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The global properties of the field of a uniformly accelerated charge due to its mass shift are 
considered. Relativistic invariance and causality are used to establish a relationship between 
the integrated characteristics of the fields moving with the charge and the radiation fields. The 
mass shift is the red shift of the energy of the dragged field. It is also equal to the momentum 
transported by the radiation field in the direction of acceleration. The shift can be expressed in 
terms of the nonzero horizon potential, and can be related to the change in the topology of the 
manifold occupied by the field, by expressing the self-energy as half the product of the charge 
and the change in the self-field potential. It is shown that the radiation field has a discrete 
dynamic radius-time symmetry and forms a solitary light wave carrying unit electric field flux. 
Arguments are presented in favor of the mass shift being proportional to the spin of the self- 
field. 

I. INTRODUCTION 

It was found in Ref. 1 that the real part of the electron 
mass shift in a constant uniform electric field E ,  where 
&<m2c3/efi, has the classical limit' 

This shift is not predicted by the classical Abraham-Lor- 
entz-Dirac equation that takes into account the local self- 
interaction effects of the charge, which suggests that the 
shift is of nonlocal origin. Another distinctive property of Re 
Amc' is that it is linear in the modulus ofe, i.e., it is nonanaly- 
tic and, consequently, nonperturbative in the external field. 
Although it does not change the classical equation of mo- 
tion, the shift does alter the expression for the action,'.' and 
should therefore manifest itself in quantum-mechanical pro- 
cesses. 

Together with its imaginary part, which, in the same 
limit, is given by 

the mass shift determines the probability amplitude exp 
( - i b m ~ )  of finding the electron in the electric field in a 
state with zero transverse momentum p, = 0 during the 
proper time T. The mass ,u of the photon, introduced to re- 
move the infrared divergence, can be replaced with the mini- 
mum wave number k,,,, =,uc/fi of the radiated quanta, 
which also determines the precision with which the trans- 
verse momentump, of the electron can be measured. It fol- 
lows that - 2ImAm is the photon emission probability per 
unit proper time, or the frequency of transition of the elec- 
tron from the state with p, = 0 to a state with p, #O. In 
principle, such inverse transitions are observable. The differ- 
ential probability that they will occur (i.e., thep, -p; tran- 
sition probability) was deduced by Niko~hov.~  We have 
shown4 that the real part of the shift enhances pair produc- 
tion by the electric field. 

In the present paper, we examine the global properties 
of the self-field of a uniformly accelerated electron that are in 

some way related to the mass shift. In Section 2, we use rela- 
tivistic invariance and causality to derive the relation, given 
by (4),  between the integrals of the Lagrange function of the 
self-field in the invariance regions of Rindler and Milne, 
which is valid for any time t > 0. In other words, we establish 
the relationship between the global dynamic characteristics 
of the attached fields and the fields radiated by the charge. 
This enables us to express the mass shift in terms of the field 
in the Rindler region, in which it constitutes the red shift of 
the energy of the attached field, or in terms of the field in the 
Milne region, in which it is equal to the momentum trans- 
ported with the field in the direction of acceleration through 
a surface perpendicular to the acceleration (Sections 3 and 
4).  In the same Section, we give the covariant generalization 
of the well-known formula of classical electrodynamics for 
the self-energy (half the product of the charge and the 
change in the self-field potential; see Ref. 5, Section 37), in 
which the mass shift is represented by a finite term describ- 
ing the change in the topology of the manifold occupied by 
the field: because of the nonzero acceleration of the charge, a 
horizon with nonzero potential, which essentially deter- 
mines the shift, appears at a finite distance from the charge. 
In Section 5, we examine the dynamic radius-time symmetry 
of the field due to the uniformly accelerated charge in the 
Milne system, which explains the absence of a mass shift in 
the case of the uniformly accelerated scalar charge and, 
when conservation of the electric field flux is taken into ac- 
count, the magnitude of the change in the self-field potential, 
due to the uniformly accelerated electric charge. This sym- 
metry emerges naturally in the course of the analytic con- 
tinuation of the field from the Minkowski space R : to the 
space R : with zero signature, the result of which is the com- 
pactification of the second cyclic coordinate. Hence, if, in 
the Milne sector of the Minkowski space, the electromagnet- 
ic field evolves into a soliton in the course of time, then, in the 
space R :, it takes the form of an instanton. Finally, in the 
concluding Section, we collect together arguments in favor 
of the conclusion that the mass shift of the uniformly accel- 
erated charge is proportional to the spin of the self-field. 

