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A consistent quantum-mechanical calculation of the bremsstrahlung intensity due to 
relativistic electrons and positrons in an oriented crystal is presented. Analytic results are 
obtained for relatively hard frequencies, exceeding the characteristic emission frequencies due 
to the motion of particles in the continuous potential of the crystal planes and axes. It is shown 
that the main contribution to the probability of the process is then due to intermediate virtual 
states of the particle that are close to the real states of motion well above the barrier. The final 
formulas can be used to explain existing experimental data on the orientation dependence of 
the high-frequency part of the emission spectrum of electrons in a crystal. 

1. INTRODUCTION 

Orientation-dependent phenomena accompanying the 
passage of fast charged particles travelling through crystals 
at a small angle to the principal crystallographic directions 
have been under intensive investigation during the last dec- 
ade.'.' Because the usual Born series diverges as the angle 
between the particle momentum and one of the atomic 
planes or chains is reduced, the methodological basis for 
studies of orientation phenomena is the Lindhard3 "contin- 
uous potential approximation." The effect of the atomic 
planes or axes along which the particle moves is replaced in 
this approach with an effective potential distribution and 
then the particle wave function is factored out into a wave 
function describing the longitudinal motion (relativistic 
plane wae) and one describing the transverse motion, which 
is a solution of the Schrodinger equation with a relativistic 
maw4 The specific features of this range of phenomena is 
thus seen to require a transformation to the Furry represen- 
tation, which gives rise to considerable computational diffi- 
culties when higher-order diagrams are used evan at the tree 
level. These diagrams have to be resorted to because of the 
publication of a series of exerimental data5-' indicating the 
existence of orientational effects in the high-frequency part 
of the emission spectrum, which is largely due to the brems- 
strahlung mechanism. 

The dipole impulse approximation was used in Ref. 9 to 
derive a formula for the spectral and wavelength density of 
bremsstrahlung radiation emitted by a fast electro in an axial 
channel. Strictly speaking, this formula is invalid in the ener- 
gy range (E k 1 GeV) in which the experiments were carried 
out. On the other hand, the bremsstrahlung from a relativis- 
tic charged particle in an oriented crystal can be calculated 
rigorously in a fairly general case. This is, in fact, the pur- 
pose of the present paper. We shall show later that, under 
certain definite conditions, the principal contribution to the 
probability of the process is provided by intermediate virtual 
states that are close to the real states of motion well above the 
barrier, so that the calculations can be completed in an ex- 
plicit form. The final solutions enable us to explain existing 
experimental data and to propose further experiments on the 
stability of particle motion in a crystal channel. 

2. FORMULATION OF THE PROBLEM: MATRIX ELEMENT OF 
THE PROCESS 

Let us suppose that the difference between the true po- 
tential and the "continuous" potential is a perturbation V 
which is responsible for the bremsstrahlung. 

First-order perturbation theory in the electromagnetic 
interaction constant shows that the emission of a photon by a 
particle traveling in an oriented crystal is described by the 
diagram 

i 

i, Pi f ;  Pf 
The solid line represents a particle in the continuous poten- 
tial of the axis (plane) with initial longitudinal momentum 
pi (or final momentum p, ) in a state of transverse motion i 
(correspondingly,fl; the wavy line is a photon with wave 
vector k. This diagram determines the rate of spontaneous 
emission as a result of i-f transitions between states of 
transverse motion. '" Its contribution predominates at rela- 
tively low frequencies of the order of" 

act,-4ny2T-I, 

where y is the Lorentz factor and T the time of flight of the 
particle near the axis or plane (in the dipole case) or the time 
in which the transverse velocity of the particle changes by an 
amount of the order of l/y (in the nondipole case). 

On the other hand, at frequencies much greater than 
w,, , the dominant diagrams can be of first order in the per- 
turbation V, i.e., 
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Since these diagrams are nonresonant (the crossed circle 
represents interaction with the external field). Throughout 
this frequency range, the emission spectrum of the chan- 
neled particle is thus described by the sum of diagrams ( I )  
and (11). 

