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High-accuracy determinations of the bound states of three-particle Coulomb systems (atoms, 
ions, and mesic molecules) are considered. An effective method is presented for deriving the 
matrix elements when the variational exponential expansion with L>2 is employed. An 
algorithm for the solution of the eigenvalue problem is described, and the choice of nonlinear 
parameters in the expansion is discussed. Although the proposed method is capable of yielding 
high accuracy, it is noted that the rate of convergence may be significantly slower in certain 
cases. 

1. INTRODUCTION 

The three-body problem occupies a special position in 
quantum mechanics. Different special cases of this problem 
(and their properties) are of interest from both the theoreti- 
cal point of view and for many applications. The nonformal 
theoretical interest in the quantum theory of the three-body 
problem is due to the relatively small number of degrees of 
freedom that are necessary for the complete description of 
three-particle systems, which means that their physical pa- 
rameters can be found from quantum-mechanical first prin- 
ciples without introducing apriori ideas about the motion of 
a particle.' An equally important point is that the solutions 
of the three-body problem exhibit certain qualitative proper- 
ties that are not present in the two-body case, but appear in 
problems involving four or more bodies. These properties 
must be analyzed and taken into account in the solution of 
the three-body potential problem if a high enough rate of 
convergence of the variational expansion employed is to be 
achieved. The use of improved variational procedures and 
expansions is essential in the solution of more complicated 
problems, e.g., systems with a larger number of bodies, non- 
central potentials containing a strong attraction at short dis- 
tances, and so on. 

In addition to the growing theoretical interest in the 
analysis of the three-body potential problem, there has been 
a continuing expansion of the range of practical problems in 
which high accuracy solution of the corresponding Schro- 
dinger equation and the evaluation of different corrections 
to it occupy a central position. Here, we must mention, 
above all, the various problems in atomic spectroscopy and, 
especially, the explanation of the spectra of multiply- 
charged helium-like (two-electron) ions, which have recent- 
ly become ac~essible.~ The frequent use of atomic helium as a 
thermometric material in low-temperature plasmas has led 
to similar problems. Studies of Rydberg states in helium-like 
ions and the evaluation of relativistic corrections (primarily 
for the S- and P-states) are equally important. Estimates of 
the practical efficiency of the mesic catalysis of d,d and, 
especially, d , t  nuclear reactions in mesomolecular physics 
are also found to reduce to the high-accuracy determination 
of weakly-bound states of the mesic molecules ddp* (L = 1 ) 
and dtp* ( L  = 1 ) . The importance of accurate calculations 
of the weakly-bound state of the dtp mesic molecule is clear- 
ly demonstrated in Ref. 3. However, apart from mesic ca- 
talysis, there are many problems in mesomolecular and me- 

soatomic physics in which the bound states of systems 
containing negative muons must be determined with high 
accuracy. 

In this paper, we shall concentrate our attention on 
three-particle Coulomb systems and their bound states. 
Considerable advances have been made very recently4s5 in 
high-accuracy calculations of the bound states of Coulomb 
systems. For example, for most bound states of mesic mole- 
cules, the uncertainty in the Coulomb binding energy is now 
less than 10-4-10-5 eV (Refs. 4 and 5),  whereas not so long 
ago6 these energy levels were known only to about 0.1-0.2 
eV. This considerable increase in the precision of calculated 
Coulomb levels of mesic molecules is due to the use of highly 
effective variational expansions, namely, the exponential7.' 
and the Hylleraasg.'' expansions. These expansions are also 
found to ensure high accuracy in the case of the few-nucleon 
nuclei 'H and 3He and the hypernucleus I H .  This means 
that they, and their analogs in the case of a larger number of 
constituent particles, are promising techniques for the anal- 
ysis of the corresponding nuclear and hypernuclear systems. 
In Section 2, we examine the basic variational principles and 
techniques used to calculate the bound states of three-body 
systems. Section 3 presents an account of the variational ex- 
ponential expansion in terms of relative coordinates, and re- 
ports some of the best variational results for a number of 
systems. The last Section is concerned with the universality 
of the variational expansion in the three-body Coulomb 
problem. 

2. METHODS OF SOLUTION 

Methods based on variational expansions in terms of 
the relative coordinates r,,, r,,, r, ,  (or simple combinations 
of them) have recently assumed particular importance in 
high-accuracy calculations of the bound states of the three- 
body Coulomb system. However, for purely adiabatic sys- 
tems (and only in this case), for which two of the masses are 
infinite (fixed particles), the Hamiltonian commutes not 
only with L,, but also with the additional operator 2. The 
existence of the latter enables us to separate the variables 
(f, 7) in the adiabatic three-body Coulomb problem and to 
integrate numerically the corresponding one-dimensional 
equations with any predetermined accuracy (although these 
equations have an essentially nonhypergeometric form). 
From the point of view of the theory of gro~p~representa- 
tions, the existence of the additional operator il that com- 
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mutes with the Hamiltonian of the adiabatic Coulomb (or 
two-center) system is not accidental." Even a small depar- 
ture from the adiabatic situation results in a sharp reduction 
in the rate of convergence of such methods and of their modi- 
fications. Moreover, the adiabatic (or very nearly adiabatic) 
systems form a narrow and specific subclass of all the three- 
body Coulomb systems. Systems with intermediate particle 
masses are encountered much more frequently and, for 
them, there is no useful additional symmetry. As noted at the 
beginning of this Section, this is why most methods of solu- 
tion are based on variational numerical techniques. 