As in Refs. 1 and 2, we use the following expressions for 
the radiative correction to the action of a charge moving in 
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an external field: 

where A, ,  E, H are, respectively, the potential and the self- 
field intensities, and the indices F, 0 denote the difference 
between the values of the quantity in brackets for a charge in 
the external field and in vacuum for the same positions and 
velocities, at a given instant of time. 

II. RELATIONSHIP BETWEEN GLOBAL CHARACTERISTICS 
OF THE ATTACHED AND RADIATED FIELDS DUE TO A 
UNIFORMLY ACCELERATED CHARGE 

The field due to a uniformly accelerated charge travel- 
ing along the z-axis in accordance with the expression 
z( t )  = ( w; + t ') with proper acceleration w, occupies 
two relativistically invariant regions of space time, namely, 
the Rindler region z > 1 t I and the Milne region t > izl, and 
has a definite symmetry. The relativistic invariance of the 
regions R and M, and the symmetry of the field, ensure that 
these regions and the field transform into themselves under 
all Lorentz transformations for which the trajectory 
z2 - t = W; of the uniformly accelerated charge trans- 
forms into itself (rotations around the z-axis and boosts 
along the z-axis). The significant difference between the 
Rindler and Milne regions is that the field in region R is 
entrained by the charge, i.e., it continues to interact with it, 
whereas the field in region M propagates independently, 
forming a solitary wave, and perturbing it does not affect the 
motion of the charge. It is precisely for this reason that the 
radiation due to the uniformly accelerated charge if found in 
region M. 

If we use the field due to a uniformly accelerated charge 
given, for example, by Fulton and Rohrlich6 or in our pre- 
vious paper,2 we can show by direct calculation that, for 
given t > 0, the integrals of the Lagrange function of the field 
over spacelike projections of regions M and R are related by 

This is a consequence of relativistic invariance and causality. 
Actually, the integral of the Lagrange function of the field 
due to a uniformly accelerated charge, evaluated over the x, 
Y plane, 

is an analytic function on the complex plane of u2 with the 
cut 1 <u2 < M , where the prime represents the derivative 
with respect to u2 = W; (z2 - t 2 ) .  The function g,  (u2) as- 
sumes complex conjugate values at points that are symmet- 
ric relative to the real axis of u2 and, in particular, on the 
edges of the cut. Hence the integal 

1 
Re j dzg. (u2) = - j dzg, (u2) 

0 2 - m  

( 6 )  

evaluated over the contour lying just above the real z-axis 
must be zero because g,(u2)  is analytic in the upper half- 
plane of z, and falls off rapidly at infinity. Hence, for any 
t>0 ,  

This is actually equivalent to (4)  because, by virtue of the 
above properties of g ,  (u2),  the left-hand integral is equal to 

and the integration with respect to z over a path above the 
pole z = (w; + t 2,  ' I 2  in the right-hand integral is equiva- 
lent to taking the difference 1:. 

To prove (4)  or ( 7 ) ,  we have used: ( 1 ) relativistic in- 
variance, according to which g, depends only on z2 - t ' and 
the integrals are evaluated over the regions R and M, and (2 )  
the analyticity of g, in the z2 - t plane, except for the cut 
wo- 2<z2 - t < CO,  which is a consequence of causality. 

Ill. RINDLER SECTOR: THE RED SHIFT OF THE ENERGY OF 
THE ENTRAINED FIELD, AND THE HORIZON POTENTIAL 

By virtue of (4) ,  the change in the action for the field 
due to a uniformly accelerated charge can be expressed in 
terms of the field in the Rindler region. Here, it is natural to 
use the accelerated (Rindler) framex'. y', z', t ' (Ref. 7 ) ,  re- 
lated to the inertial x,y,z,t frame by 

and having the metric g& = diag(l, l , l ,  - w;zt2). On the 
Minkowskiz,t diagram, the hypersurfaces of the accelerated 
system with constant z' are represented by hyperbolas, 
whereas hypersurfaces with constant t '  (simultaneous 
events) are represented by straight lines passing through the 
coordinzte origin. Planes in the Rindler system with fixed z' 
travel relative to the inertial system in the z direction with 
accelerations l/zl, so that the system is characterized by 
constant distances between its spatial points. The uniformly 
accelerated charge is at rest at the point z' = w; ' , p  = 0 in 
this system, its proper time is equal to t ', and the field sym- 
metry consists of the lack of dependence on the cyclic co- 
ordinates, i.e., the azimuthal angles p and time t ': 

