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Elongated magnetic configurations, i.e., configurations whose longitudinal dimension is 
considerably greater than the transverse dimension, are analyzed. It is shown that in several 
cases an equilibrium prevails only in the form of a one-dimensional field, i.e., of straight field 
lines. Such a degeneracy occurs ( 1 ) in plane geometry when there is a straight null line, ( 2 )  in 
plane geometry when there are two null lines of arbitrary shape, and ( 3 )  for an axisymmetric 
field with a poloidal component that vanishes on some surface. Restrictions are also found on 
the form of the equilibrium for a field which has the property that it is weak on some straight 
line, although not zero (like a coronal streamer or the tail of the earth's magnetosphere). In all 
cases in which the boundary conditions prevent the attainment of a one-dimensional 
equilibrium, current sheets will unavoidably arise. 

Current sheets, which are of fundamental importance 
in cosmic electrodynamics as well as in plasmas in toroidal 
devices, are the subject of active research. Formation of a 
current sheet can take place because of a loss of equilibrium. 

We know that not all initial magnetic configurations 
have an equivalent equilibrium configuration. In other 
words, that motion of a plasma with a frozen-in magnetic 
field which is caused by the loss of an equilibrium of the 
initial state will not always be capable ofbringing the config- 
uration to an equilibrium state. In several cases the corre- 
sponding equilibrium absolutely must involve discontinui- 
ties of the magnetic field, even if the initial field is smooth. 
This freezing in occurs in an ideally conducting medium. In 
such a case, discontinuities of the magnetic field are permis- 
sible. In a real, highly conducting plasma, in contrast, cur- 
rent sheets of small but nonzero thickness arise at the points 
of discontinuity. 

A departure of a magnetic field from equilibrium arises 
either as the result of evolution of the field caused by external 
forces of some sort (e.g., when a field is generated by mo- 
tions of a plasma) or because of changes in boundary condi- 
tions. In the present paper we are concerned with the second 
of these possibilities. 

We will use a model proposed by Moffatt': The viscos- 
ity is high, while the ohmic loss is essentially zero (in terms 
of the conductivity, we are considering the case o- w ). In 
this model a nonequilibrium initial field causes motion, 
which in turn causes a monotonic-nonoscillatory-de- 
crease in the magnetic-field energy. The viscosity damps the 
motion, with the result that an equilibrium is reached. 

1. GENERAL PROPERTIES OF AN EQUILIBRIUM IN THE 
PRESENCE OF A NULL LINE 

We restrict the analysis to two-dimensional configura- 
tions, which depend on two coordinates. In $4 1, 2,4, and 5 
we deal with planar geometry: all quantities depend onx  and 
y alone. The equilibrium condition is written 

where A is the magnetic vector potential, H = curl A, 
A =A,, and p is the pressure. Despite the complexity of Eq. 
( 1 ) ( P i s  generally a nonlinear function of A, ) , many equi- 
librium solutions are known (Ref. 2, for example). To dem- 
onstrate that a given configuration is not an equilibrium con- 
figuration, one must prove that the correspondingA does not 
satisfy ( 1 ) for any function f (A).  

We will be constructing several examples below, but we 
would first like to call attention to a remarkable property of 
Eq. ( 1 ) in the case in which there is a null line. By a "null 
line" we mean a curve in the XY plane on which the trans- 
verse field component H, = {H, , 0, Hz ) vanishes (since we 
have /dy = 0; it would be more precise to speak in terms of 
a surface on which the condition H, = 0 holds). We will 
show that if a null line is a straight line segment then the 
solution will be degenerate, and the equilibrium configura- 
tion will become a one-dimensional configuration through- 
out space, regardless of the boundary conditions. 