We shall examine the high-frequency part of the spec- 
trum, w>)wch,  where the contribution of diagram ( I )  to the 
total emission intensity can be neglected. The very possibil- 
ity of this separation of the spectrum into a low-frequency 
"peak" and the high-frequency "background" indicates that 
we are dealing with a moderately nondipole case, i.e., 
E 5 10E *, where E * = m2/E and E is the average kinetic en- 
ergy of transverse motion of the particle. Estimates show 
that, for energies exceeding 10E *, frequencies comparable 
with the total energy of the particle appear in the spontane- 
ous emission spectrum described by ( I ) .  It is clear that, in 
this case, there is no physical justification for assuming that 
the contribution of diagram ( I )  is small in comparison with 
diagram (11). 

We shall therefore assume that 

Moreover, we shall assume that w <E. It will be clear from 
the ensuing discussion that this limitation is not fundamen- 
tal, but it does result in considerable simplification of very 
unwieldy formulas, and enables us to look upon the electron 
as a spinless particle. 

To be specific, let us consider an axial channel. In view 
of the foregoing, the basis wave functions can be written in 
the form 

where z is the longitudinal (i.e., measured along the axis) 
and p the transverse coordinate of the particle; Lis the nor- 
malizing length. The form of the transition current vector j,, 
corresponding to (11) is typical for bremsstrahlung prob- 
lems: 

where e is the polarization vector of the escaping photon, 
Eicn is the particle energy at the beginning (end) of the 
process, and G(E; r,, r,) is the propagator ofa scalar particle 
of energy E in the oriented crystal. 

Even at this stage of the calculation, we encounter a 
significant difficulty, namely, in contrast to the free particle, 
this propagator does not have a simple analytic expression. 
The simplest way to proceed is then as follows. We shall use 
the following representation of the propagator of a particle 
in an external field:'' 

where the sum is evaluated over intermediate states and ex- 
tends only over positive-frequency solutions of the Klein- 
Gordon equation because resonance denominators are ab- 
sent from the sum over the negative-frequency solutions. 
For a particle in an oriented crystal, the total energy can be 
approximately represented by the sum of two energies, 
namely, the longitudinal energy E = (pt + m2) ' I 2  and the 
transverse energy E, ,  i.e., E, = E! + E,, where p ,  is the 
longitudinal momentum, m is the particle mass, and, usual- 
ly, E, < m  @,. 

Next, we recall that the effective angles of emission by 
an ultrarelativistic particle are of the order of l /y  and we 
resolve the total photon momentum k into the longitudinal 
kll and the transverse k, components (relative to the axis), 
where kll  ~w ( 1 - 6 '/2), lk, / -we, and w is the frequency 
and 8< 1 the angle of emission of the photon. If we then use 
the conservation laws, we find that the energy denominators 
for the first and second terms in (3)  assume the form 

Any possible further simplification is intimately related to 
the condition given by (2 ) .  

Consider the first term in (3)  (the procedure for the 
second term is virtually the same). Specifically, we have to 
evaluate the matrix element 

where, for brevity, we have substituted A = 4w [6  +- m2/ 
pf(pf + k , ,  ) I  and 

We also define the operator 

where U( p) is the continuous potential of the axial channel. 

By definition, the transverse wave function p,,,, and pJPf 
satisfy the equations 

( ~ v . 9 ,  +k I I A v = ~ v I ~ I  +k l l ~ v t  

We shall show that, when o&wCh , the required matrix 
element can be approximately represented by 

A A 

whereD=Hf -H,. 
To prove this we use the expansion of the matrix ele- 

ment M into a series in "powers of smoothness" of the con- 
tinuous potential U( p). This expansion can be formally car- 
ried out by replacing the argument in the continuous 
potential with a p  and then expanding a into a power series 
for a -0. The depth of the potential well remains constant in 

1094 Sov. Phys. JETP 65 (6), June 1987 Bazylev et a/. 1094 



this procedure, but the variation o f a  alters the "steepness of 
the walls," i.e., the gradients of the continuous potential. 
Accordingly, the derivatives dU/,up are of first order in the 
parameter a ,  whereas d U /,up2 and (dU /dp) are of second 
order, and so on. 

