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Under the customary assumption that the collapse of Langmuir waves is a self-similar process, 
the statistical properties of strong Langmuir turbulence are determined in the inertial range by 
means of a certain probability measure specified on a set of self-similar collapse regimes. This 
measure and set have not been studied previously. The only results available are isolated and 
furthermore extremely specialized examples of self-similar solutions of the Zakharov equations 
and their scalar model, found numerically. A simple method is proposed for reducing the 
nonlinear problem of seeking self-similar scalar collapse regimes, with an arbitrary cavity 
shape, to a well-known linear problem: solving a Poisson equation. This approach reveals the 
structure of the entire set of self-similar scalar collapse regimes and permits an analytic 
derivation of these regimes for the case of ellipsoidal cavities. 

1. INTRODUCTION 

Most attempts to describe strong Langmuir turbulence 
have made use of the hypothesis that the collapse of the 
Langmuir waves is of a self-similar supersonic nature (Refs. 
1 and 2, for example). According to this hypothesis, the 
shape of a collapsing cavity does not change in the inertial 
range, and the size decreases in accordance with 

where t, is the time at which the singularity develops. Rela- 
tion ( 1 ) agrees satisfactorily with the results of numerical 
 calculation^.^" Although the conclusion that self-similar re- 
gimes like ( 1 ) are established for arbitrary initial conditions 
requires a more thorough test,6 the study of these regimes 
will apparently prove useful for deriving a systematic theory 
of strong Langmuir turbulence. Despite the interest in self- 
similar regimes, which has been manifested since the very 
first paper on collapse,' we still do not know much about 
them. The very fact of their existence has remained in dis- 
pute until just recently. It has been only in the past few years 
that computers have made it possible to construct examples 
of self-similar solutions of the Zakharov equations and of the 
scalar analog of these equations proposed by Budneva et u I . ~  
The first step was to construct centrally symmetric solutions 
of a scalar collapse model and to solve one-dimensional 
equations giving an approximate description of the electric 
field on the "short" axis of the highly oblate cavity.' Later, 
the Zakharov equations with a centrally symmetric cavity 
and a triplet of identically populated bound states were 
s01ved.~ These examples of course prove the existence of self- 
similar regimes of supersonic collapse. However, the solu- 
tions which have been found, which are extremely few in 
number and highly symmetric, do not tell us about typical 
representatives of the family of self-similar solutions or 
(especially) about the family as a whole. A systematic de- 
scription of strong Langmuir turbulence will require not 
only studying this family but also finding the probabilities 
for the onset of all possible representatives of the family. In 
the present paper we attempt to solve the first part of this 
problem in a scalar model of collapse. 

2. STRUCTURE OF THE FAMILY OF SELF-SIMILAR 
SOLUTIONS 

Self-similar regimes like ( 1 ) of supersonic "scalar" col- 
lapse are described by the equations 

With each solution of this system of equations we can associ- 
ate a region V, 

which is accessible to a particle with an energy of - 1 during 
classical motion in the potential n. It turns out that the oppo- 
site is also true in a sense: If a region V has typical dimensions 
which are not too small, and if each point of its boundary S 
can be connected to the origin of coordinates by a straight 
line segment which lies entirely within V, then there exists a 
self-similar solution which satisfies conditions (4).  In this 
section of the paper we are interested in regions Vwith typi- 
cal dimensions which are large in comparison with unity. 
This restriction is sufficient for the existence of a solution of 
Eqs. (2 )  and ( 3 )  which corresponds to V, and it allows us to 
find this solution in a relatively simple way. The possibility 
of a simplification arises because the term AE in Eq. (2)  is 
estimated to be small in comparison with E. If we omitted 
the term AE, we could easily find a solution E , ,  n, of the 
simplified version of system (2),  ( 3 ) .  Specifically, in this 
case we would find from ( 2 )  

n.(r) lpEv=-l, E* (r) lrev=O, 

and from ( 3 ) we would find 

n* (r )  1 ,ev=g,r-2+g2r-7'y- - 
(7)  

where g, and g, are functions of the coordinates which are 
independent of r .  Equation (6)  with the boundary condition 
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has an single-valued solution, which is automatically posi- 
tive. The functions g, and g2 in (7 )  can be expressed in a 
simple way in terms of the jump in the gradient of E :  at 
surface S: 

3 A 
3 2 Rcosa 2 Rcosa 

Here R is the point in which the radius vector r intersects the 
surface S, 

and a is the angle between R and A (under the limitations 
specified above, this is an acute angle). 