All the variational principles used in calculations, and 
their consequences, are based on the equivalence of the solu- 
tion of the Schrodinger equation 

H$=E$ 

and the problem of finding the stationary points of the ener- 
gy functional 

E = min (QIHIQ) 
@ ( $ I * )  - 

It is readily shown that the smallest eigenvalue of the Hamil- 
tonian H is not simply a stationary point, but the absolute 
minimum ofE as a functional of $. Hence, it follows that, for 
arbitrary $, the value of E determined from ( 1 ) is an upper 
bound of the smallest eigenvalue. The fact that the Hamilto- 
nian has only one ground state does not reduce the impor- 
tance of this theorem because, as a rule, most systems have 
sets of operators (operator algebras) that commute with the 
Hamiltonian, and the corresponding states are classified ac- 
cording to the representations of these algebras. All the 
states of a system are divided into series, each of which corre- 
sponds to a particular set of quantum numbers, e.g., in the 
present paper, we shall use the three-dimensional angular 
momentum L and total spin S to classify such states, and 
each {LS) series contains a ground state to which the above 
theorem can be applied. To find the excited states in a partic- 
ular series, the variational principle is formulated as fol- 
l o w ~ ' ~ :  

E, = min (QIHI$) 
@ ( $ I $ )  

subject to the condition that ($I$, ) = 0, where $, (i = 1, 
2, ..., k - 1 ) are the eigenfunctions corresponding to the low- 
er-lying eigenvalues E, . Since, in the calculation of the k-th 
excited state, we must know with high precision k - 1 eigen- 
functions corresponding to lower eigenvalues, the theorem 
expressed by (2)  is often nonconstructive and is replaced by 
the minimax theorem',: 

E, = max min ($IHIW 
.i @ ($19) 

subject to the condition ($1 $i ) = 0, where wi (i = 1,2,3, ..., 
k - 1) are k - 1 arbitrary functions. We cannot examine 
here all the consequences of the minimax theorem and mere- 
ly mention that it was used, as it was in Refs. 4, 5, and 8, to 
obtain all the results given in the present paper. 

The general variational principles outlined above are 
valid for an arbitrary variational expansion. Usually, calcu- 
lations of bound states make use of linear variational expan- 
sions in terms of the basis functions CVi): 

where N is the order of the expansion (number of terms). 
The energy functional for linear expansions is 

h h 

where H and S are the Hamiltonian (Hi, = (pi I H 195. ) ) and 
weight (So = (pi ) ) matrices, and c is a column vector of 
the linear coefficients. By varying this vector, we can reduce 
the problem of minimization of E (c )  to the equivalent eigen- 
value problem: 

The required eigenvalues are naturally determined from the 
condition 

It is not difficult to prove the variational oscillation 
t h e ~ r e m ' ~ , ' ~  on the alternation of the roots of the determi- 
nants ( 5 ) of order Nand N + 1 (the energies determined for 
the variational expansion of order N + 1 alternate with the 
energies determined for the expansion of order N).  This 
theorem is also important in calculations of excited states. 

The variational principles mentioned above form a kind 
of theoretical foundation for variational calculations of 
bound states. However, variational theorems applied to such 
problems can also be used to obtain many important rela- 
tionships such as the virial (and supervirial) theorems, their 
consequences, the Gell-Mann-Feynman relationships, and 
SO on. 

Apart from the basic variational principles, it is also 
important to consider the correct choice of coordinates in 
the three-body Coulomb problem because not all coordi- 
nates, by far, will guarantee rapid convergence of the expan- 
sions. For example, in calculations of the bound states of the 
helium atom with an infinitely heavy nucleus ("He), the 
three necessary scalar coordinates can be chosen in a number 
of ways: (a )  r,, r,, r,, (here and below, r ,  is the position 
vector of the first electron in ("He and r, of the second 
electron, whereas r,, is the separation between the elec- 
trons); (b )  r,, r,, cos 8 = r,.r,/r,r,; (c)  r = (r: + 4 ) ' I 2 ,  

tan 7 = r1/r2, cos 8 = rl.r2/r1r2, etc. If the aim of the solu- 
tion is to obtain an answer with a predetermined precision, 
then, of the three possibilities just listed, only (a )  is satisfac- 
t ~ r ~ ~ ~ , ~ , ~ ~  because, for variants (b)  and (c),  any variational 
expansion is found converge slowly and, for example, it is 
practically impossible to obtain the ground state energy in 
He to six to seven significant figures in a finite time (Ref. 
15). This is not the place for a detailed account of the criteria 
for the correct choice of coordinates in the three-body Cou- 
lomb problem. We merely note that the relative coordinates 
r,,, r,,, r21 ( r l ,  r,, r2' for "He) ensure the necessary (suffi- 
ciently high) rate of convergence. Relative coordinates were 
first used by Hylleraas16 in the problem of the "He atom 
( 1 'S-state). At present, Hylleraas-type methods have been 
used to calculate accurately the bound states of simple sys- 
tems such as H-, He, Lif , and so on,'' the ion e-e+e- (Ref. 
9) ,  and the mesic m~lecules . '~  The Hylleraas expansion (for 
L = O )  is 
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$L=o= cir31i1r32zr2P exp (-ylr31-y2r3z-y3r2,), 

where y,, y,, y, are positive constants (independent of i ) .  
An orthogonal basis similar to the Hylleraas basis is given in 
Ref. 18. It usefully differs from the latter in that the matrix 
elements of the Hamiltonian of the "He atom can be calcu- 
lated using integer arithmetic, and the matrix itself is found 
to be substantially reduced. This approach was subsequently 
generalized19 to the case of arbitrary masses (for L = 0) .  

In addition to the Hylleraas expansion used in such 
problems, there have been many applications (especially re- 
cently) of the variational exponential expansion using the 
relative coordinates, e.g., for L = 0. This expansion takes the 
form 

The first generalization of the expansion given by (2)  to the 
case L = 1 (for "He) was given in Ref. 7. A similar ap- 
proach was generalized in Ref. 8 to the case of three arbitrary 
masses and arbitrary values of L, which led to the first suc- 
cessful variational calculation of the weakly-bound excited 
states of ddp* (L = 1 ) and dtp* (L = 1 ). These are impor- 
tant in connection with the resonance mechanism of forma- 
tion of the mesic molecules ddp (Ref. 20) and dtp (Ref. 2 1 ) . 
It was subsequently s h o ~ n ~ ' , ~ ~ , ~ , '  that the accuracy of the 
exponential expansion was no worse than that obtained by 
Hylleraas-type methods and was often better. It has been 
shown4 that the exponential basis can be successfully used 
for bound states with L = 2, which had not been previously 
done in any of the variational expansions. 