It is readily shown that, to within 0 ( a2 ) ,  the matrix 
element is given by 

where [ U, D] is the commutator of the continuous potential 
and the corresponding operator, and the order of opera,tions 
in (5 )  is not significant. Actually, since the operators D and 
D, are pure differentiations, the result of commuting them 
with Ucontains the derivative dU/dp, i.e., it is of trst  order. 
It follows that, from now on, [U, D l ]  and [U, Dl can be 
treated as c-numbers: their commutator with any other oper- 
ator is second order. Substituting 

[U,  Bl]bl-'-[U, b ]  ( A + b ) - l = ~  

and using (4),  we can write 

(M-Mi) = (A-e .+ef ) - '  j dzp rp.pf+kll 

Taking the commutator of H,, to the right and using (4) ,  we 
readily verify that 

So far, our discussion has been purely formal. We must 
now establish the conditions under which the true values of 
the continuous potential gradients can be regarded as 
"small." Taking the Fourier transform of the wave functions 
in ( 5 ) ,  and using the notation of (7),  we obtain the following 
expression for the integrand in the integral with respect to 6: 

The most significant region in this integral is /( I -m for 
which the main term in brackets is of the order of am2/  
2pfpi - I  ,;; and the correction terms are of the order of 
m- ' /dU/dp I. Hence, it is clear that, when 

m-' I ~ U / L ~ ~ I  dc:; (6)  

the correction terms provide a small contribution to the inte- 
gral, thus justifying the series expansion in the parameter a 
and the use of the approximate expression for M, instead of 
M (which corresponds to a = 0).  The significance of (6)  is 
that the increase in the transverse momentum of the particle 
over the coherent emission length I,,, is much smaller than 
m, which is always the case when the condition (2)  is satis- 
fied. At the same time, it was shown earlier that (6)  meant 
that we could replace the difference between the total trans- 
verse energies in the resonance denominator of the propaga- 
tor by the difference between the transverse kinetic energies, 

i.e., the main contrib~tion to the process was provided by 
virtual states that were close to the real states of motion well 
above the barrier. After summation over intermediate states 
and a number of simple transformations, we obtain 

where e, is the component of the polarization vector in the 
transverse plane and the subscript q represents (here and in 
what follows) the corresponding Fourier component: 

F,(p)= j d z e x p ( - i l j z ) ~ ( p , z ) .  ( 8 )  

We note that, in the small-angle approximation, conserva- 
tion laws yeild the following expression for the quantity q in 
(7) :  

3. COHERENT AND INCOHERENT BREMSSTRAHLUNG 
EMITTED BY A PARTICLE TRAVELING ALONG A CRYSTAL 
AXIS OR PLANE 

Neglecting correlations between the collisions of a par- 
ticle with different atomic chains, the remainder of our dis- 
cussion of the axial case can be based on the single-chain 
approximation. 

The wave functions for the transverse motion must be 
normalized to one particle per atomic chain, and the pertur- 
bation can be taken in the form 

where @(p, z )  is the potential of a single atom and U( p) is 
the continuous potential of the chain. The sum is evaluated 
over all the atoms in the given chain, wherep, andz, are the 
corresponding coordinates of the ath atom. 

Since the atoms in the chain execute oscillations, the 
probability of the process must be averaged over the thermal 
displacements of the different atoms. This procedure is 
equivalent to taking into account the creation (annihila- 
tion) of phonons." Assuming that the oscillations of the 
individual atoms occur independently, and that the prob- 
ability density of thermal displacemetns in each of the co- 
ordinates is described by the normal distribution with vari- 
ance u, we readily obtain the following general formula for 
average quantities: 

lim( I Jdz erp (-iyz)~(p--pa, Z-z.1 
N+mL a=l 
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where d is the separation between the atoms in the chain. 
The symbol (. . .), represents averaging over transverse 
thermal displacements: 

( ~ ( p - p a )  ),= (2nu2)  -'J d2p, exp (-p.Z/2u2) F (p-pa) . ( 12) 

The result of this averaging procedure is that the probability 
for the process splits into coherent and incoherent terms. 