The functions E. ,n. constructed here constitue a good 
approximation to the solution of Eqs. (2),  (3)  far from S. 
The term AE in (2)  need be retained only in a narrow neigh- 
borhood of this surface, where the length scale for variations 
in E, is quite small. To find the functions E, n in this neigh- 
borhood, it is convenient to analytically continue the solu- 
tion of Eq. (6)  which satisfies condition (8) beyond region V 
and, denoting the continued solution by G, to rewrite Eq. 
( 3 )  as 

Since the length scale for the variation of the quantities n + 1 
and E - G along the normal x, to S near S is far smaller 
than the typical dimensions of region V, a double integration 
of ( 10) over x, gives us 

In the range of applicability of ( 11 ), the function G can be 
assumed to depend linearly on x, : 

Gx-Ax,=-A (r-R) cos a .  (12) 

After we substitute ( 1 1 ) and ( 12) into (2 )  and introduce the 
new notation 

E ( r )  = (BA) ~f(* 6 cos a ) ,  6=(4R2cos2a)"‘ 9A (13) 

we find a so-called Painlevt equation of the second kind for 
the function f (6) : 

(see, e.g., Ref. 10). It is not difficult to see that the length 
scale S for the variations of the field E near surface S is pro- 
portional to the square root of the linear dimensions of re- 
gion Vand is indeed small in comparison with these dimen- 
sions. At distances from S greater than S, the functions E, n 
which satisfy relations ( 1 1 )-( 14) must become the same, to 
within small corrections, as E. ,n.. Consequently, we have 

f 2  +{-+Oas{-+ - w and f({)+Oas{-+ + W .  Thesecon- 
ditions unambiguously determine a regular solution of Eq. 
( 14). The function f (6) is plotted in Fig. 1. 

The problem of finding self-similar solutions with a 
large cavity V thus reduces to that of solving linear equation 

FIG. 1. Solution of Painlev6 equation ( 14) which satisfies the boundary 
conditions f(<) -0 as {- oo and f '(0 + 6-0 as 6- - W .  The dashed 
line is the function f = ( - {) 'I2. 

(6).  That equation can be integrated numerically without 
difficulty in essentially any region V (see for example, Ref. 
1 1 ) . In the ellipsoid 

F (r) - l - ~ ~ / a ~ - y ~ / b ~ - ~ ~ / c ~ ~ O  (15) 

an analytic solution can be found: 

E,2=14/l, ( l /az+l/b2+l/~2)- 'F (r) 

Substituting ( 16) into the equations given above, we can 
easily calculate all the characteristics of self-similar solu- 
tions with ellipsoidal cavities. 

If the dimensions of region V are small in comparison 
with unity, the system (2) ,  (3)  has no solutions. It is natural 
to suggest that each subfamily of regions Vwhich are similar 
to each other contains a unique critical cavity dimension, 
separating regions in which solutions do and do not exist 
(for each shape there is a distinct critical cavity dimension). 
To test the validity of this suggestion and to see how well it 
agrees with the results of earlier studies, we turn now to 
centrally symmetric self-similar solutions. 

3. CENTRALLY SYMMETRIC SOLUTIONS 

Centrally symmetric, self-similar solutions with a large 
cavity radius (R > 1 ) are1' 

Here S = (3/7R) ' I 3  <R, and f is the function plotted in Fig. 
1. In accordance with the prediction in Ref. 6, a solution 
exists for a continuous set of values of the parameter R [or, 
equivalently, of the parameter E,-E(0). The reason is a 
degeneracy, which causes the centrally general symmetric 
solutions of Eqs. (2)  and ( 3 )  to be representable near the 
origin of coordinates (r-0) not by series in even powers of r 
(as has been previously been assumed) but by double series 
in integer powers of r2 and r' , where 

is a positive and generally irrational number. As parameters 
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determining the family of solutions which are bounded as 
r-0, 

we might choose for example, the coefficients E,,, = Eo and 
no,, s n , .  The condition that there be no singularities of the 

type 

at finite r imposes a constraint on these coefficients: 

rs (Eo, n,) =m. (20) 