Both the Hylleraas and exponential expansions (and 
other similar expansions) can be obtained by discretizing the 
corresponding compact integral representations (trans- 
forms) of the wave  function^^^.^.'^: 

(r31, r 3 ~ ,  r21) 

= j j K(al,  a,, a r ;  h l ,  r3,, rZl)C(al, a 2  7 a3)dal dazda3, (8)  

where K is the kernel of the integral transformation (repre- 
sentation). The variational exponential expansion corre- 
sponds to the discretization of the three-dimensional La- 
place transform, whereas the Hylleraas expansion 
corresponds to a Mellin transform. They are intimately re- 
lated to one another and to the Fourier transform. The prop- 
erties of the two variational expansions (including their 
rates of convergence in the case of the same system) are 
therefore very similar but, in specific calculations, the vari- 
ational exponential expansion (7)  usually has many advan- 
tages as compared with the Hylleraas expansion (6).  This is 
discussed in detail in Refs. 8 and 25. The main advantage of 
(7)  and of its analogs for L>  1 is undoubtedly its flexibility, 
which shows itself, for example, in the fact that the a,(" can 
be chosen to be either integers or half-integers [as in the case 
of (6)  1, but they can also be reasonably arbitrary rational, 
irrational, or even negative numbers (provided the condi- 
tions for the convergence of integrals in terms of perimetric 
coordinates are ~bserved,~).  This advantage is particulary 
important in calculations on weakly-bound states with bind- 

ing energies approaching z e r ~ , ~ , ~ ~ , ~ '  SO that the variational 
exponential expansion is optimal because the number of ba- 
sis functions required to attain a given precision is usually 
smaller in this case than that for other variational expan- 
sions. We also note that the Laplace transform formulas 
used to calculate the matrix elements in the three-body Cou- 
lomb problem are much simpler than the transformation 
formulas for the Mellin and other possible integral trans- 
f o r m ~ . ~ , ~ ~  This leads to much simpler and faster evaluation 
of the corresponding matrix elements. A particular imple- 
mentation is presented in the next Section together with the 
results of high-accuracy calculations performed using the 
exponential expansion in relative coordinates. 

3. THE VARIATIONAL EXPONENTIAL EXPANSION 

The variational exponential expansion for arbitrary L, 
using the relative coordinates (r, ,, r,,, and r,, ), was given in 
Ref. 8 in the form 

where the c ,  are linear parameters and the a;/' are the non- 
linear parameters. The notation Y yL,-'(x, y)  is customarys: 

The expansion given by (9)  can be further symmetrized or 
antisymmetrized with respect to the first and second parti- 
cles (indices 1 and 2). The variational calculation based on 
(9)  involves three significant successive stages: the choice of 
the nonlinear parameters a,!/', the derivation of the formulas 
for the matrix elements and their evaluation, and the solu- 
tion of the eigenvalue problem. 

The idea of global chaos or an a priori choice of a;', is 
found to be effective in calculations of the bound states of 
Coulomb systems. The essence of this approach is to use an a 
priori generation of the parameters a,!/) from a parallelotope 
in a-space (space of imaginary momenta). The variational 
calculation on the three-particle Coulomb system is per- 
formed using these a,!/). In the global chaos approach or the 
apriori generation of the a,!(;", these quantities are called non- 
linear parameters merely by convention, which is misleading 
since they are not varied in the course of the variational cal- 
culation and are chosen only once and often without opti- 
mizing the parallelotope.' The true nonlinear parameters in 
this method are the six numbers specifying the dimensions of 
the parallelotope in a-space.' 

In an earlier paper,1' we used a different choice of a,!/) in 
( 9 ) ,  known as the method of stepwise ~p t imiza t i on .~~  The 
essence of this method is that the (N + 1 )st triple of nonlin- 
ear parameters {a!:+ I ) ,  a$"+ I ) ,  air+ ") is chosen by re- 
peated trials (i.e., repeated solution of the eigenvalue prob- 
lem). Out of the several tens or even hundreds of trial triples, 
we eventually select the best eigenvalue solution, i.e., the 
solution which maximizes the variational reduction in 
E ( N +  as compared with the preceding E'N) . Stepwise op- 
timization of the nonlinear parameters was first suggested in 
Ref. 28 and was subsequently implemented in specific calcu- 
lations in Refs. 29 and 30. Note that, in this method, the a,!:) 
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are the true nonlinear parameters that are varied (in con- 
trast to the global chaos method). Moreover, to attain a spe- 
cific dimension N in the stepwise optimization technique, we 
have to repeatedly solve the eigenvalue problem. This means 
that, because of the computational time involved, high val- 
ues of N are usually difficult to achieve in the stepwise opti- 
mization technique. On the other hand, if we use the asymp- 
totic 

where E( co ), A, y are constants (independent of Ni ), we 
can readily see that it is more convenient to use large values 
of N, (especially for large y)  . When the number of nonlinear 
parameters a;;' used in the calculation is large [ - 3N, where 
N- 100 is the number of basis functions in (9) 1, the final 
answer, i.e., the calculated energy, is almost independent of 
the specific values of the nonlinear parameters, and is deter- 
mined by their total number ( -3N), i.e., characteristic sta- 
tistical regularities arise in calculations using (9) .  This 
means that, for high values ofN, we can abandon the repeat- 
ed solution of the eigenvalue problem and generate the a);' a 
priori (before the calculation), i.e., for large N we can use the 
global chaos method for the nonlinear parameters. A de- 
tailed comparison of the possibilities of the stepwise optimiz- 
ation and global chaos techniques in relation to the nonlin- 
ear parameters is given in Refs. 4 and 5. 