Let us examine the more general case in which we have 
H, = 0 and Hz = const on the line segment x = 0, - a <z<a 
(one particular case would be Hz = 0) .  Near x = 0 we ac- 
cordingly have 

with A, = const (since H, = 0 )  and A, = const (since 
Hz = const). Substituting ( 2 )  into ( 1 ), we find, for the var- 
ious powers of x, 

We then find in succession that A,, A,, etc., are independent 
ofz. The entire solutionA is thus independent ofz in the band 
- a&z<a. The field lines are straight lines which run paral- 

lel to the z axis. 
Let us construct a solution outside this band. We con- 

sider the half-space z > a (the entire discussion for z < - a is 
quite similar). We write the solution in the form 

1 
(1) 

where 2, is a function of x. By virtue of the condition 
P=p + - H,Z, p=p ( A ) ,  Hs=HV ( A ) ,  - 

8n H, (z  = a )  = 0 we have Al  = 0. Furthermore, we have 
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2 + fi, = f(2,). Comparing this expression with ( 1 ), 
written for the band, we find 2 ; = f(2,); since, according 
to ( 1 ), f(A ) does not vary along a field line, we find 2, = 0. 
We then find 2, = 0, etc., in succession. Consequently, A is 
independent of z throughout space, and the solution is uni- 
form. 

In this proof we have leaned heavily on the assumption 
that the function A is analytic. It is easy to see that the deri- 
vation can be repeated if it is assumed that the current [i.e., 
AA and thus f(A), contains an even number of jumps and 
discontinuities; it is sufficient to join the solutions to the 
right and left of a jump. If the function f(A ) is not differen- 
tiable at some point, e.g., if it contains a term of the type 
(A - A,)", 0 < a < 1, then the expansion (2) becomes more 
complicated, but not in a fundamental way. We need to add 
to it terms with nonintegral powers, e.g., A, + ,xu + . There 
is no change in the derivation as a result. If the expansion (2)  
has a finite convergence radius, this derivation becomes 
modified in the following way. We assume that the expan- 
sion (2 )  holds up to a certain x,, i.e., that it holds for x <x,. 
At the point x = x, we must then write a new expansion, in 
powers of x - x,, retaining the same boundary conditions: 
H, = 0, Hz = const at x = x,. If this expansion also holds 
up to x,, then we can expand the field around x,, etc. The 
case H ,  = 0, Hz = 0 on a straight line segment is a particu- 
lar case of this situation. 

We can now reformulate and slightly amplify Hahm 
and Kulsrud's result3 regarding stimulated reconnection of 
field lines. They showed that a weak (sinusoidal) perturba- 
tion of the boundaries of a uniform magnetic configuration 
(Fig. 1) leads to the formation of current sheets at x = 0, 
with the result that magnetic islands appear. By virtue of the 
symmetry of the perturbation, the null line must remain 
straight. As was shown above, the equilibrium field does not 
depend on the coordinate z in this case. The field in Fig. 1, in 
contrast, must depend on z, because of the given shape of the 
perturbed boundary. An equilibrium is thus not possible in 
the class of continuously differentiable fields. In an ideally 

FIG. 1. Perturbation of the plasma boundary (dotted lines) with a mag- 
netic field containing a null line. 

conducting medium, the field lines do not reconnect, so the 
only equilibrium state which the system can reach for the 
given perturbed boundary contains jumps in the magnetic 
field, in this case along the z axis. As a result of the finite 
conductivity, a current sheet of finite thickness forms at thez 
axis, and magnetic islands eventually appear. Hahm and 
Kulsrud's result3 is thus formulated in terms of a system 
which is not in magnetic equilibrium. Furthermore, we can 
state immediately that the formation of current sheets is a 
more general phenomenon-not restricted to the case of a 
slight perturbation of the boundary (the case studied in Ref. 
3) - for the same reason. 

2. ELONGATED CONFIGURATIONS OF PLANE GEOMETRY 

We will call "elongated " magnetic field configurations 
those which have two greatly different length scales. More 
specifically,we are interested in a field with a length scale I 
for its horizontal variation (along the x axis) and with a 
length scale L, L $1, for its variation in the vertical direction 
(along the z axis). We can say that the magnetic field is 
elongated in the z direction. Elongated configurations have 
the advantage that the nature of the equilibrium can be stud- 
ied by perturbation theory (as in Ref. 3). 