As a result, we find a single-parameter family of centrally 
symmetric solutions which are bounded as r+O and which 
vanish as r- a,. Taking the approach of Refs. 8 and 9, we 
can study this family in detail by numerical calculation. The 
linen, (E,) determined by condition (20) is shown in Fig. 2. 
It lies entirely within the region Ei > 14/9, since there are 
no self-similar solutions with E i < 14/9. The dependence of 
the solution on the parameter Eo is smooth, despite the sin- 
gularities in the function n, (E,) These singularities stem 
from the change in the structure of expressions ( 19) for even 
values of c (c = 2m) and lie at the points E, = $, : 

The nature of the singularities can be seen quite easily by 
setting c = 2m + c,, c, -0 in ( 19). For n we then find an 
expression 

1 
n(r)= np,qr2(p+qm)(l+qc, in r  +-q2c,'ln2r +. . . 

P.9  
2 1 

For the condition that the third term of this expression re- 
main finite as c, -0 we find 

no,,-l/c,-l/ ( E o 2 - 8 m Z )  

(the second term remains finite because the terms in the sum 
n,,, + no,, which increase without bound as c, -0, cancel 
out). 

The self-similar solutions (which are representable by 
series in even powers of r as r-0) which were described by 
Zakharov and Shchur in Ref. 8 correspond to the zeros of the 
function n, (E,). According to Ref. 8, these zeros are at the 

FIG. 2. Relationship between the parameters n ,  and E ;  imposed by the 
condition that the self-similar solutions must be regular. 

FIG. 3. Examples of self-similar solutions with various values of the field 
at the center of the cavity. 1-E; = 14/9; 2-a solution with Eg -- 1913 
which is analytic at the center of the cavity; 3-Ei  = 3 ( c  = I ) ,  4- 
E ;  = 8. 

points E: =: 1.91, E: ~ 5 . 8 8  .... Figure 3 shows several typi- 
cal examples of self-similar solutions of a general type. For 
all permissible values of the parameter Eo, the field E in these 
solutions depends monotonically on r. In the region 
14/9 < E < E:, the function (n,r) is also monotonic. In 
this region we haven, > 0, c < 1 and dn/drl,-, -, OJ; i.e., the 
"potential" n ( r )  has a downward "ski-jump" at the origin. 
The size of this ski-jump increases as E i  approaches the 
value t?; = 14/9. The solution which arises in the limit E - 14/9 the dashed line in Fig. 3 ) has a logarithmic singular- 
ity at the origin, n(r)  1 .-, =: 14/111nr + const. In the region 
E > E: the function n ( r )  has a single minimum. The latter 
moves away from the origin with increasing E i .  In the inter- 
val E: < Ei  < 3, the potential n ( r )  still has a ski-jump, but 
now it is directed upward, by virtue of the relation n ,  < 0. 
The ski-jump disappears at E i = 3 (i.e., at c = 1 ) .  With a 
further increase in E i ,  the singularity at the origin remains 
only for the derivatives of progressively higher order of the 
solution, and the "potential well" in n becomes progressively 
wider and flatter. 

4. SELF-SIMILAR SOLUTIONS WITH HIGHER-INDEX BOUND 
STATES 

A self-similar cavity is known to have an infinite num- 
ber of bound states.'' It has been assumed in the preceding 
sections of this paper that only the lowest state of this set is 
populated. Self-similar solutions for which higher-index 
states are populated also exist and must be taken into consi- 
deration in a description of turbulence. Although no exam- 
ples of solutions of this sort have been found so far, they can 
be constructed, in several cases analytically. The structure of 
the set of all self-similar solutions with given occupation 
numbers of one or several bound states is also amenable to 
study. It can be shown that this structure is analogous to that 
which prevails during the filling of the ground state. The 
arguments which lead to this conclusion are largely the same 
as the arguments above, so we will not reproduce them here. 
We will restrict the discussion here to a simple example 
which gives an idea of the specific features of the self-similar 
solutions for which higher-index states are populated; for 
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example, we will examine centrally symmetric solutions 
with a single populated level. 