We have followed Refs. 4,5, and 25 in the specific selec- 
tion of the a);). In particular, in the first stage, they were 
chosen from the constant interval (0, A,] : 

where (...) represents the fractional part of a number. In the 
second stage, we selected the a:'' from the interval 
[B I", B,] : 

a2(i1=(i(i+1)/2.3'h>(B2-BI(')) +B,('), 

where B I" = - Sari'. We note that, in contrast to the pre- 
ceding stage, the B t i )  are functions of i and may assume 
negative values. In the third stage, we select 

where cli' = - x min{ali), aii)). The true nonlinear pa- 
rameters of the method are, as already mentioned, the quan- 
tities A,, B,, C,, S, and x .  The number of nonlinear param- 
eters can, in fact, be increased, but the very high rate of 
convergence of (9) for the bound states of Coulomb systems 
enables us to perform successful calculations by assigning 
relatively arbitrary values to A,, B,, C,, S, and x ,  i.e., without 
using a single nonlinear parameter. For example, in the work 
reported here, 6 = 0 and x = 0 in practically all the calcula- 
tions. The care that must be taken in optimizing A,, B,, C,, 8 
and x in specific calculations is discussed in detail in Ref. 4. 
Other strategies for choosing the aji' in the method of vari- 
ational exponential expansion are given in Refs. 7 and 31. 
Although, in the work presented here, the implementation 
of the method of global chaos generally follows Ref. 7, we 
recall Ref. 32 which may be regarded as the beginning of 
precision calculations of the bound states of Coulomb sys- 
tems using a large number of exponential basis functions in 
terms of relative coordinates. The ideas, conclusions, and 

results of Ref. 32 forppp (L = 0 )  have not lost their validity, 
but more accurate values are now available for the constants 
m, , m, , and Ry. 

To evaluate the matrix elements of the Hamiltonian and 
the weights at the next stage of the method, we have to take 
into account the explicit form of YiL- i(r31,r32) for L = 1 
and L = 2 (for L = 0, we have the identity Y z  = 1 ). For 
L = 1, there are two systems of angular functions: 

Ylo10(r31, r3d = k.r3,, 
Ylo01(r31, rs2) = k.r32, 

where k is the unit vector along the Z axis. 
For L = 2, there are three systems of angular functions: 

In these expressions, k is again the unit vector along the Z 
axis. The formulas for averaging the matrix elements over 
the orientations of the Z axis are as follows33: 

(P(a -b )d~ .= ln  (a-b), $ (a -k ) (b .k )dB  - 4n 
- 3 (a.b),  

After averaging over the directions of k, the matrix elements 
become functions of only the powers of the scalar variables 
r,,, r,,, and r,,. We must then remember that, for example, 

and so on for the other scalar  product^.^ The concluding 
stage in the evaluation of the matrix elements involves La- 
place transforms and integration over all space. The vari- 
ables r,,, r,,, and r,, are not convenient in this integration 
because the triangle condition must be satisfied for them, 
e.g., 

It is better to introduce the three independent perimetric 
coordinates: 

In terms of these perimetric coordinates, the integrals 
can be evaluated independently, which introduces a signifi- 
cant simplification when the Laplace transform is per- 
formed, i.e., when we transform from the polynomial in u,, 
u,, u, to the polynomial in the conjugate variables 

for the (p,q)-matrix element. After the matrix elements 
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have been averaged over the orientations of the vector k (the 
directions of the Z axis), the subsequent steps are relatively 
simple and consist of the following stages. The first is to 
replace r,,, r , , ,  r,, with u,, u,, u, and to multiply the corre- 
sponding initial ("basis") polynomials in the perimetric co- 
ordinates. The second stage is to collect together similar 
terms in the resulting polynomials in u ,, u,, u,. The third and 
concluding stage is to perform the Laplace transform, i.e., 
transform to the polynomial in the conjugate variables XI,  
X,, X,. The program of operations is very simple and the 
analytic evaluation of the polynomials in XI,  X,, X, is per- 
formed on a computer. We shall now reproduce the formulas 
for the matrix elements, using (...) to indicate the applica- 
tion of the above program for the evaluation of the polyno- 
mials in XI, X,, X ,  to the expression within the brackets. We 
also reproduce the formulas for the matrix elements 
(weights) of the overlap integral of the basis functions (ex- 
ponential~) in (9) .  In this procedure, it is convenient to 
transfer to the matrix element the product r,,r,,r,, from the 
volume element in terms of the relative coordinates, i.e., 
d V- r,,r, ,r2,dr3,dr, ,dr,,. For L = 0, the overlap matrix ele- 
ment (weight) can be written in terms of the above notation 
as follows: 

For L = 1, there are two types of expression, namely, the 
two "diagonal" matrix elements 

where i can be 1 or 2, and the "off-diagonal" matrix elements 

Na=((r31.r32)r31r32r21). 

For L = 2, there are four types of expression, namely, the 
two "diagonal" expressions 

where i can be 1 or 2, S = ((r3,r32)2r31r32r21), and V 
= ( ( r ~ ~ r 3 ~ ) ~ r ~ , r , ~ r ~ ~ ) ,  and the two "off-diagonal" expres- 

sions 

where i = 1,2 and Sand Vare the same as above. The expres- 
sions for the matrix elements of the potential energy are ob- 
tained in a trivial manner from the matrix elements of the 
overlap integral by replacing the product r,,r,,r,, with the 
product 

In the kinetic energy, the terms that are quadratic in the a,?' 
split into two types, the first of which is proportional to the 
corresponding weight matrix elements 

where (i, j,k) = 1,2,3. 
The second type is simply obtained from N,,, by replac- 

ing the product r,,r,,r,, with the products r3,(r3,~r2, ), 

r31(r32'r12)? and r2,(r,,.r,,), e.g., for L = 0, 

When L> 1, the expressions for T, are obtained in a com- 
pletely analogous manner. A more detailed description of 
the procedure used to obtain the matrix elements is given in 
Ref. 4, together with the expression for the matrix elements 
of the kinetic energy that are linear in a,!". The approach 
presented in Ref. 4 is preferable to the method used in Ref. 27 
for calculating the matrix elements because the expressions 
are much simpler. We also note that earlier attempts to cal- 
culate the bound D-states (L  = 2)  of three-particle systems 
using high-accuracy Hylleraas or variational exponential ex- 
pansions were unsuccessful. 

