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The interaction between monochromatic radiation and an ensemble of two-level systems is 
discussed. It is shown that, when the density of the medium exceeds a certain threshold, the 
dynamics of the system is significantly influenced by the self-consistent radiction field. The 
semiclassical approximation is used to find analytically and numerically the conditions for the 
approach of the system to stochasticity, which can be satisfied for a particular choice of the 
external field amplitude and its detuning from the frequency of two-level transitions. Estimates 
are given of parameter values for which this effect can be observed in gaseous media. 

1. INTRODUCTION 

Much attention is being devoted at present to dynamic 
chaos in classical and quantum-mechanical nonlinear sys- 
tems. An interesting new topic is the dynamic chaos that 
can occur when atoms and molecules interact with their own 
radiation fields (cooperative  effect^),^-'^ and studies are be- 
ing carried out of the associated stochastic dynamics, includ- 
ing both relaxation processes (transient chaos and strange 
attract0r-s)'-' and stochasticity extending over time inter- 
vals much shorter than the characteristic relaxation time 
(Hamiltonian systems) .'-I2 In this paper, we shall confine 
our attention to the dynamics of Hamiltonian systems. 

When the resonant interaction between atoms and a 
field is described, the analysis is usually confined to the two- 
level approximation, and the nonresonant interaction term 
is neglected. This corresponds to the so-called rotating wave 
approximation (RWA) 13-" in which the energy is periodi- 
cally transferred from the atoms to the field and back again 
(the oscillations are nonlinear).I6-l9 It is shown in Ref. 8 
(see also the subsequent papers'0.'') that inclusion of the 
nonresonant term (departure from the RWA) causes the 
oscillations in the populations of the two-level system and in 
the self-consistent radiation field to become stochastic. A 
significant point for the onset of chaos in the system is the 
existence of a threshold condition for the interaction con- 
stant between the two-level ensemble and its own radiation 
fields. The population of high-lying states of nonequidistant 
multilevel systems during the development of stochastic in- 
stability is investigated numerically in Ref. 9. An ensemble 
of multilevel systems interacting with its own radiation field 
and with an external monochromatic field of constant ampli- 
tude is examined in Ref. 5 in the case where the frequency of 
the external field is exactly equal to the frequency of trans- 
missions between the two bottom levels of the ensemble. As 
in Ref. 8, it is found that this model leads to global chaos 
when a certain kinetic threshold value of the interaction con- 
stant between the atoms and the field, corresponding to a 
departure from the RWA, is exceeded. The interaction 
between an ensemble of almost equidistant three-level sys- 
tems and two modes of the electromagnetic field is discussed 
in Ref. 12 in the RWA. Dynamic chaos is found to arise in 
Ref. 12 when the dipole moments of the 1 -. 2,2 + 3, and 1 -. 3 
are commensurate (one- and two-photon transitions). Since 

all the results reported in Ref. 12 were obtained in RWA, 
chaos is possible in principle for arbitrarily small values of 
the atom-field interaction constants. We also note that all 
the investigations mentioned above are based on the semi- 
classical approximation (the self-consistent radiation field is 
described classically using the Maxwell equations; the crite- 
rion for the validity of this approximation is discussed in 
Ref. 20) and the homogeneous approximation (i.e., the 
characteristic size of the specimen containing the atoms is 
assumed much shorter than the wavelength of the radi- 
ation). 

In this paper, we investigate the dynamics of the inter- 
action between an ensemble of two-level systems (atoms, 
molecules, impurities in crystals) and an external mono- 
chromatic field of constant amplitude, taking into account 
cooperative effects (self-consistent radiation fields). We 
shall carry out our analysis in the rotating wave approxima- 
tion and the slowly-varying-amplitude (SVA) approxima- 
tion. I3-l5 In contrast to Ref. 9, we shall take into account the 
finite detuning A of the external field frequency from the 
transition frequency in the two-level system. The criterion 
for the onset of chaos will be found analytically and numeri- 
cally. It is important to note that the onset of chaos in this 
model does not require a critical value of the interaction 
constant between atoms and the self-consistent radiation 
field that corresponds to a departure from RWA to be ex- 
ceeded. It is shown that the condition for the onset of sto- 
chasticity can be satisfied for arbitrarily low values of the 
interaction constant between the atoms and the self-consis- 
tent field if the detuning A and the amplitude of the external 
field are suitably chosen. 