In the centrally symmetric case, Eq. ( 3 )  can be inte- 
grated once. Carrying out this integration, and introducing 
some new functions and variables, 

we easily find the following system of equations from ( 2 ) ,  
( 3 ) :  

In terms ofthe new notation, the boundary conditions do not 
contain the parameter E,: 

A solution which corresponds to the filling of the ground 
state is described within the cavity in the approximation 
(5 ) - (7 )  by 

and is also independent of E,. As was mentioned above, the 
approximation (5 ) - (7 )  is good up to certain neighborhood 
of the boundary of the cavity, specifically, in the region 

In this region, the left side of (22)  is small in comparison 
with each of the terms on the right, so that it becomes possi- 
ble to calculate, by successive approximations, corrections 
to (25)  which depend smoothly on t. In addition to these 
corrections, which contain a small factor on the order of the 
parameter E ;  ', the exact solution differs from (25)  by a 
correction which is exponentially small in region (26 ) ,  for 
which the length scale of the variations is on the order of 
E ;  '. It can be calculated by the WKB method; it decays 
exponentially as t -  - cc . The coefficient of the exponential 
function is proportional to the parameter n  ,, which was in- 
troduced in $3. If we treat n ,  as an adjustable parameter on 
which the family of solutions which are regular as t -  - cc 
depends, then a solution have a singularity like that de- 
scribed in $3 will correspond in a random way to each se- 
lected value of n,. For solutions which depend smoothly on 
the coordinate within the cavity, the condition that this sin- 
gularity be eliminated was already discussed above. It deter- 
mines the curve n, ( E , ) .  There are, however, other ways to 
eliminate the singularity, in which the solution executes sev- 
eral fast oscillations within the cavity and then becomes 
smooth again. (As long as the number of these oscillations is 
not very large, they can be represented as jumps from one 
branch of a smooth solution $z + $, to the other.) When 
we take this possibility into account, we see that condition 
(20)  determines an entire set of n,(N' (E,) curves. Curve N 
corresponds to a function $ = f N '  , which has N zeros, i.e., 
to the filling of the N th excited state in the cavity. In order to 
parametrize the family of solutions which are regular as 
t +  - cc and which have zeros, it is more convenient to 
switch from use of the coefficient n ,  to the use of the coordi- 

nate t ,  of the first zero of the functions $( t ,  is unambiguous- 
ly related to nl  for a given value ofE,).  When this parametri- 
zation is chosen, a countable set of curves t lN'(Eo) 
corresponds to solutions which are regular on the entire real 
axis. 

To give a quantitative description of oscillatory solu- 
tions, it is natural to first make use of the fact that the length 
scale is small in comparison with the size of the cavity. Equa- 
tions (22)  and (23)  form a third-order system, so it is suffi- 
cient to seek three approximate integrals of the fast motions 
in order to eliminate the shortest scale from the p r ~ b l e m . ~  
As can be seen from (23) ,  the difference $2?4/9u can be 
chosen as one of the weakly oscillating functions of the ze- 
roth approximation. For use below, it is convenient to refine 
this choice in the following way: 

After the function u is replaced by @, the system of equations 
(22 ) ,  (23)  becomes 

If we ignore the dependence of @ on t  and the small term 
( I / E ;  ) (d$/d t ) ,  Eq. (28)  has an "energy" integral: 

Differentiating (30)  with respect to t, and using the exact 
equations (28)-(30) ,  we easily find an equation for the 
function W, which is obviously also weakly oscillating: 

Using (30) and, after multiplication by $, Eq. (28) ,  we can 
put ( 3  1 ) in a more convenient form, eliminating the term $4 

from its right side: 

As the third weakly oscillating function we should choose a 
large oscillation "frequency," dr/dt cc E,. Ifwe want a deter- 
mination of the "phase" r which is suitable for all N, we must 
switch to functions which are even less oscillatory than W 
and @, which turns out to run into unnecessary complex- 
ities. We will thus offer some simpler although not universal 
determinations, corresponding to various values of N. 