The solution of the generalized eigenvalue problems 

is the concluding stage of the method. The determination %f 
the corresponding E and c is not trivial because the matrix N 
is poorly conditioned and the conventional methods of solv- 
ing the eigenvalue problem cannot be used. To determine the 
accurate value E, , we use the bisectional subdivision of the 
interval [E, ,  E,  ] between the lower and upper limits for E, 

that definitely contains E , .  The first step^ is toAspecify 
E, = ( E ,  + E ,  )/2 and to reduce the matrix H - E&' to the 
LDU form,34 where L and Uare, respectively, the lower and 
upper triangular matrices with units along the diagonal and 
D is the diagonal matrix. When all the elements of the matrix 
D are positive, the upper limit is shifted: &Few' = E, and the 
segment [ E , ,  &YW'] is again divided in two, which deter- 
mines &,. The procedure is then repeated. When at least one 
of the elements of D is negative, we shift the lower limit 
&lnew' = E ~ ,  the interval E,, ] is again divided in two, 
and E ,  is determined. The procedure is then repeated. The 
result of an n-fold repetition of this technique yields an inter- 
val [&:"', &:)], such that &:"'<&, <&:"' and /&:' - &;")  < 8  
(in our calculations, 6 ~ 1 0 - ' ~  - 10-14). Thus, after n 
steps, the quantity E ,  + , = (&I"' + &:')/2 differs from E, 

by an amount smaller than 6. Inverse iterafiion is the%used to 
determine the eigenvector. The matrix H - E ,  + , N is re- 
duced to the LDU form and is inverted. Next, the operator 
U 'D - 'L - I is applied to an arbitrary normalized vector x,, 
and the following quantity is calculated: 

which is again normalized, taking x,  = y , / [ I  y , 1 1 .  The opera- 
tor U -ID -'L -' is then applied to x,, which yields y,. The 
latter is again normalized, and so on. When E,  + , is close to 
E, , we can start with an arbitrary vector x, and, in a relative- 
ly small number of iterations ( m  less than 20), we obtain a 
vector x, + , that closely approximates the true eigenvector 
xu corresponding to the eigenvalue E, . A modification of 
this procedure capable of dealing with the excited states is 
given in Ref. 4. 

Having presented the computational scheme for the 
bound states of three-particle Coulomb systems, we now 
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TABLE I. The states of "He, 'He, and 4He (in atomic units). The table lists the better variation- 
al results for the exponential expansion (over 350 basis functions; 300 functions when the 1's 
state is excluded). The asymptotic results are also given for "He (in parentheses) together with 
the isotopic shifts calculated relative to "He. 

turn to the results obtained using the expansion (9) for 
atomic, mesomolecular, and exotic systems. 

State 

1 ' S  

Z ~ S  

2'P 

Z3P 

3'0 

33D 

a. Atomic systems 

The variational exponential expansion has been 
~ s e d ~ ~ ~ ~ , ~ ~  to determine the energies of the llS, 23S, 2lP, and 
z3P states of helium and helium-like ions. The precision at- 
tained in Ref. 35 for the calculated energies and isotopic 
shifts in these states of helium-like systems was significantly 
higher, and it was found that the exponential expansion 
yielded very high precision for these systems (much higher 
than in the Hylleraas case). Similar calculations have now 
been carried out for the D-states of helium-like systems. The 
results for the "He atom (and the isotopes 3He and 4He) are 
listed in Table I (see Refs. 4, 35, and 36 for details), where 
the better variational results are given for "He in the upper 
line and the asymptotic values (in parentheses) in the sec- 
ond line in each row. Only the better variational results are 
shown for 3He and 4He. 

We have carried out calculations on e-e+e-, e-p+e-, 
and "He-, in which only the 1 ' s  ground state is a bound 
state. Earlier calculations on these systems were reported in 
Ref. 25 and efficient algorithms, capable ofaccelerating such 
calculations and increasing their precision, were subse- 
quently developed. The results are listed in Table I1 and, 
judging by the stability of the intermediate figures after the 
decimal point, they are the most accurate among those cited 
in the literature. Table I1 also lists the results of calculations 
on the model systems eP(2e) + e - ,  e- (3e)+e-, which are 
similar to the positronium ion e-e+e-, except that the mass 
of the positron has been increased by a factor of two and 
three, respectively (the charge is + 1, as before). Calcula- 
tions on model Coulomb systems are important for studies of 

the analytic dependence of the energy ~ ( m )  of the three- 
body system on the mass of the central particle [the two 
other particles with lower (unit) masses are identical]. The 
availability of simple interpolation formulas for E (m ) en- 
ables us to predict with high accuracy the energy of such 
systems without performing specific calculations, and thus 
economize on computational time and r e s ~ u r c e s . ~ ' ~ ~ ~  The 
constants used in the calculations on atomic, mesomolecu- 
lar, and exotic systems are listed in Table 111. The same val- 
ues of the nonlinear parameters (chosen without optimiz- 
ation) were used in the calculations on eW(2e)+e-  and 
e-(3e)+eP: A,  = 1.15, B, = 0.71, C, = 0.77, S = 0.4, 
7t= 1. 

%He 

-2.903724376435 
(-2.0037243768) 
-2.175229378234 

(-2.175229378240) 
-2.12384308601 

(-2.123843087) 
-2.133164190701 

(-2.133164102) 
-2.055629022 

(-2.055635) 
-2.055629037 

(-2.055635) 

b. Mesomolecular systems 

Table IV summarizes the results of our calculations on 
the bounds (L = 0), P (L  = 1 ), and D(L = 2) states of me- 
sic molecules, performed using the expansion given by (9).  
They are among the most accurate available at present. For 
most of the states of the mesic molecules, the problem of 
calculating the Coulomb binding energies can now be re- 
garded as completely solved (these energies are available to 
better than 10-14-10-5 eV). .More accurate values of the 
pure Coulomb binding energy in these mesomolecular states 
are not of any practical value because the corrections for 
vacuum polarization, the strong interaction between nuclei, 
relativistic effects, etc., limit the final accuracy to lo-& 
10W4 eV. A consistent theory of these corrections in the 
higher orders is not as yet available. Moreover, all the meso- 
molecular parameters, including the binding energies in the 
individual levels, have finite widths due to the decay of the 
muon, possible nuclear reactions, radiative and radiationless 

TABLEII. Totalenergiesofthesystemse-e+e-, "H-, epp+e-,  e - (2e)+e- ,  e - (3e)+eP (in atomic 
units). 