Let us consider fields which have a certain symmetry 
with respect to the z axis. For example, the vector potential 
component A, ( -A) for the field in Fig. 1 is even under the 
substitution x + - x. No less interesting is the configuration 
in Fig. 2, where A, is an odd function of the coordinate x. It 
turns out the presence of a null line (with H, = 0)  substan- 
tially restricts the nature of the equilibrium. In particular, if 
there are two null lines, as in Fig. 2, an equilibrium is possi- 
ble only if these lines are straight and, accordingly to $1, if 
the configuration is one-dimensional. 

We are thus concerned with solving Eq. ( 1 ) in the band 
shown in Fig. 2. At the boundaries of this band we have 
VA = 0, which corresponds to imposing the condition 
H, = 0 at the boundaries. 

In order to show that an equilibrium configuration 
would have to be one-dimensional, we expand the solution of 

FIG. 2. Magnetic configuration with two null lines (the dashed lines). 
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Eq. ( 1 ) in powers of z - a around some arbitrary point a; 
i.e., we again use the series (3).  Collecting terms - (z - a)' 
and -(z - a) ,  we find 

A simple estimate of the terms of series (3)  yields 

Noting that we have2 ;'=A,// ', and making use of the pro- 
nounced difference in lengths scales, i.e, the small param- 
eters I/L, we ignore the quantity 2, in ( 5 )  [for the same 
reason, we can discard 2, in (4),  but this point is not of 
consequence for the discussion below]. The resulting equa- 
tion can be derived from the exact equation, 

which is equivalent to Eq. (1)  (Ref. 3), by making use of 

i.e., ldxA I 4 IzA 1 ,  and by retaining in (6)  the terms of lowest 
order in the derivative d /dz: 

- 
Noting that we have Hx = - dzA = - A, at z = a, we find 
the following conclusion: Equation (7)  is the same as (5) if 
we discard 2, and assume f '(A,) = H :'/Hz. In Eq. ( 7 )  we 
can assume that Hz is given. 

Expression (7)  is an equation for Hx,  which is being 
sought at z = a (and therefore depends only on x ) .  On the 
boundary, at some points x = + R, the field vanishes, 
H, = 0, so that we have Hx (x = + R )  = 0. This is the 
boundary condition. 

Equation (7) may be regarded as an eigenfunction 
problem for the equation 

where the eigenvalue A of the unknown function must van- 
ish. The solution H, = aH,, a = const vanishes only at the 
boundaries x = + R and is therefore the lowest eigenfunc- 
tion, with A = A, = 0. The solution in which we are interest- 
ed must be odd in x, i.e., must vanish at least at the point 
x = 0 (in addition to the boundary points). It thus corre- 
sponds to the first (or higher) eigenvalue A = A ,  > 0 and 
thus does not satisfy (7).  A solution of (7)  with this symme- 
try can be written in the form 

It does indeed vanish at x = 0, but it does not satisfy the 
boundary conditions, as follows from the discussion above. 
To see this, we assumeBH, (x)  > 0 for x > 0 for definiteness; 
then Hx is positive everywhere for x > 0, according to (9) .  In 
the limit x-R, we can write Hz in the form 
Hz = H, (R - x)" ; we would then have 

If n > 1, there will be a'singularity in Hx as x - R .  If n < 1, a 
singularity will appear in the derivatives of H, and/or Hz; 
i.e., the current will become infinite. A unique solution with- 
out singularities can occur for n = 1. In this case we have 

Equation (7)  thus has no nontrivial solutions which 
satisfy the boundary conditions and have the required sym- 
metry. In other words, we have Hx r O  at z = a.  Since a is 
arbitrary, we have Hx SO everywhere. The condition div. 
H = 0 means that we have Hz = Hz (x); i.e., the configura- 
tion is one-dimensional. 