Let us first consider the coherent bremsstrahlung, rep- 
resented by the last term in ( 1 1 ). The particular feature of 
the coherent term is that it contains the 6-function. This 
represents conservation of crystal momentum, which is due 
to the periodicity of the dielectric properties of the atomic 
chain. When this is combined with energy conservation, we 
obtain a correlation between the photon frequency and the 
angle of emission: 

provided w g E and 8 < 1. Since the characterisitic change in 
the transverse energy A&, = E; - E,. is small ( - lop2- 

in comparison with the reciprocal lattice period 2n-/d, 
the spectrum of the coherent bremsstrahlung produced dur- 
ing axial channeling consists of relatively well-separated 
lines (corresponding to different values of j) ,  each of which 
has a relatively complicated satellite structure. Since inclu- 
sion of the finite level widths and the actual spectral and 
angular resolution of the measuring equipment smears out 
the fine structure of the lines, we shall calculate the total 
intensity of the lines by summing over all the final states of 
transverse motion i.e., overf, assuming A E ~  = 0 in ( 13). 

Summation of the probability for the process over final 
states in the transverse spectrum can be carried out analyt- 
cally in this case. However, summation over initial states i 
must be performed with weights C, ( z )  representing the pop- 
ulation of the states of transverse motion at a given depth z. 
This leads to the appearance of the characteristic factor 

describing the redistribution of particle flux in the oriented 
crystal (the sum implies summation over discrete states and 
integration over the continuous spectrum). 

It is important to note that, in general, the quantities 
Ci (z) are not known in advance and must be determined by 
solving the corresponding kinetic equations.12 

The frequency of first-harmonic coherent emission is of 
order 2n-y2/d, so that the expressions we have obtained are 
valied only for particle energies E 5 (30-40) MeV so long as 
w g E .  At higher energies, only very hard quanta with fre- 
quency w - E can be emitted coherently. We may therefore 
conclude that, when the coherent term is examined, we can 
confine our attention to the dipole approximation (E gE *), 
assuming that the transverse momentump, of the electron is 
small in comparison with m. 

It is readily seen that integration with respect t o l i n  (7) 
results in the modified Bessel function K, (mJp ,  - p,l), 
which, in effect, restricts the range of variation of the vari- 
able A = p, - p, to lA1 5 mp'. This enables us to put 

pf(p2)  -p,-(pl) to within terms O(p:/m2) in the dipole ap- 
proximation. An expansion into a series in terms of A can 
also, be made in the function V, (p,), except that it must be 
remembered that the Coulomb nature of the field @ ( r )  at 
short distances from the nucleus produces the characteristic 
logarithmic divergence in expressions for the radiation in- 
tensity, which must be cut off at distances of the order of 
m-' in calculations with logarithmic accuracy. 

The emission probability must also be summed over the 
two independent values of the polarization vector e. The 
summation is performed using the formula 

where the second term can be neglected in the small-angle 
approximation. As a result, transforming from the ampli- 
tude ( 7 )  to the probability, and restoring the necessary fac- 
tos, we obtain the followinb expression for the spectral and 
angular density of coherent bremsstrahlung, integrated over 
the aximuthal angle of photon emi~sion:~'  

\ -  , 

where e is the electron charge and the sum is evaluated over 
the reciprocal-lattic vectors g = 2n-j/d, j = 1, 2, ... . 

It is readily seen that, when we evaluate the spectral and 
angular density of incoherent bremsstrahlung correspond- 
ing to the first term in ( 11 ), we can put q = 0. Actually, we 
find from (9)  that q-wm2/2E, E,., which, for E, 2 (30-40) 
MeV, yields q <a-I throughout the frequency range under 
consideration, where a is the effective size of the atom. Con- 
sequently, the Fourier components @, in (1 1) can be re- 
placed by 

+or 

m =m,=. = J dz m (p. 2 ) .  (16) 
- L9 

Direct use of (7)  yields 

where 

and dQ is the solid-angle element containing the direction of 
emission of the photon. 

