excitation subsystem, and is 
by the same token concentrated near the zeros of the gap, 
should have a general-covariant and a guage-invariant form 
and should be completely determined by the "electrodynam- 
ic" variables. The only possible invariant, which is a 5-form 
and is expressed in terms of the field A,, is given by 

The coefficient is chosen here such that variation of this ac- 
tion with respect to A, gives an anomalous chiral current in 
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QED. For Abelian QED this 5-form is not only closed but 
also exact, i.e., not only does the variation of the action land 
on the four-dimensional boundary, but the action itself re- 
duces to a four-dimensional integral over the physical con- 
tinuum. Actually, by choosing for the electromagnetic field 
an extension to a five-dimensional space such as to satisfy 
requirements of gauge invariance and of closure of the 5- 
form: 

we obtain the usual four-dimensional integral (the so-called 
0-term) 

S,,-S, = & 5 d4z eampFaBFT,,O. (5.5) 

This is precisely the term that must be added to the electro- 
magnetic action to obtain expression (4.1) for the anomaly 
in the chiral current. It is assumed that the gauge transfor- 
mation A, -A, + d, a transforms also 0 into 8 + a. From 
this, according to the Noether theorem, the variation of So 
with respect to 0 leads to the source of the chiral current in 
(4.1). 

The action (5.3) should be applicable also to 3He-A, 
where A = kFl,  A, = kFlv,. For the form expressed in 
terms of v, and 1 to be closed, it is necessary to extend the 
variable to the five-dimensional region in the following man- 
ner: 

(&A, r o t  A) =O. (5.6) 

It then is easy to verify, however, that the action (5.3) re- 
duces to the Wess-Zumino action for 3He-A, i.e., to Eq. 
(5.2). Thus, in the "helium" regularization of quantum 
electrodynamics the 8 term goes over into a true Wess-Zu- 
mino action (5.2), which has a nontrivial topology caused 
by the fact that 1 varies on a sphere or that the Fermi sphere 
has the topology of a sphere. It is this which leads to quanti- 
zation of No = Jd 3 ~ C 0  (Ref. 6).  Direct calculation of S ,  
for 3He-A was carried out with the aid of the Bogolyubov 
equations in Ref. 35. 

CONCLUSION 

The basic phenomena connected with vanishing of the 
gap at two points on the Fermi surface in 'He-A evolve in the 
vicinity of these points. The Bogolyubov equations for fer- 
mion quasiparticles are linearized there and are transformed 
into Weyl equations for right-hand "positrons" and left- 
hand "electrons" moving in an "electromagnetic" field and 
in a "gravitational" field. This allows us to relate the singu- 
larities in the dynamics of 'He-A to phenomena such as 
chiral anomaly, zero-charge, nonlinear polarization of the 
vacuum, and production of electron-positron pairs in an 
electric field. This is useful in two respects. On the one hand, 
the local gauge invariance and general covariance of the 
Weyl equations permit a drastic simplification of the deriva- 
tion of the various singularities in the action for 'He-A, in- 
cluding the Wess-Zumino action and the non-analytic terms 
in the gradient expansion. On the other hand, the phenomen- 
ology of 'He-A with its two-component hydrodynamics per- 
mits a description of the chiral anomaly in QED with zero- 
mass fermions in terms of a coherent (vacuum) and a 
noncoherent (above-vacuum) motion. 

We have considered here the singularities only in the 

orbital dynamics, which touches upon only three out of the 
possible 18 order parameter components that act on fer- 
mions as an Abelian gauge field. No less interesting, obvi- 
ously, is the dynamics of the remaining 15 modes, some of 
which correspond to gravitons and Wbosons in their action 
on chiral fermions, which can lead to non-Abelian chiral 
anomalies to related effects in 3He-A. What should be next 
investigated are the singularities in the dynamics of super- 
fluids in which the gap vanishes on a line, as in the polar 
phase, and on one of two Fermi spheres, as in 'He-A. 

I am indebted to V. N. Gribov for numerous and helpful 
discussions. 
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