3. AXIAL SYMMETRY 

Let us consider equilibrium symmetric configurations. 
In this case we can assume that Fig. 2 shows the poloidal 
component of the field. In the cylindrical coordinate system 
(r, p, z)  an equilibrium is described by the Grad-Shafranov 
equation4 

Differentiating Eq. ( 11 ) with respect to r and z, we can 
eliminate the pressure; i.e., we can find the analog of Eq. (6)  : 

To find an analog of Eq. (7)  which corresponds to an elon- 
gated configuration (d /dr) d /dz), we consider the terms of 
lowest order in d /dz in ( 12) : 

The vanishing of the poloidal field on the dashed line in Fig. 
2 means that at a certain r = R we have Hz = H, = 0. We 
first consider the case F = 0. The general solution of Eq. 
( 12) (for Hz ) is then 

where a and p are constants. For this equation, in contrast 
with (9) ,  the lower limit on the integral in (14) is r,, where 
0 < r, <R, for otherwise the integral would have no mean- 
ing. Since @(R)  $0 [cf. ( lo ) ] ,  we haveB= 0. The solution 
Hz = arH, satisfies the boundary conditions. It should be 
kept in mind, however, that solution ( 14) with P = 0 must 
be real for arbitrary z [we recall that (13) is being consid- 
ered for the case of a fixed but arbitrary z] . Expressing H, 
and Hz in terms of $, and expanding $ in powers of r, we 
easily see that a solution Hz = arH, could only be a trivial 
solution, H, =O, Hz =O (we reach the same conclusion if we 
expand the solution Hz = arH, in powers of R - r around 
r = R) .  

In the general case ( F $0) the solution can be written 
with the help of a Green's function with the following 
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boundary conditions: aH,/ar = 0 at r = 0 and Hz = 0 at 
r = R :  

R 

cD (r') dF2 dr' Hz=--rHy 5----  dF dr' 
r' d+ (r')' 

A Green's function exists precisely because the correspond- 
ing homogeneous problem ( F = 0) has only a trivial solu- 
tion. For the same reason, solution ( 15) is unique. In partic- 
ular, it must not depend on the parameter r, which appears 
in the definition of @ ( r )  [see ( 14) 1 .  Taking the derivative of 
( 15) with respect to r,, and equating it to zero, we find 

R 

dF2 dr' dri ) Hr (r') - - Hz=rHr ( riff: (ri) 
D 7 '  

dg (r')' ' 

The latter equation is indeed indkiendent of r,. Like (14), 
however, it can not hold for arbitrary z. Since we must be 
able to write the solution of the general equation ( 11) near 
the origin in the form 

n 

we find that the lowest power of r for a field Hz 
- 2ma,, rZm is lower by at least 2 than the power for a 
field rH, = - r2"da,,/dz. At the same time, if we substi- 
tute rH, - r2" into ( 17), we find Hz - r2" + *; i.e., the power 
of the field Hz is higher than that of rH,. We can attempt to 
construct a solution of Eq. ( 12) [from which Eq. ( 13), 
which we are using, follows] in the following way: H, = 0 
for 0 < r < a and H, # O  at r > a. The lower limit on the outer 
integral in ( 17) is then replaced by a. We then have 

and the lowest powers are 

Hz-r-l(r-a)m-', rH,-(r-a)", 

while according to ( 17) we would have Hz - ( r  - a)"  '. 
The unique solution of ( 12) for elongated configura- 

tion is therefore trivial for these particular boundary condi- 
tions: H, -0. In this case, I) depends on r alone; i.e., the 
configuration degenerates into a one-dimensional configura- 
tion. 