I I I I I 

'He l o 4  

4.19821 

2.99189 

2.97433 

2.83550 

2.817 

2.816 

e-e+e- I e - e -  / e-(3e)+e-  1 =e- I e-pie- 

I I I I I 

=He loi  

5.57168 

3.90707 

3.947/12 

3.76317 

3.738 

3.738 
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TABLE 111. Constants used in the calculations. 

transitions in the mesic molecule and the mesic complex, 
and collisions with other molecules and complexes. 

The first calculations on the S state (L = 0)  of mesic 
molecules using the vibrational exponential expansion are 
reported in Refs. 32, 39, and 19). The first high-accuracy 
calculations on the S and P states of mesic molecules are 
reported in Ref. 8, including the first variational determina- 
tions of the weakly-bound states of dtp* (L = 1) and ddp* 
(L = 1). Accurate calculations of the S and P states have 
been subsequently reported in Refs. 4,5, and 25 and of the D 
states in Ref. 35. In our own calculations, we have concen- 
trated our attention on asymmetric mesic molecules ( S  and 
P states). The results are reported in mesoatomic units, for 
which f i  = 1, m, = 1, and e2 = 1. The values of the con- 
stants employed in the calculations are listed in Table 111. 
Table V shows the results. Their accuracy is sufficiently high 
and can readily be estimated from the stability of the inter- 
mediate values after the decimal point, and with the help of 
the asymptotic formula given by ( 10). The parameter values 
used in these calculations were not optimized and assumed 
equal values for L = 0: A, = 1.37713, B, = 1.45581, and 
C, = 2.04747. In all the calculations shown in Table V, the 
nonlinear parameters were taken to be S = 0 and x = 0. For 
L = l,wetookA,= 1.15,B2= 1.17,C2=2.27inthecaseof 
dtp andA, = 1.11, B, = 1.137, and C, = 1.805 fordpp and 
@P. 

The fact that calculations with constant values of A,, 
B,, C,, S and x have yielded very high accuracy for these 
states is undoubtedly an indication of the considerable pro- 
mise of our method. The accuracy that has been attained can 
be readily increased still further merely by approximately 
optimizing A,, B,, C,, S and x or by increasing the attained 
dimensionality. Table V shows that the accuracy of the cal- 
culated binding energy of the mesic molecules decreases 
with increasing degree of adiabaticity in the system. This is 
discussed in greater detail in the next Section. 

c. Exotic three-particle Coulomb systems 

Exotic three-particle Coulomb systems are usually tak- 
en to be three-body systems with two-body Coulomb inter- 
action between the particles, for which formation of the sys- 
tem and an appreciable lifetime are exceedingly unlikely. In 
the work reported here, we calculated the Coulomb binding 
energies of the mesic molecule ppn- (two bound S and P 
states) and the bound states of the systems TTK, KKT, KKp, 
andppK. It is clear that the strong interaction plays a signifi- 
cantly more important role than does the Coulomb interac- 
tion in these formations, but estimates of the maximum Cou- 
lomb binding energy are not entirely without interest. 
Moreover, such calculations are important because of the 
interest, mentioned above, in the dependence of the binding 
energy on the masses of the particles in the system. In this 
approach, the results listed in Table VI can serve as reference 
points that can be used to improve the analytic formulas for 
the function ~ ( m ) .  These formulas can then be used to esti- 
mate, with high precision, the binding energies of systems of 
arbitrary mass m, without performing numerical calcula- 
tions. The following constants were used in the calculations: 
m ,  = 273.12695me, m, - = 966.1521, E( pn-) = 

- 3234.91866357 eV, E( pK) = - 8613.17056305 eV, and 
E(Kn-) = - 2897.11 11 8439 eV; Ry and m, are listed in Ta- 
ble IV. The nonlinear parameters A,, B,, C,, S, and x in the 
case of n-n-K, ppK, and pKK were not varied and were as- 
sumed to be the same as for e-(2e)+eP (see above); 
A, = B, = 1.5, C, = 2, and 6 = x = 0 in all other cases. 

The mesic Coulomb moleculeppn- has two bound states, 
namely, the ground states in the S and P series. The other 
systems have only one bound state in the S series. 

4. UNIVERSALITY OF THE VARIATIONAL EXPONENTIAL 
EXPANSION 

A number of examples was given above of high-preci- 
sion solutions, based on the expansion (9)  of the nonrelati- 

TABLE IV. Binding energy of mesic molecules in eV. Ground and excited ( * )  states. 
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System 

p p p  

d d p  

t t P  

d p p  

t p p  

d t p  
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-253.152616k 
+ I .  lo-b 

-325.073991. 
11.10-5 

-362.910311- 
i2.10-5 

-221.54955+ 
"2.10-5 

-213.84028i 
12.10-5 

-319.14020* 
+1.10-4 

L=i I = *  1 L=2 

-35.84424-+ 
i2.10-5 

-83.77115~ 
+ I .  10-4 
- 

- 

-34.8346k 
~2 .10-4  

- 
-86.45* 
i2.10-2 

-172.65i 
ri-5.10-2 
- 

- 
-102.65+ 
*2.10-2 

-207.26587+- 
&3.10-5 

-116,68181~ 
1-3.111-5 

-289.14210* 
i7.10-5 

-97.4987C 
1.4. lo-" 

-99.12671. 
C4 .10-~  

-232.4719* 
iz4.10-& 

- 

-1.9745* 
+.I.Io-3 

-45.2057+ 
k1.10-4 
- 

- 

-0.655* 
+1.5.10-" 



250 
275 
300 
325 
350 

Estimated 
binding 

TABLE V. Binding energies of the S and Pstates of asymmetric mesic molecules. 