Our paper is organized as follows. In Section 2, we de- 
rive the equations describing the interaction between an ex- 
ternal magnetic field of constant amplitude and an ensemble 
of two-level systems, taking cooperative effects into account 
(self-consistent radiation field). In Section 3, we obtain an 
approximate analytic criterion for the fluctuations in the 
populations of the two-level systems and the amplitude of 
the self-consistent radiation field to become stochastic. The 
results of a numerical solution of the complete set of equa- 
tions are presented in Section 4. Estimates of physical pa- 
rameters for which dynamic chaos can be observed in optical 
experiments are given in the concluding Section. 
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2. BASIC EQUATIONS 

Consider an ensemble of two-level systems interacting 
with an electromagnetic field E. The two-level systems will 
be described quantum-mechanically and the field classically 
by Maxwell equations (semiclassical approach) .I3-l5 The 
inclusion of the self-consistent field is found to be significant 
for concentrations p of the two-level atoms for which the 
reaction of the medium to the field has to be taken into ac- 
count. ''-I9 The condition for this is 

where w, = (2n-pd 2wo/fi) 'IZ is the cooperative frequency, 
G = d~,/fi is the Rabi frequency at exact resonance,p = N /  
V is the number of atoms per unit volume, d is the matrix 
element of the dipole transition, w, is the frequency of the 
two-level transition, and E* is the characteristic amplitude of 
the electric fields. We shall consider a tenuous gas in which 
we can neglect the field-induced dipole-dipole interaction 
between the atoms compared with the energy of an atomic 
dipole in the external fields. The condition for this isz1 

We shall also assume that the total field E(z, t )  acting 
on the two-level systems consists of the self-consistent field 
E, (2, t)  and an external monochromatic field taken in the 
form of a linearly polarized plane wave of amplitude E, and 
frequency f2: 

E ( z ,  t )  =E, ( z ,  t )  +eo cos (R t -k ' z )  , Q=ckf.  (3  

We note that a pump of given constant amplitude has also 
been examined in theoretical and experimental papers on 
cooperative Raman scattering of The self-consis- 
tent field E, (z, t)  satisfies the Maxwell equation 

where P(z, t)  is the polarization produced by the two-level 
medium. The self-consistent field P, (z, t)  and the polariza- 
tion P(z, t )  will be sought in the form 

E,(,-,  t )  = e i ( t )  cos ( a t - k z )  +&?i t )  sin ( a t - k z ) ,  ( 5 )  

P ( z ,  t ) = P , ( t )  cos (wt -kz )+Pz( t )  sin ( o t - k z ) ,  o=cli. 

(6)  

This can be done by assuming, for example, that the speci- 
men containing the ensemble of two-level systems is placed 
in a single-mode ring resonator with proper frequency w. We 
shall assume in what follows that w = w,. We now introduce 
the following variables describing the atomic subsystem: 

1 
R k f  ( t )  = - sxy [ i i ( k z - m o t )  Isj*, 

NS J E I V  

1 
R ( t )  = - s ~~*=s,'*is,~, R k f  =Rkx*iRkY, 

N* jeav 
(7)  

where AV = (Az)n-r2 is a physically infinitesimal volume, z 

is the coordinate of the center of a layer of thickness Az&R, 
R = 2r/k is the wavelength of the radiation, r is the charac- 
teristic radius of a specimen containing the two-level gas, N, 
is the number of two-level systems in the volume AV 
( N ,  ) 1 ), and the pseudospin variables s;, $', s; of the jth 
individual atom are related to the population amplitude of 
the upper (a)  and lower (b)  levels of the jth atom, as fol- 
i o ~ ~ : ~ ~  

We now assume that ~ r ; ? ~ i l )  1, which enables us to neglect 
spatial variations in the field strength and in the pseudospins 
inside A V, and to consider that these values are equal to the 
averages evaluated over A V (Refs. 24 and 25). The polariza- 
tion components P , ( t )  and P2( t )  in (6)  are related to the 
variables R ; and R Y, as follows: 