4. LOSS OF EQUILIBRIUM BECAUSE OF SPECIAL 
BOUNDARY CONDITIONS 

In some models which have been studied previously, the 
loss of equilibrium is caused by the initial field configura- 
tion. Parker5 called it a "topological equilibrium" (see also 
Refs. 6-8 and 1 ). In Hahm and Kulsrud's study,3 the equi- 
librium is lost because of special boundary conditions (see 
the dotted lines in Fig. 1 ) . In this section we construct some 
examples in which there is no equilibrium because of special 
initial and boundary conditions; these examples are more 
interesting for astrophysical applications (in comparison 
with the problem studied by Hahm and Kulsrud3 ) . 

To simplify the analysis we consider extended plane 
configurations as shown in Figs. 1 and 2. The field depends 
on x and z alone. We assume that the ends of the field lines 
are frozen in an ideally conducting solid surface. In other 
words at (say) z = 0 the field component Hz is given: 
Hz (Z = 0) = Hz (x) . These are our boundary conditions. 
Obviously, for any Hz (x)  an equilibrium exists at z = 0. 
The field depends on x alone throughout the region z > 0, 
the field lines are straight, and we have P (x )  + H5/8?r 
= p  + H2/8?r = const. 

Let us examine the following initial conditions. Again 
the field depends only on x, and we have 

P (x) f HZ2/8n=C=const for 1x1 2x,>O, 
(18) 

P(x)+HZZI8n<C for Ixl<x,. 

An equilibrium exists only for Ix 1 >x,; at 1x1 < x,, a force acts 
on the plasma and tends to compress toward the z axis. 

If there were no boundary conditions at z = 0, the ini- 
tial conditions would compress the plasma toward thez axis; 
the field would remain one-dimensional, and an equilibrium 
would be reached (we recall that we are using the model 
proposed by Moffatt'). The boundary conditions at z = 0 
prevent the plasma from undergoing a displacement at 
z = 0, and the field lines have the behavior shown in Fig. 2. 
The configuration tends toward such a state because of the 
effect of the forces ( 18). As was shown above, when there 
are null lines, as in Figs. 1 and 2, a multidimensional state of 
this sort is not an equilibrium state. The initial deviation 
from equilibrium, ( 18), is due to a deficiency of the pressure 
P(x)  = p  + H;/8.rr, in the region 1x1 <x,.  As the system 
reverts to a one-dimensional configuration associated with 
"straightening" of the field lines, the quantity H;/8.rr re- 
turns to its initial value, while the pressurep may in principle 
change because of the gas heating at lx / < x,. If energy may 
not be supplied to the region lx I < x ,  (across the z = 0 plane, 
for example), and if the gas is not heated, then the deficiency 
of the pressure P (x )  in this region returns to its initial level; 
relations ( 18) remain in force; and there is no equilibrium. 

An initial one-dimensional field of exceedingly simple 
geometry, but with an unbalanced pressure as in ( 18), thus 
cannot reach an equilibrium state. In other words, there is no 
equilibrium in the class of continuous fields. In a viscous but 
ideally conducting fluid,' the initial conditions ( 18) lead to 
the formation of discontinuities. For the field shown in Fig. 
1, the discontinuity obviously appears at the z axis (as in 9 1 ) . 
Correspondingly, a discontinuity is formed on the neutral 
line in Fig. 2 if the line H, = 0 (the dashed line) separates 
fields of different signs. An interesting situation arises in a 
different case: that in which we have H, # O  only within a 
certain band. On one side of the H, = 0 line we will have a 
field H, #O, while on the other we will have H, = O  (just as 
shown in Fig. 2 ) .  In this case a discontinuity generally arises 
somewhere other than at the null line. The condition at the 
discontinuity is9 

where the braces specify the difference between the values on 
the two sides of the discontinuity (in the case at hand, two 
discontinuities appear, because of the symmetry). When the 
conductivity is only finite, the discontinuity corresponds to a 
current sheet of small but nonzero thickness. If this sheet 
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forms on a neutral line, as in Fig. 1 ohmic diffusion will lead 
to reconnection of the field lines and to the formation of 
magnetic islands. If the current sheet instead arises on a field 
line, with H, #O, the field will penetrate through the matter. 
More precisely, the matter will penetrate through the field in 
the direction toward the z axis, leading to an increase in the 
total pressure between two field lines. As a result, the defi- 
ciency of the pressure P ( x )  at 1x1 < x l  is eliminated, and an 
equilibrium in the form of a one-dimensional configuration 
is reached. 