In the case N = 1, in which the first excited state is pop- 
ulated, the solution is smooth within an exponentially small 
correction outside a narrow neighborhood of the single zero, 
t - - t ( 1 )  , , of the function $ = $'" [but inside region (26)  1 .  
By virtue of (28 ) ,  ( 30 ) ,  this solution satisfies the relations 

The quantities represented here by O ( E ,  k), which are on 
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the order of e; k ,  can be calculated without any particular 
difficulty, but we not need them for the discussion below. 
The variations of the functions @ and W near the jump 
It - t I" I (E; ', are less than E, ' in order of magnitude, 
according to (29), (3  1 ) . Making use of these facts, we find 
that integration of Eq. (32) across the jump leads to the 
relation 

while integration of Eq. (29) over the region in which the 
functions vary smoothly gives us 

Equations (34), (35), and (25) can be used for an approxi- 
mate calculation o f t  ' , I ) :  

The shape of the jump is found with the help of Eq. (30) : 

Knowing the shape of the jump in the zeroth approximation, 
(37), we can integrate Eq. (29) more accurately, and we can 
calculate the function @ in a first approximation; we can use 
the results to refine the position and shape of the jump, etc. 
There is no point in dwelling on this matter in more detail, 
since the simple equations ( 35 )-( 37) already give us a fairly 
detailed picture of the solution. The only important point is 
to emphasize the possibility of a systematic calculation of 
corrections which are small, on the order of the parameter 
E ; '. Near the jump, Eq. (37) should in fact be made some- 
what cruder, by replacing the function @(t )  with its value at 
the point t ;I): @(t  I" )  ~ 6 1 7 .  It is useful to note that a jump 
in the field t+4 (or E )  corresponds to a soliton-like dip in a 
perturbation of the density n: 

A solution with an index which is not very large, N4E0,  
is, to lowest order, a set of Njumps similar to that described 
above. We denote by t iN', t iN), ..., t LN) the zeros of the func- 
tion v ( t )  in increasing order, and we denote by 
~ ~ ~ ' , s ~ ~ ' , . . . , s ~ ~ ~  the extrema of this function which lie be- 
tween these zeros. Under the condition N g  E,, all the jumps 
occur in a narrow neighborhood of the point t I". In this 
neighborhood, the function @( t )  does not have room to vary 
significantly, and it remains close to 6/7. The function W(t) 
does not have room to increase significantly, and it remains 
small in comparison with unity. Because of this, the shape of 
the jumps remains the same as in the case N = 1, in a zeroth 
approximation: 

Near each of the "stopping points" s !~ '  we can ignore the 
change in the function W(t), and we can also integrate Eq. 
(30): 

A comparison of (39) and (40) in their common range of 
applicability makes it possible to express the distances be- 
tween the adjacent zeros and the extrema of the function 
t+4'N) ( t )  in terms of the quantities WIN': 

It can be seen from this expression that under the condition 
WIN' 4 1 the distances between adjacent jumps are signifi- 
cantly greater than the width of each jump; i.e., the jumps 
are indeed nearly isolated. To close the system of recurrence 
relations (41), it is sufficient to integrate Eq. (32) across a 
jump: 

Using (42), we can eliminate the coordinates of the zeros of 
the function qb'N' ( t )  from (41 ) and derive a system of equa- 
tions containing only the quantities WIN': 

The values of WAN' and WLN', which arise in (43) with i = 1 
and i = N - 1, and which have not been determined pre- 
viously, should be taken to be zero. The numerical factor has 
been omitted from within the logarithm on the right side of 
(43) because the derivation of (42) did not retain some 
small corrections on the order of the parameter 
(In W ,'N) ) - I .  TO within the same logarithmic accuracy, the 
solution of system (43) can be written 