When the RWA and SVA inequalities are satisfied,I3-l5 

the Schrodinger equations for the two-level systems and the 
Maxwell equations (4)  lead to a closed set of equations (the 
derivation is similar to that given in Refs. 13-1 5 ) : 

R , " = x ( R ; ( - ~ ~ ( t ) + e ~  sin [A(t- -z lc)]  ) 

where p= 2rpdwo, A = - w,, w = w,, and x = d /A. 
Equations ( 11 describe the interaction dynamics of an en- 
semble of two-level systems interacting with a monochro- 
matic external field over time intervals much shorter than 
the characteristic relaxation time. Direct verification will 
show that the equations given by ( 11 ) have associated with 
them the following conservation law: 

We note that, for the set of equations given by ( 1 I ) ,  the z- 
dependence is significant only when a phase shift Az/c ap- 
pears in the perturbing field. This shift is small when 1A1/ 
cI < 1, where I is the characteristic size of the specimen. For 
A-w,, which is of interest to us (see Sections 3 and 4), this 
condition becomes 

From now on, when we analyze ( 11 ), we shall neglect this 
phase shift and assume that ( 13 ) is satisfied. 

To conclude this Section, let us consider, following 
Refs. 26 and 27, the condition for a constant external field 
amplitude E,. The amplitude may be looked upon as given if 

11 16 Sov. Phys. JETP 65 (6), June 1987 K. N. Alekseev and G. P. Berrnan 11 16 



the energy supplied in the characteristic time T, = 2n-/w, is 
greater than the energy removed by the medium from the 
external field: 

Using the definition of cooperative and Rabi frequencies 
( 1 ), we can rewrite ( 14) in the form 

In the case in which we are interested, i.e., G -  w, (see Sec- 
tions 3 and 4) ,  this inequality assumes the simple form 

It follows that the imposed-field approximation is valid for 
distances satisfying ( 16). 

3. STOCHASTICITY CRITERION 

Let us now consider the possible behavior of the solu- 
tions of ( 1 1 ) for different relationships between the param- 
eters o c ,  G, and A. 

(1)  Suppose that E, = 0. The dynamics of the system 
under these conditions was investigated in Refs. 16-19. The 
typical behavior consists of quasiperiodic nonlinear oscilla- 
tions in the dynamic variables R t,, R Y , ,  R ;, E,, E,. 

(2)  Suppose that A = 0. The dynamics of ( 11 ) is then 
analogous to the case where E, = 0. 

(3)  Competition between cooperative and external in- 
teractions: E,# 0, A #O. Let us change the variables, subject 
to the conservation law ( 12) : 

R,"=cos $, Rku=sin 0 sin $, RkZ=cos 0 sin 9. ( 17) 

The equations given by ( 1 1 ) now reduce to 

&sin 0 sin $=-end sin(H.t), (18) 

where 

and the dot over the symbols represents differentiation with 
respect to r .  The field El ( r)  can now be found from ( 18), 
using the formula F, (r) = 8(r) - Fo cos(hr) .  Analytic ex- 
amination of the behavior of the solutions of ( 18) for arbi- 
trary relationships between the parameters and for arbitrary 
initial conditions is a relatively difficult problem. We shall 
therefore confine our attention to the case 

These initial conditions correspond to the physically inter- 
esting situation in which the self-consistent field and the po- 
larization are zero at the initial time. When (20) is satisfied, 
the set of equations given by ( 18) can be approximately re- 
duced to a single equation, i.e., the equation describing a 
physical pendulum with an external harmonic source of fre- 
quency and amplitude Eoh acting upon it: 

When there is no perturbation (E, = O), the motion of the 
pendulum is periodic and has two types of singular point on 
the phase plane, namely, elliptic points with coordinates 
8 = 0 , 8 =  ( 2 k +  1)n-(k=O, + 1 , .  . . ),whichcorrespond 
to the complete population of the bottom levels of the two- 
level system (R ;: = 0, R Y, = 0, R ; = - 1, E, = E~ = O), 
and hyperbolic points with coordinates 8 = 0, 8 = 2n-k 
(k  = 0, + 1, . . . ) , that correspond to the complete popula- 
tion of the upper levels of the two-level system (R ;: = 0, 
RY, = 0 , R ;  = + 1 , ~ ~  =~~=O).Theseparatr ixofthepen-  
dulum (the singular trajectory on the phase plane that sepa- 
rates oscillatory from rotational motion and passes through 
the hyperbolic points) corresponds to the total transfer of 
energy from the atoms to the field and back again. When the 
perturbation is turned on (2, # 01, there are nonlinear reson- 
ances between the harmonics of the eigenfrequency of the 
nonlinear oscillations of the pendulum and the frequency of 
the external force h .  Depending on the relationship between 
Fo and A, we can have two typical cases of dynamic behavior 
of the system (21) (Ref. 2).  