If we restrict ourselves to logarithmic accuracy, we can 
expand D(p  A,, A,) into a series in terms of A , ,  A,, so that, 
retaining the first nonvanishing terms, we have 

D ( P , A , , A , ) = : ( ( A , . v ~ ( ~  - . ) ) . ( A , . v ~ ( P  - p a ) ) ) , ,  
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(the subscript t ,  m shows that the resulting divergence is cut 
off at distances I p - p, I -m-I). Integration of ( 17) with 
respect to results in the delta-function S(A, - A,), after 
which using ( 18), we obtain 

M i n e  

- 2e2 j k p Q ( p , z ) T ( p ) ,  d o  dz 3nm2d 

where 

The formula for the spectral density of incoherent 
bremsstrahlung, given by ( 19), is identical with the corre- 
sponding formula found in Ref. 9 for the dipole case, where- 
as the spectral and angular density in the nondipole case is 
described by the very unwieldy expression ( 17). The reason 
for this is that the high-frequency bremsstrahlung arises, as 
already noted, over a portion of the trajectory that is small in 
comparison with the oscillations, and is concentrated in a 
cone of radius l/y around the instantaneous direction of the 
particle velocity. Subequent averaging over different direc- 
tions of the instantaneous velocity produces a considerable 
complication of the angular distribution of the bremsstrah- 
lung, which can be reduced to a relatively simple form (see 
Ref. 9) only in the dipole case, when the characteristic angle 
of deflection of the particle from the axis is small in compari- 
son with l/y. When integration over the photon emission 
angles is carried out, all directions of the instantaneous par- 
ticle velocity become equivalent, so that there is no differ- 
ence between the dipole and nondipole cases as far as the 
spectral density of the bremsstrahlung is concerned. We not 
that the dependence of the intensity of incoherent brems- 
strahlung on the frequency w remains the same as in the 
amorphous target. 

The above approach can obviously be extended to the 
case of a crystal plane. In the "single-plane approximation," 
the coresponding forumals become 

Mint 
-- e2 - j  ~ X Q ( X , Z ) T & ) ,  d o d z  3nemzA 

- exp ( -qZuZ)  1 (a@q(x-xa) )tl 
dx 

p h  we2 x I S ( g ) 1 2  
= -  - exp (-g2u2) 
d o  dz m2y2A2 p,,+o gl12 

where A is the area per atom on the crystal plane, S(g) is a 
geometric structure factor normalized to the number of 
atoms per unit cell," p , ( x )  is the wave function for the 
transverse motion, and (. . .), represents averaging over the 
transverse thermal oscillations relative to the plane under 
consideration. The sum in (23) is evaluated over reciprocal 
lattice vectors lying in the plane, the z-axis is assumed to lie 
along the longitudinal particle momentum, and g,, and g, 
represent the components of the reciprocal-lattice vector, 
respectively along and across the z-axis; @, is given by (8) 
and 7 ( y )  is the Heaviside function ("step"). 

The spectral and angular density of the radiation in the 
dipole case is now given by 

where the polar angle 8 is measured from the z axis. When 
Q(x, z )  = const, the last formula reproduces the corre- 
sponding result of the theory of coherent bremsstrahlung. I '  

Wealso note that, in the derivation of ( 17)-(27), it was 
not assumed that the motion of the particles in the channel 
was quasiperiodic, which means that the results are valid 
even in the energy range where, according to Ref. 13, the 
transverse energy is not an adiabatic invariant of the motion. 

4. ANALYSIS OF THE RESULTS 

Let us first compare the relative spectral intensity of 
coherent and incoherent bremsstrahlung in an oriented crys- 
tal. It is well-known" that, in the planar case, when the par- 
ticle propagates at a small angle to a family of axes, the peak 
coherent-bremsstrahlung intensity can exceed the back- 
ground by an order of magnitude or more. On the contrary, 
well away from the peak, the intensity of coherent brems- 
strahlung is small in comparison with the background.I4 
This result was obtained without taking into account the 
redistribution of the particle flux in the channel. A similar 
relationship is valid for the planar case even when the redis- 
tribution of the flux is taken into account, because the factor 
Q(x, z )  has approximately the same effect on the spectral 
density of both coherent and incoherent bremsstrahlung. 

The situation is different in the axial case. Assuming, 
for the purposes of estimates, that Q(p, z )  = const, and ap- 
proixmating @( r )  by the screened Coulomb potential 
@(r )  = Ze2r-'e - "", we find that, at an intensity peak cor- 
responding to one of the terms in ( 15), 

where 

he= ( - E i  ( - x )  (14-x)  ex-1) /2 In (ma)  -1, x=uZ ( g 2 f  a-'). 