where WN' is the maximum value of W,'N). As has been 
assumed, it is small in comparison with unity under the con- 
dition N<Eo. Knowing the quantities WIN', we can easily 
find the coordinates of the zeros of the function $(N'  ( t )  
from (42). At the accuracy level adopted above, these zeros 
are positioned symmetrically with respect to the point t I", 
and they are separated from each other by distances on the 
order of E, 'ln(E,/N) .When small corrections on the or- 
der of the parameter [ln(E,/N) ] - '  are taken into account, 
the center of the distribution of zeros shifts leftward from the 
point t I" by an amount of order NE; < 1, and the symme- 
try in the arrangement of zeros with respect to the center is 
slightly broken. A density perturbation which corresponds 
to solution Ncontains Nsoliton-like dips like that of (38), at 
the points rlN' = ~ ~ e ~ " ~ ' :  
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Self-similar solutions with 1 <N<Eo can also be calcu- 
lated by another method, which deserves mention here be- 
cause in the centrally symmetric case it remains valid even 
for N 2  E,. The possibility of finding self-similar solutions 
without assuming that the ratio N /Eo is small stems from the 
nearly exact coincidence of adjacent oscillations when the 
total number of these oscillations is large. Ignoring the dif- 
ference between adjacent oscillations, i.e., assuming that the 
functions Wand are constants in (30), we can easily inte- 
grate this equation exactly. Under the condition 

the solution would be periodic and would take the form 

$=A sn (-c, k) ,  (47) 

where sn is the elliptic sine, 

For t-dependent functions @(t)  and W(t) which satisfy con- 
dition (46), relations (47), (48) should be thought of as 
equations for a transformation from an unknown function 
$(t) to another unknown function ~ ( t )  . An equation for the 
function ~ ( t ) ,  which can easily be found with help of (29)- 
(31), (47), and (48), differs from (49) in havingan oscilla- 
tory term on its right side which does not contain the large 
parameter E,. An averaging method can be used for the sys- 
tem of three first-order equations for the three weakly oscil- 
lating functions r ,  CP, W (Ref. 14, for example). To lowest 
order in the parameters N - ' and E ,  I ,  the equation for the 
average function 7 is the same as (49), while the equations 
for the average functions @ and Ware 

(which coincides to within a small correction with the point 
t, ), the solution of the average equations (50), (5 1 ) should 
join continuously with the smooth solution of the original 
system: 

The family of solutions which arises when this matching is 
carried out depends on the single parameter 

(remarkably, there is no Eo dependence) and can easily be 
found by numerical integration. The results are shown in 
Fig. 4. For all possible values oft, the function @ ( t )  is found 
to be a monotonically decreasing function, while the func- 
tion W(t) initially decreases, then increases, and manages to 
vanish before @ ( t )  does, The point t, ( t ,  ), where this oc- 
curs, is the right boundary of the oscillation filled interval. 
Over the region between t, (t ,)  and the edge of the cavity, 
i.e., up to the point t, ( t , ) ,  at which the function @(t )  van- 
ishes, we again have a smooth solution of Eq. (29) with 
t+h2 z CP: 

For large negative values of the parameter t ,  ( - t, , 1 ), the 
solution of Eqs. (50) and (51) in the region t - t ,<  - t, 
depends only on the difference t - t, to (to within small 
corrections). The asymptotic form of this univers; qlution 
in the region t - t l )  1 (but - t 9  1) is 

where the constant B- 1 is found numerically: Bz0.91. 
When t increases further, terms containing e2' become im- 
portant in Eqs. (50) and (51 1, and the solution deviates 
from the asymptotic solution (53) : 

Here K and E are the complete elliptic integrals of the first 
and second kinds, and CP, W, $ , , and k are functions which 
have been averaged over the period of the fast oscillations. 
These average functions are represented by the same sym- 
bols as the exact functions, since the average functions differ 
from the exact one only by corrections which are of no im- 
portance for the discussion below and which satisfy the same 
relations as before, (48). [In narrow neighborhoods of the 
ends of the oscillation-filled interval, the relative magnitude 
of the correction to the average function Wis not small, and 
the validity of the averaging step is not obvious. Although 
these neighborhoods are not important to the discussion be- 
low (because of their narrowness), it is useful to note that a 
solution can also be calculated quite easily in these neighbor- 
hoods. The result demonstrates that the average equations 
are applicable even for describing several extreme oscilla- 
tions. The reason lies in the very weak (logarithmic) de- 
pendence of the oscillation period on the quantity W as 
W-+O.] At the left end of the oscillation-filled interval 