(a )  For h s  1 (A %we ), the overlap of nonlinear reson- 
ances in the neighborhood of the separatrix results in the 
appearance of a narrow stochastic layer, while the remaining 
part of the phase space is filled mostly with periodic trajec- 
tories. Using the results of Section 5.1 of Ref. 2, we estimate 
the width of the stochastic layer on the energy scale as being 

where Ec = 1 is the energy on the separatrix. 
(b )  When h 5 1 (A 5 w, ), a wider statistical layer ap- 

pears in the neighborhood of the separatrix and its energy 
width is2 

We know (see, for example, Section 5.3 of Ref. 2) that the 
stochastic layer fills a major part of the phase plane (with the 
exclusion of the neighborhood of the elliptic point) when the 
following conditions are satisfied: 

p o d - l  and A 4 1 .  

i.e., when the three characteristic frequencies of oscillations 
of the dynamic system are commensurable: 

When the initial conditions are chosen inside the stochastic 
layer, all the dynamic variables become random functions of 
time with a wide Fourier spectrum. We can then pass from 
the purely dynamic to the kinetic description.I4 For an 
equation such as (21), we know1** that, provided the sto- 
chasticity criterion is satisfied, we observe a diffusion 
growth of the quantity 18(r) I = IE, (7) + Zo cos(Er) I with 
time, i.e., the growth of the self-consistent field E~ ( t ) ,  such 
that 18 1 ,,, - 3-4, whereas 18 1 ,,, = 2 for Zo = 0. 

The transition from ( 18) to (21) can bejustified only if 
(20) is satisfied. The complete system ( 11 ), or ( 18 ), with 
arbitrary relationships between the parameters can be inves- 
tigated only by numerical methods. Finally, we note that all 
the conclusions relating to stochastic dynamics, including 
the "global" chaos criterion (24), were obtained essentially 
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0 25 50 r 
FIG. 3. Fourier spectrum of the process R ', (7) in the case of chaos: - 

FIG. 1.  The process R ;  (7) in the case of chaos: E, = 2; E = 1; C0 = 2; A = 1; R ",O) = R; ( 0 )  = 0.866; R ; ( 0 )  = 0.5; 
R  ; ( 0 )  = 0; R :  ( 0 )  = 1 ;  R  ; ( 0 )  = 0; E , ( O )  = E2(0) = 0  E , ( O )  = Z,(0) = 0  

within the framework of perturbation theory and are valid 
for Eo 5 1 (Refs. 1 and 2). It follows that the case E o )  1 re- 
quires separate examination, but simple estimates show that 
when Eo 3 1 Eqs. ( 1 1 ) describe only regular oscillations in 
the populations of atoms in the external field of constant 
amplitude, i.e., Rabi oscillations. 

4. NUMERICAL CALCULATIONS 

Numerical calculations based on ( 15) have been car- 
ried out using the dimensionless variables ( 19). The calcula- 
tion was performed by the Hamming predictor-corrector 
method." The accuracy of the calculation was monitored by 
checking that the conservation law (12) was satisfied. In all 
cases, this was obeyed to within a few tenths of a percent. To 
find the difference between the caustic and quasiperiodic 
trajectories of the dynamic system ( 1 I ) ,  we computed not 
only the trajectories themselves but also the Fourier spec- 

FIG. 2. The self-consistent field E: (7)  + 2; (7) as a function of time in the 
case of chaos. The initial conditions and parameter values are the same as 
in Fig. 1. 

trum and the local instability. The local instability was de- 
fined as the logarithm of the separation between two initially 
close trajectories: 

u ( )  1 { r, [ R:) (T) - R ; ~ ) ,  (T) l 2  
a=(r,u,r)  

where the prime represents the trajectory with similar initial 
conditions. The Fourier spectrum of the process X ( 7 )  was 
determined as 

.v - l 

where q ~ ( 0 ,  N - 1 ), A ,* = AN - , , n is the discrete time cor- 
responding to the continuous T, and N is the total time. The 
dimensionless frequencies y (in units of a,) in the spectrum 
of X(T) are related to q by v = 27~q/N. 