5. ELONGATED CONFIGURATION IN THE MORE GENERAL 
CASE 

A stricter limitation on the form of the elongated con- 
figuration can be found in a case of importance for applica- 
tions. Up to this point, the equilibrium has necessarily been 
of a one-dimensional nature if the field H, had a null line in 
the XZ plane, either a single null line as in Fig. 1 or  two as in 
Fig. 2. Let us construct a more general example. Figure 3 
shows a field which is reminiscent of a coronal streamer," 
on the one hand, and the field of the tail of the earth's magne- 
tosphere, on the other. In the region of field lines which are 
closed onto the z = 0 plane, the field may be electrostatic, so 
that the horizontal and vertical length scales of the field are 
identical. This is not an elongated configuration. The exten- 
sion results from an increase in the flux of the external field, 
shown in Fig. 3 in the form of the unclosed field lines. An 
increase of the external field is equivalent to an increase in 
the external pressure, with the result that the elongated part 
becomes compressed in the horizonatal direction and ex- 
tended in the vertical direction (Ref. 11, for example). After 
the vertical dimension becomes greater than the horizontal 
dimension, the configuration can be classified as elongated. 

Since this compression occurs slowly, the configuration 
may be regarded as a quasiequilibrium configuration." At 
any rate, it is treated in this way in searches for instabilities 
(in particular, the tearing-mode instability) which lead to 
reconnection of the field lines. In contrast with the field in 
Fig. 1, the configuration in Fig. 3 has no null lines. We can- 
not make the apriori assumption that we have H, = 0 on the 
z axis. The so-called transverse component, H, #O, remains 
here. 

X 

FIG. 3. Elongated configuration without a null line. 

To explain the properties of an equilibrium which satis- 
fies general equation ( 1 ), we return to expansion ( 4 ) ,  ( 5 )  
and the corresponding relation (7 ) .  One solution of relation 
( 7 ) ,  H, = aH,, has odd parity along thex axis, while the H, 
component of the field in Fig. 3 has even parity. The second 
solution cannot be written in form ( 9 ) ,  since the integral has 
no meaning in this case. We write it in the following way: 

where the arbitrary constant in this indefinite integral is cho- 
sen in such a way that the integral itself becomes an odd 
function (this can be done, since the integrand is an even 
function). For example, we could write 

with a #O. In  particular, for Harris's solution12 

If, (x) = H o  th(x/l), 

which describes a kinetic steady state (i.e., a state more gen- 
eral than the MHD equilibrium which we are considering 
here; see Ref. 12) in the absence of a transverse component 
H,, expression (19) can be written explicitly as follows: 

The solution ( 19), (20) has the symmetry we need: It is even 
in x. It describes the H, component of the configuration 
shown in Fig. 3 wherever the condition H, <Hz holds, i.e., 
in the band O<z < L, where L is the vertical dimension of the 
closed region (Fig. 3) .  There is the important point, how- 
ever, that for Ix 1 > l the field H, increases linearly. This can 
be seen directly from (20),  and it is of course a general prop- 
erty of solution (19),  since H, asymptotically approaches a 
constant at Ix 1 :  Hz -Hz ( ). The integral increases linearly 
with increasing Ix 1. 