FIG. 4. The functions @ ( t ) ,  W ( t ) ,  and @ ( t )  for various values of the 
parameter t,: 1-t, = t = 1 /2  In 27/98; 2-t, = - 2; 3-t, = - 5;  
k t ,  = - 7. 
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Expressions i 54), derived in the linear approximation3' in 
e, ' , are applicable as long as the condition $ 2  @, holds, 
i.e., in the region 

1 , - t ~ e ~ ' J ~ ,  t,--'1, ln 3/,. (55) 

As the boundary of this region is approached, the nonlinear- 
ity of the oscillations becomes increasingly important; *? 
then becomes comparable to ( W vanishes), and the solu- 
tion becomes smooth again. Expression (54) can be used to 
estimate both the position of the right boundary of the t, 
interval filled by oscillations and the value of @(t, ) : 

Since the part of the region of the smooth variation of the 
solution on the right is narrow, and since @ ( t ,  ) is small for 
large values of - t,  we can simplify (52) in this limiting 
case: 

We can also estimate the position t, of the edge of the cav- 
ity4' : 

It is pertinent to recall here that the lowest approximation in 
the parameter E ,  which we used above breaks down in a 
narrow neighborhood of the cavity boundary. The refine- 
ments required in this neighborhood are made in the same 
way as in $2, and they lead to the same Painlevt equation, 
(14),  and the same estimate of the width of the neighbor- 
hood, 6. The point t, can be calculated with the help of (50) 
and (5  1 ) if it lies outside the &neighborhood of the bound- 
ary of the cavity, i.e., for t ,  - t, %s/E,-E, 2/3, or, equiv- 
alently, for 

In the opposite limit from (59), the distance t, - t, 
which is fornially found from (58) is less than the period of 
the last oscillation, and it becomes meaningless to distin- 
guish between the points t, and t,. In the case etl <E; the 
oscillations remain linear up to the very edge of the cavity, 
and near it they are described by the ordinary Airy equation. 

Note that the problem of finding self-similar solutions 
with N &  1 breaks up into two parts: constructing integral 
curves of Eqs. (50),  (5  1 ) as a function of the parameter t ,  
and "quantizing" the values of this parameter. The quanti- 
zation condition amounts to fitting an integer number of 
oscillations in the interval ( t , ,  t, ) and can be found easily 
from (49), (47): 

t , ( t , l  

DE, 
H=- d l $ . ( t ) / K ( k ( f ) ) .  (60) 

41'- ,, 
It can be seen from (60) that the quantized values t I N '  (E,) 
of the parameter t ,  do not depend on both of the parameters 
E, and N separately but only their combination 7 = N /E,. 
The functional dependence t , ( v )  is shown in Fig. 5. The 
asymptotic forms of this dependence can be calculated ana- 
lytically. In the case v <  l (N<E,) the results are the same 
as those found by the other method (see the discussion 
above). In the case 7 % 1, the value oft ,  is negative and large, 
so that most of the oscillations can be assumed to be linear. 

FIG. 5. Functional dependence of the parameter t ,  on 7 = N / E , ,  found 
from the condition that the oscillatory self-similar solutions must be regu- 
lar. The dashed line is the asymptote t ,  = - ( 2 / 3 ) 1 ' 2 ? r ( 7 +  B , ) ,  
B,=0.13.  

The functional dependence t ,  (7) is also linear for 7 % 1 : 

The term B, - 1 must be determined numerically because of 
the nonlinearity of the first AN-E, oscillations. The result 
is B,-0.13. 