S state 

energy, eV P state 

Ni I P ~ V  I PIP I d i p  

I I I 

Ni P ~ W  I P ~ P  l l N i  I ( d t ~ *  

binding I 
energy, eV 

I I /I I I 

300 
375 
450 
525 

Estimated 

vistic Schrodinger equation, for a relatively wide range of 
bound states of different systems. It might be considered that 
the expansion given by (9)  yields high precision in the case 
of arbitrary three-particle Coulomb systems. However, this 
proposition is not entirely valid for adiabatic and similar 
systems, i.e., when min(m,,m,) sm, .  This slowing down in 
the rate of convergence is typical for all expansions in which 
the relative coordinates r,,, r,,, and r,, are explicitly used. 
For the variational exponential expansion, this was found in 
Ref. 4 and, in terms of the asymptotic equation ( l o ) ,  signi- 
fies a reduction in y  with increasing degree of adiabaticity in 
the system. For example, for systems such as e-e+e-  and 
"H: , considered above, it turns out that y  z 12.5-10; for 
ppp we have y Z  8.5; and for ttp the result is approximately 

5-5.5. Finally, for the purely adiabatic system "H,f we have 
y  - 1. The results of calculations on "H: are listed in Table 
VII. These calculations did not yield even four significant 
figures in the total energy ( - 0.602 a.u. ) because the rate of 
convergence in (9)  was very low in this case. 

Of course, the rate of convergence of the variational 
expansion (9)  may be affected by the spin symmetry of the 
states under consideration (singlet or triplet), the value of 
the total angular momentum L, the type of state (excited or 
ground) under consideration, and so on. However, even the 
combined effect of these factors on the rate of convergence of 
the data obtained from the variational expansions [includ- 
ing (9)  ] is several orders of magnitude lower than the effect 
of the particle masses. The effect of the particle masses on the 

-97.49605 
-97.49753 
-97.49822 

-97.4987k4.10-4 

150 
200 
250 
300 

Estimated 

-99.12363 
-99.12554 
-99.12632 

-99.1267*4.10-4 

TABLE VI. Binding energies of exotic mesic molecules (in eV). 

binding energy, eV I 11 I 

-232.46561 
-232.47043 
-232.47123 
-232.47157 
-232.4719~4.10-4 

Ni I P P ~  (L=O) I p p n  ( L = i )  

binding energy, eV I 

-491.46380 
-491.46429 
-491.46437 
-491.46439 
-491.46440*2.10-5 

150 
200 
250 
300 

Estimated 

150 
200 
250 
300 

Estimated 
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-133.93315 
-133.93327 
-133.93330 
-133.93332 
-133.93332i2.10-5 
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binding energy, eV 

-207.93475 
-207.93574 
-207.93604 
-207.93605 
-207.93608~3.10-j 

-388.75253 
-388,75273 
-388.75277 
-388.75280 
-388.75282*2. 



TABLE VII. The molecular ion "H: 

convergence of methods used in the three-body Coulomb 
problem must therefore be examined first. Thus, for exam- 
ple, for excited states, the convergence of (9)  can be substan- 
tially improved by optimizing the parameters A,, B,, C,, 6, 
and x ,  but an improvement in convergence does not result 
even from careful optimization in the case of adiabatic sys- 
tems. 

Let us examine the slowing down of convergence of the 
expansion given by (9)  in the case of adiabatic systems. We 
start by writing out the Hamiltonian for the three-particle 
Coulomb system in relative coordinates (in view of the fore- 
going discussion, it will be sufficient4' to confine our atten- 
tion to L = 0):  

az  
-m,-' cos 031,3z - 

drs1 ar3z 

-mi-' cos 021,31--- 
dr3, drzi 

where cos 8 21,31 = (6,  + r:, - <, )/2r2,r3,, and so on, and 
el, e,, and e, are the particle charges. Let us set the smallest 
mass (to be specific, m,) equal to unity, which, together 
with the conditions f i  = 1, e2 = 1, finally determines the sys- 
tem of units that we are using. We shall examine the Hamil- 
tonian ( 1 1 ) for m, - cu and, at the same time, for m, + w , 
i.e., m; ' -0 and m, ' -0. In this limit, the Hamiltonian is 
not a differential operator in the variable r,,. In mathemat- 
ics, it is customary to use the small-parameter method4' to 
analyze operators with such singularities in front of the high- 
er-order derivatives. In physics, the small-parameter meth- 
od is called the Born-Oppenheimer appro~imat ion~~ when 
used in the analysis of adiabatic and similar systems. 

In terms of ( 1 1 ), the essence of the adiabatic approxi- 
mation can be formulated as a significant difference between 
motion in the variable r,, and motions in the variables r,, 
andr,,as (m,,m,)-CU. In thelimitwherem, =m,= W ,  

the eigenfunction of the Hamiltonian in r,, is the &function 
8(rZI  - R),  where R is the separation between the nuclei. 
The slow convergence of the variational expansion (9) is due 
to the slow convergence of the expansion of S(r,, - R )  in 

terms of the basis functions in (9) ,  and is typical for all ex- 
pansions in terms of relative coordinates, for example, the 
Hylleraas coordinates. On the other hand, adiabatic meth- 
ods converge very rapidly for such systems, but they are of 
no real value for epete-, "H-, helium-like systems, and 
intermediate particle masses (for example, mesic mole- 
cules) because of the slow convergence. In view of this, we 
may conclude that we have a kind of complementarity 
between adiabatic methods and methods using expansions in 
relative coordinates. It is still not clear whether this comple- 
mentarity is fundamental and that at least two types of vari- 
ational expansion (each in its own mass range) have to be 
used for three-body problems, or whether there will be a 
universal expansion which, depending on the particular par- 
ticle mass values, will transform its basis functions into a 
form that will be optimal for the analysis of this system. 

Another defect of (9) is that the Fock (logarithmic) 
singularity of the true wave function near the ternary colli- 
sion between the three Coulomb particles of the system has 
been ignored. Actually, following Ref. 43, it can be shown 
that the true wave function of the ground ( 1's) state of the 
helium atom has a logarithmic singularity in the hyper-radi- 
us at the ternary collision point, i.e., it can be written in the 
form 

where r,, r, are the position vectors of the two electrons in 
the "He atom, R = (r: + r: )'I2, and r,, is the distance 
between the electrons. The expansion given by (9)  does not 
contain logarithmic terms (in R) ,  so that we may expect a 
slower rate of convergence of (9)  in the case of systems with 
a significant Fock singularity (or point of ternary collision, 
R = 0, at which the logarithmic distortion is at its maxi- 
mum). In contrast to adiabatic divergence, this situation is 
not universal because the effect of the Fock singularity can 
be ignored (without loss of precision) in the analysis of an 
arbitrary three-particle Coulomb system, except for the 1 IS 
state of He and helium-like ions Lit, Be2+, and so on. For 
systems with other mass values, states with different spin 
symmetry, and excited states, the logarithmic singularity 
can be i g n ~ r e d . ~  In the isoelectronic sequence "H-, "He, 
"Li+, "Be2+ ..., we may expect a greater departure of the 
expansion (9)  from the true wave function because of the 
higher probability of ternary collisions in this sequence. 