For a real crystal, the numerical value of (28) is at most 0.1- 
0.2 for all the terms in ( 15). It follows that, in the axial case, 
coherent bremsstrahlung results merely in a relatively weak 
(no more than 10-2096) modulation of the incoherent 
"background." 
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We now turn to the oreintational dependence of the 
spectral density of incoherent bremsstrahlung. We note that 
measurements of dF5"""/dwdz are of considerable physical 
interest because they enable us to judge the stability of parti- 
cle motion in the crystal channels. Actually, comparison of 
( 19)-(22) with the results reported in Ref. 13 readily shows 
that the spectral density of incoherent bremsstrahlung is 
proportional to the square of the anlge of multiple scattering 
by crystal atoms, averaged over the particle flux (or, in other 
words, the average increase in the transverse energy S E ~  /SZ. 
This means that d%"""/dwdz carries information about the 
rate of scattering of particles in an oriented crystal. 

It follows from (19)-(22) that the spectral derisity of 
bremsstrahlung emitted in a crystal depends on the dynamic 
characteristic of the motion, namely, the distribution of par- 
ticle flux denisty over the channel cross section, Q(p, t ) ,  
Q(x, z) .  Different types of orientational effects can be relat- 
ed only to the redistribution of the particle flux density. In 
particular, when Q(p, z )  is small forp 5 u (which occurs, for 
example, in the case of positron channeling), the brems- 
strahlung intensity is found to be suppressed as compared 
with the amorphous target: 

This is in agreement with the results obtained in Ref. 14 by a 
classical approach. On the contrary, in the case of electron 
channeling, the particle flux is distributed over the channel 
relatively uniformly. In this case, the corresponding integral 
over the channel cross section in ( 19) and (2  1 ) can be accu- 
rately estimated as 

for axial channeling, or 

for planar channeling, since the effective density of scat- 
terers T(p),  T(x) has a sharp peak near the channel center. 

Let us now estimate orientational effects accompanying 
the motion of electrons in a planar channel. The current 
density at the center of the channel is approximately given by 

-Uo 

where uo(&) = [ 2 ( ~  + U,)/E] ' I 2  is the transverse velocity 
of a particle of transverse energy E at the center of the chan- 
nel, Uo is the channel depth, E is the total energy of the 
particle, Y(E) is the frequency of collisions between the par- 
ticle and the atomic plane, and f ( ~ ,  z )  is the transverse ener- 
gy distribution normalized to one particle per channel: 

The transformation to the "disoriented" crystal formally 
corresponds to a. We then have Y ( E )  - uo(&) d; ', 
and hence Q(x = 0, z )  = l/d,, where d, is the separation 
between the planes. 

For a channel model in the form of an inverted hyperbo- 
la, we have 

[arch(Uo/I E l)"]-', -UoSE<O 
[arsh ( U o / ~ )  "']-1, 8 2 0  (30) 

For emission angles Y exceeding the Lindhard angle 
YL = (2U0/E)"2, we have &,EY2/2$ U,,, and it then fol- 
lows from (29) and (30) that the spectral density of incoher- 
ent bremsstrahlung, including orientational effects, is 

We note that the correction to unity amounts to about 10% 
even for Y = 2TL,  and decreases rapidly (as Yp2)  with in- 
creasing V,. For V, < YL , the intensity I(*) increases with 
decreasing Y, reaching 4-5 in a thin crystal for Y = 0. How- 
ever, it must be remembered that, for small emission angles 
V, 5 2Y, - 3YL, the initial particle distribution f(&, z = 0 )  
changes very substantially even for small crystal thicknesses 
z R ( 3dp /TL - 4dp /YL ). Substituting 

and assuming that E,,, is a linear function of the depthz (as 
it is in the amorphous target), we obtain 

Es" 
(A62),, = 7- 

2E R 

where R is the radiation length and E, -- 2 1 MeV. For large 
z, we have 

It follows from this expression that, as z increases, the cor- 
rection to Id /, decreases and can become negative for E,,, 

(z) k U,& . 3 )  However, the constant A ,  determined by parti- 
cles with relatively low transverse energy ( - U,,<E < Uo) ,  
has a positive sign and is relatively large [ A  = (5-lo), de- 
pending on the detailed form of the distribution function f(&, 
z )  1, SO that, according to (34),  the possible relative reduc- 
tion in the current density for large z is of order e A << 1. 