Up to this point, we have been discussing oscillatory 
self-similar solutions with E, % 1. Solutions with E, - 1 can 
be found numerically. Figure 6 illustrates the results with 
centrally symmetric solutions of Eqs. ( 2 ) ,  (3  ) (these solu- 
tions are analytic at the center of the cavity) with the lowest 
possible field values at the center of the cavity, E, = E,(N), 
and various numbers N. These solutions were first rescaled 
according to 

After the scaling (62), the depth of the cavity at its center 
becomes unity, and the 'binding energy" of the populated 
state [which was assumed to be unity when the first of the 
basic equations was written in the form in (2)  1 is found to 
depend on N. Relatively large values of Ncorrespond to rela- 
tively small binding energies, a, < 1, and to approximately 
equal values of the field at the center of the cavity: 

By virtue of these properties, the equations and boundary 
conditions for the solutions with all possible N >  1 are found 
to be essentially identical, and the solutions themselves are 

FIG. 6. Oscillatory self-similar solutions which are analytic as u - 0  and 
which have the smallest field values at the center of the cavity, Eo, for 
various indices ( N  + 1)  of the filled states; 1-N = 1 ;  2-N>2. The dis- 
crepancy between the curves of the functions A ( ? )  with all possible N >  1 
does not exceed the thickness of the line in this figure. The same is true of 
the functions E ( ? )  with N>2 in the region i ( 5 .  
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essentially the same except quite far from the center of the 
cavity. The difference between the "wave functions" 
ECN' (3) of the states with N% 1 is manifested only where the 
depth of the "potential well" A (i.) becomes comparable to 
the binding energy RN. In this region, the field E(N) (3)  is 
still small and has essentially no effect on the potential A ( i .),  
which can be described quite accurately by the well-known 
asymptotic formula 

,. 3 E,2 7 ,  n=---=--  r-'. 
2 2 3 

( 6 4 )  

Using ( 6 4 ) ,  we can easily calculate the binding energy R,: 

The coefficient c,, which depends on the behavior of the po- 
tential A(?) in the region i.- l ,  must be found numerically. 
The result is c, ~ 0 . 1 5  1. Since c ,  and x are numerically small 
quantities, expression ( 6 5 )  remains highly accurate even in 
the case N = 1. 

trarily close to 14/9, i.e., with arbitrarily small exponents for 
the exponentially small powers for the power-law growth of 
unstable perturbations against the background of a collaps- 
ing cavity, deserve special attention. Remarkably, among 
the solutions which are close to the stability boundary there 
are some which are analytic at the center of the cavity and 
which are therefore essentially untouched by the smoothing 
effect of the acoustic term An in the equation for the pertur- 
bation of the density n ( a  term which was discarded in the 
self-similar limit). 

" To within the same error, the field E ( r )  can be described by the common 
expression E ( r )  -- (28/27RS)'I2 f [ (?  - R ')/2RS]. 

') These integrals can then be refined by roceeding in the spirit of the 
method of accelerated convergence ( ~ e ?  13, for example), spec~fically, 
by making the transition through successive replacements to progres- 
sively less oscillatory functions. 

3 ,  In this approximation the oscillations do not affect the shape of the 
cavity, so that (54) can also be derived by the ordinary WKB method 
for the linear Schrodinger equation. 

We can find a more accurate estimate by using Eq. (50) : t ,  - tm -e4"". 

5. CONCLUSION 

The family of self-similar "scalar" collapse regimes 
turns out to be an extremely large one. It consists of a count- 
able set of subfamilies corresponding to different ways in 
which the bound states available in the cavity are filled. Each 
subfamily is isomorphic to a certain class of regions of three- 
dimensional space - a class which contains in particular all 
convex regions with dimensions which are not too small. It is 
possible to discuss the structure of the set of self-similar re- 
gimes of scalar collapse and to analytically construct exam- 
ples of representatives of this set because of the existence of 
regimes with high fields at the center of the cavity (E,%l .  
The attractive possibility of such a study of the self-similar 
regimes of the collapse of Langmuir waves is on closer in- 
spection by no means obvious. At this point is not clear 
whether the difficulties which arise here are of a technical 
nature or are masking fundamental differences between the 
Zakharov equations and the scalar model. Yet another im- 
portant question which requires further study, concerns the 
probabilities for the establishment of the various self-similar 
solutions in the cases in which the turbulence is excited by 
one method or another. At this point, we can offer no more 
than a few qualitative words about this topic. For example, it 
is clear that as E  increases the probability of obtaining such 
solution should decrease rapidly because of the instability 
which was discovered in Ref. 6.  In this connection, the self- 
similar solutions constructed above with values of E :  arbi- 
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