In our calculations, we ignored the logarithmic terms in 
the hyper-radius and used (3)  to calcuIate the 1 IS, Z3S, 2'P,  
and z3P states of "He. The results are listed in Table VIII, 
from which it follows that the accuracy of the calculated S- 
triplet state is much higher than that of the S-singlet state. 
Our results on the singlet state are not as good as those re- 
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TABLE VIII. 

The 1 ' S  and z3P states o f  "He. 

The 2'Pand 23P states o f  "He. 

xi 

150 
175 
200 
225 
250 
300 
350 
m 

ported in Ref. 44, in which the logarithmic singularity at the 
ternary collision point was taken into account. Because of 
the antisymmetry of the spatial part of the wave function in 
the case of the triplet state, this singularity is of litle signifi- 
cance, so that our results on the 23S state were found to be 
the most accurate of all those obtained for this state. 

The author is greatly indebted to N. N. Kolesnikov, V. 
D. Efros, and V. A. Kopylov for their help at different stages 
of this research, and thanks V. B. Belyaev, Yu. N. Demkov, 
and Ya. A. SmorodinskiY for their constant interest and nu- 
merous valuable suggestions. 

Energy 1 'S ,  a.u. 

-2.903724371135 
-2.903724375435 
-2.9C3724376006 
-2.903724376119 
-2.903724376232 
-2.903724376435 

- 

-2.9037243768 

APPENDIX 

Energy 23S, a.u. 

-2.17.5228377272 
-2.173229377858 
-2.175229378160 
-2.175220378187 

-2.173229378229 
-2 175229378234 
-2.175229378240 

Energy 23P, a.u. 

-2.133164185925 
-2.133164188054 
-2.133164189634 
-2.133164190801 I 
-2.133164192 

N i  

200 
250 
300 
350 
m 

We shall now reproduce the Hamiltonians for the three- 
body Coulomb system, written in terms of the Bose creation 
and annihilation operators, which are often convenient in 
various theoretical treatments. We shall examine the case 
L = 0, for which the Hamiltonian in relative coordinates is 
given by ( 1 1 ) .  

Consider the operator r and its conjugate momentum 
p, = ( - i ) a / d r .  We then have the obvious commutation 
relation [ p,,r] = - i, and we can use this to verify the va- 
lidity of following lemma.45946 

The operators 

Energy 2'P, a.u. 

-2.12384308202 
-2.12384308498 
-2.12384308560 
-2.12384306601 
-2.123843087 

where i = r x p ,  satisfy the commutation relations of the 
0 ( 2 , 1 )  Lie algebra 

[ S ,  U] =iT, [ U ,  TI=-is, [ T ,  S ]  =iU, 

and the second-order Casimir operator has the value 
C, = 1' = 1(1 + 1).ThefactthatC2fortheO(2,1) algebrais 
identical with the C, for the corresponding O ( 3 )  signifies 
the complementarity of the 0 ( 2 , 1 )  and O ( 3 )  representa- 

tions in the sense of Moshinsky's definiti~n.~' A similar 
lemma can be readily generalized to the case where th? di- 
mensionality of space is greater than three.4h In this case, 1 is 
replaced with A& (a), i.e., the Laplace operator on the sur- 
face of a 3N-dimensional hype r~phe re .~~  

The transformation of the Hamiltonian ( 1 1  ) is based 
on this lemma. Let us multiply the Hamiltonian ( 11)  by the 
product of the relative coordinates: 

rs2, r2i)=r31r32r21H(r31, r 3 ~ ,  r2d .  (A.1) 
In order to avoid using double indices in the ensuing formu- 
las, we shall use complementary indices, e.g., instead of (21  ) 
we use 3, instead of ( 3  1 ) we use 2, and instead of ( 3 2 )  we use 
1. In terms of the operators S,T,U defined above and 
equipped with the previous indices, we now have 

3 

where ( i , j , k )=1 ,2 ,3  and p; '=rn , '+m,- ' ( i , j , k )  
= 1,2,3. The scalar products (n,.nj ) can also be expressed 

in terms of the corresponding operators S and U: 

where (i, j , k )  = 1,2,3. 
We thus see that the Hamiltonian of an arbitrary three- 

particle Coulomb system can be expressed in terms of only 
nine operators Si , T i ,  and Ui , where i = 1,2,3 [the genera- 
tors of the three algebras O ( 2 ,  ] with coefficients that de- 
pend on the three particle masses and the three paired prod- 
ucts of their charges. It appears that this "closed" expression 
for the three-particle Coulomb Hamiltonian in the form of 
the sum of a finite number of terms Si , Ti,  Ui is possible only 
in relative coordinates, and this is responsible for the high 
rate of convergence of their variational expansions. 

Next, we introduce the Bose operators a,, a,, b,, b,, c, ,  
c,  and transform to the Bose representation for each of the 
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three 0(2,1) algebras 

and similarly forb,, b, (index 2: S,, T,, U , )  and c,, c, (index 
3: S,, T,, and U,) . This gives us the final form of the Hamil- 
tonian (the operator 8 in the new metric) in terms of the 
Bose creation and annihilation operators. Each of the a oper- 
ators commutes with each of the b operators and with each c 
operator, and each b operator commutes with each c opera- 
tor (similarly for the creation operators). The commutation 
relations within the groups are 

[a,, aj+] =tjij, [a, ,  aj]=O, [a,', aj+]=O, ( i ,  j ) = l ,  2 

and similarly for the b and c operators. 
The representation of the Coulomb Hamiltonian for the 

three-body system in terms of the Bose creation and annihil- 
ation operators a , ,  b, , c, (i = 1,2) is useful not only in theo- 
retical studies, but also in numerical calculations and esti- 
mates of the binding energies of different systems. 
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