Figures 1-7 show some typical time dependences, spec- 

FIG. 4. Local instability. The initial parameters are the same as in Fig. 1.  
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FIG. 5. The self-conistent field as a function of time for quasiperiodic 
motion: E, = 2; A = 3; R ; (0)  = 0; R Y, (0)  = 1; R ; (0)  = 0; 
.F,(O) =E*(O) = O  

tra, and local instabilities for different relationships between 
the parameters. The stochastic solutions, shown in Figs. 1 
and 2, have a wide Fourier spectrum (Fig. 3 )  and are charac- 
terized by an exponential divergence between two initially 
close trajectories (Fig. 4) .  The quasiperiodic trajectories 
(Fig. 5 )  have a discrete spectrum (Fig. 6) ,  and local insta- 
bility is absent (Fig. 7).  Our numerical analysis shows that 
the approximate criterion (24) for global chaos (the sto- 
chastic component occupies most of the phase space) also 
remains valid for the complete set of equations given by 
( 1 1 ) . When the self-consistent radiation field is not present 
at the initial time [El = T,(O) = 01, dynamic chaos is ob- 
served mostly in the inverted system R i (0) k 0, although it 
is also observed for certain individual values of the param- 
eters in the weakly excited system. The maximum size of the - 
stochastic region in phase space is reached for .F, = 2, A = 1. 
We also note that the magnitude of the self-consistent field 
generated in the system during stochastic instability may 
exceed by a substantial factor both the external field 2, and 
the self-consistent field generated in the system in the ab- 
sence of the external pump (2, = 0).  

FIG. 6. Fourier spectrum of the quasiperiodic process R ; (7):  TI = 1; - 
A=l ;R" ,O)  = O ; R ~ ( 0 ) = O ; R ' , ( O ) = l ; Z l ( O )  =.F, (0)=0 

FIG. 7. Form of the function U(T) (25) for the case of quasiperiodic 
motion. The initial conditions and parameters are the same as in Fig. 5. 

5. CONCLUSION 

We have shown in this paper that, under certain definite 
conditions (see Section 3 ) ,  an ensemble of two-level systems 
interacting with an external monochromatic field may ex- 
hibit stochastic instability when cooperative effects are tak- 
en into account. A diffusion growth in the self-consistent 
radiation field may also be observed under these conditions. 

Let us estimate the values of physical parameters for 
which such effects can occur in typical optical experiments. 
The following conditions must be satisfied. 

(1)  G -I, w; I, t<T, -  10-7-10-9 s, i.e., the criterion 
for the validity of the nondissipative approach. 

(2)  The conditions for the validity of RWA and SVA: 

o,, (=, A~oo-10''-1015. 

( 3 )  The condition ( 16) that the amplitude of the exter- 
nal field be approximately constant: I < c/w, . 

(4) The global chaos condition (24): G k  w, k A. 
These conditions can be satisfied, for example, when 

p-10'4-1016 cmP3, d-10-la cgs, w,-lO1O-lO"s-', 
G -  1010-10" s-I, E,- 10-lo2 cgs, 150.1-1 cm. 

Dynamic chaos in this system can probably be observed 
in the microwave range for much lower densities in experi- 
ments with so-called Rydberg atoms (see Ref. 29 and refer- 
ences cited therein). This is so because transitions between 
two closely-spaced Rydberg states have a large dipole mo- 
ment (larger by a factor of 1000 than the dipole moment of 
an optical transition in an ordinary atom). 

We note in conclusion that our results demonstrate that 
the transition to chaos in an ensemble of two-level systems is 
possible for relatively low densities when cooperative effects 
are taken into account. The necessary condition for devel- 
oped chaotic motion is merely that the characteristic fre- 
quencies of the oscillations in the system be comparable, i.e., 
Gkw, XA. 
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