The above estimates do not confirm the possibility of 
significant suppression of multiple-scattering intensity and 
incoherent bremsstrahlung in oriented crystals, predicted in 
Refs. 16 and 17. On the contrary, our results show that, for 
paticle incidence angles exceeding 2YL - 3TL,  or for crys- 
tal thicknesses exceeding 100-100 pm,  the spectral density 
of incoherent bremsstrahlung is practically orientation-in- 
dependent to within small corrections. 

On the other hand, there are experimental data on 
orientational effects in incoherent bremsstrahlung for angles 
Y up to 10YL (Refs. 7 and 8) .  In the light of the formulas 
obtained above, this result can only be explained by collima- 
tion of the photon beam. Actually, as we have already noted, 
the emission of high-frequency gamma-rays occurs within a 
cone of angle l /y containing the instantaneous direction of 
the particle velocity, i.e., the gamma-ray distribution over 
the emission angles is correlated with the transverse velocity 
distribution of the particles. At the same time, the angular 
broadening of the particle beam in the case of axial channel- 
ing for angles Y exceeding the critical value may be much 
greater than in amorphous targets. This is due to the multi- 
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ple scattering of particles by atomic chains," which means 
that the characteristic "annular" transverse velocity distri- 
butions are produced at exit from the crystal. The result is 
that the fraction of radiation entering a collimator with rela- 
tively small angular aperture may be less than that in the 
case of the "disoriented" crystal of the same thickness. 

To estimate the magnitude of the effect, we use the ap- 
proximate expression for the mean square angle of scattering 

by chainsi8 

where 

d is the mean separation between the chains, and V is the 
angle of incidence of a particle to the atomic axes. This esti- 
mate is valid for V! > 2 WL and thicknesses 

Assuming that beam broadening along one of the directions 
is due entirely to collisions with individual atoms [see 
(33 ) 1 ,  we find that the relative intensity of bremsstrahlung 
incident on the collimator of small angular aperture has the 
following orientation dependence 

This formula is in satisfactory agreement with experimental 
data for V! 2 2WL and explains the absence of a thickness 
dependen~e.~ It also shows that, to achieve a reliable inter- 
pretation of experimental data, the bremsstrahlung spectral 
density must be measured for photon collimation angles ex- 
ceeding 4Ra U i / d  ' E  : - 3-5 mrad, which is greater than 
the values usually employed in photon collimation. 

5. CONCLUSION 

We have obtained explicit analytic expressions for the 
spectral and spectral-angular density of bremsstrahlung 
emitted by a relativistic spinless charged particle in an ori- 
ented crystal. The results show that the spectral intensity of 
incoherent bremsstrahlung is not significantly lower than in 
the amorphous target. Possible orientational effects in the 
bremsstrahlung spectral intensity are related exclusively to 
the redistribution of the particle flux over the channel cross 
section. 

We have shown that the high-frequency component of 

hte bremsstrahlung carries information about the stability of 
the particle motion in crystal channels. However, studies of 
these questions will require new experiments that do not em- 
ploy the collimation of the gamma-ray flux because the spec- 
tral and angular distribution of bremsstrahlung may be sub- 
ject to orientational effects that are unrelated to the flux 
redistribution. One of these effects is the multiple scattering 
of particles by atomic chains. Estimates made with 
allowance for multiple scattering by chains lead to orienta- 
tional effects that are in agreement with experimental data 
obtained in the region where the effect is significant. 

"Here and in what follows we take fi = c = 1. 
"The difference in the numerical factor as compared with Ref. 9 is related 
to the definition of a,. 

3'We note the discrepancy between this result and the results reported in 
Ref. 15 where the corrections to the root mean square angles of scatter- 
ing along the channeling plane and at right angles to it have different 
signs. This assymetry cannot be explained in terms of the redistribution 
of the particle flux over the channel cross section. 
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