I t  might seem that we could construct a solution H, in a 
slightly different way. Let us assume tht H, is given by (20) 
for 1x1 <x , ,  that the solution (20) vanishes at the point 
x = x, ,  and that we have H, =Oat 1x1 > x , .  I t  should be kept 
in mind, however, that (20) was derived from ( 7 )  or from 
Eq. (8) ,  which is equivalent. The field corresponding to the 
vector potential 2 + 2, (z - a )  must be continuous.For a 
solution constructed in this way, the component H, - 
= - d,A = -A,  would indeed be continuous, while Hz - - 
= dxAo + (z - a ) d X 2 ,  = d,A, - (z  - a)d,H, would 

have a discontinuity. A solution without field discontinuities 
(i.e., without prespecified current sheets) should coincide 
with (19), (20) for all x .  An increase in the field at large x 
imposes a severe restriction on the ratio b = lH, (x  = 0 )  // 
IH, ( cc ) 1, which plays an extremely important role in the 
development of the tearing-mode instability.13 In a medium 
which is unbounded along the coordinate x,  for example, H,  
increases without bound; this is a physically meaningless re- 
sult. We thus have H, =0, and the configuration is strictly 
one-dimensional. 

Let us assume that the field occupies a bounded region 
1x1 < R.  In cases of practical interest we would have R $1. 
This is the case if the plasma pressure is low in comparison 
with the magnetic pressure. The thickness I of the layer in 
which the field changes sign (the plasma layer) is small in 
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comparison with the length scale of the field, R. We then for b  acquires the additional small parameter 1 /R [see 
have (22) 1. As a result, we find b  4 1 /L. In graphical terms, the 

field lines run nearly parallel to the z axis. In a region in 
IH,(O)IH,(R) I =1/R, (21) which the field lines are closed, they intersect the z  axis es- 

sentially nowhere in the entire region 0  < z  < L - I,, 1, ~ 1 .  

and the maximum value of Hx = H, ( R )  must still be much 
smaller than Hz ( m ). For example, if we have Hx ( R )  
-Hz ( m ), then the configuration should expand greatly 
with increasing z, in contrast with the case in Fig. 3. In spe- 
cific cases, the quantity E = IHx (R)/H, ( cc ) 1 can be found 
experimentally. The quantity b  in which we are interested is 
then smaller by a factor of R /I, according to (2 1 ) : 

Only near the "vertex" of the closed field lines, at 
L - 1, < z  < L, do they intersect the z axis. In this region we 
have H, =Hz; the field is not extended; and the equilibrium 
theory derived above does not apply. By way of comparison, 
under the condition b  -,I /L the field lines intersect thez axis 
uniformly between z  = 0  and z = L (as in Fig. 3) .  Conse- 
quently, the observation that there is a transverse field and 
that it is not weak can be explained in terms of continuously 
existing magnetic islands. 

In particular, for the tail of the earth's magnetosphere we 
would have b ~ 0 . 0 1 ,  which is considerably smaller than the 
value usually adopted, b  = 0.1. We might note in this con- 
nection that the quantity b  is not crucial for the onset of an 
anisotropic tearing-mode instabilityI4; the theory of Ref. 14 
apparently would not change substantially if a small value of 
b  were to be taken in account. 

Let us review the contents of this section of the paper. 
First, we have another length scale here, R, in additon to I 
and L. We should therefore give a more general definition of 
an elongated configuration: For it, the relation IHx \Hz / 
or b  g 1 must hold. If we abandon the assumption H, = 0  on 
a straight line (as in § 1 ) but assume the existence of a weak 
field on this line (the Hx component on the z axis in Fig. 3) ,  
then the equilibrium configuration will generally not be one- 
dimensional. If, however, the configuration in the main vol- 
ume is a quasiuniform field (under the conditions 
I <  1x1 <R, R$l) ,  while in a small region 1x1 < I  the field 
varies over a short distance I (Fig. 3), the configuration will 
be nearly one-dimensional in this small region. More specifi- 
cally, in addition to the small parameter E,  which is a mea- 
sure of the elongation of the configuration, the expression 
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