Thus, the change in the action for the field due to the uni- 
formly accelerated charge can be written in the form 

where g' = det g&. In transforming to the Rindler coordi- 
nates, we have replaced the region R '+ , bounded by the 
hyperplanes t = 0 and t > 0, with the region R '+ , bounded 
by the hyperplanes t ' = 0 and t ' = ~ ( t ) ,  where 

t 
.t (t) = wo-' Arth 

( ~ ~ - ~ + t ~ )  "*' 

which is valid for t% w; ' 
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Since W =  rhm, the last integral in (10) is the mass 
shift of the charge, which has an exceedingly simple inter- 
pretation in the accelerated frame, namely, it is the red shift 
of the energy of the self-field. In point of fact, general relativ- 
ity (see Ref. 5, Sections 83,84, and 88) shows that the energy 
d 3~'(g'/g& )'I2E 12/2 of the field in the geometric volume 
element d 3~ ' (gf /g& ) ' I 2  transforms into the energy 

under displacement toward the charge, which, after summa- 
tion over all the elements of the volume of the entrained field, 
forms the field mass of the charge. The difference between 
this and the field mass of the uniformly moving charge is 

It is necessary to integrate above the singularity ofg, (u2) at 
u2 = 1 [see (5) 1,  which is equivalent to taking the difference 

F 
lo .  

The expression given by (13) can be rewritten in the 
form of a conserved invariant (independently of the space- 
like hypersurface S) : 

where T ;  is the energy-momentum tensor of the field due to 
the charge, go is the Killing vwtor field that generates 
boosts along thez-axis, and is a "volume" element on S. 
In the Rindler system, < = SC. The contribution due to the 
part of S lying in the Milne region is zero. 

Let us now consider the expression for A W in terms of 
the covariant divergence of the vector Ra = F " P A ~  in the 
Rindler system: 

Since -R '" is independent of t ', integration with re- 
spect to t ' gives the proper timer of the charge and the three- 
dimensional divergence of the 3-vector 
$-g'R ' = :E' remains under the integral sign. 
Transforming from Cartesian coordinates x ,  y, z' or cylindri- 
cal coordinates z', p,p to the bispherical coordinates $,,y,p 
(Ref. 8) ,  we have 

p=w0ci sin ~ ( c h  9-cos x)-', z ' = w ~ - ~ s ~  'lp(ch I$-cos X ) - L ,  

(15 )  
in which the electric field has only the $-component, 

and the covariant zero component of the potential depends 
only on $, 

and hence we find that 

The tensor indices with alphabetic rather than numeri- 
cal values are always used for components in the locally co- 
moving orthonormal frame, so that A, = &A ,,..., 
A ,  = J ~ A  O, and so on, h,, ,h, ,h, are the Lam6 param- 
eters, ds,, = h,d$ is an element of length in the +direction, 
and da,, = h,hdxdp is an element of area on the $ = const 
surface in the bispherical system.' 

Since - e is equal to the flux of the electric field 
through a $ = const surface, the triple integral reduces to 
the difference between the values of the covariant zero com- 
ponent of potential on the boundaries of the Rindler region. 
The $, = 0 boundary coincides with the z' = 0 horizon sur- 
face and the $, = co boundary coincides with the spherical 
surface centered on p = 0, z' = w, 'coth $, having radius 
r = (w, sinh $,) -' -0, drawn around the charge, so that 

e2 eZw0 
eAof ( w )  = - - + 0 ( r )  , r+O, eAol (0) = - - 

4nr 42% (19) 

In the expression for the mass shift, the first term in ( 19), 
which leads to the energy of the self-field of the unaccelerat- 
ed charge, vanishes when the difference 1; is evaluated, and 
we obtain 

In other words, in the chosen gauge, the potential near the 
charge is equal to the potential of an unaccelerated charge, 
so that the mass shift is due to the nonzero horizon potential 
which appears at a finite distance w; ' from the charge be- 
cause of its acceleration. It follows that the mass shift can be 
related to the change in the topology of the manifold occu- 
pied by the field: the space with the distinguished point (i.e., 
the charge) is replaced during acceleration by a half-space 
with the distinguished point. Because the field is azimuthally 
symmetric and vanishes at infinity, these manifolds are ho- 
meomorphic to the disk D and the ring S ' X I ,  and have 
different Euler ~a rame te r s~  ,y = 1 and ,y = 0. 

We note in conclusion that the change in the covariant 
zero component of the potential, i.e., 

can be interpreted as the work done by the electric field along 
a line of force, taking into account the red or blue shift de- 
scribed by the factor d z .  
IV. MlLNE SECTOR: SOLITARY LIGHT WAVE WITH UNIT 
ELECTRIC FIELD FLUX 

According to (4) ,  the change in the action for a uni- 
formly accelerated charge can be expressed in terms of the 
field in the Milne region. It is convenient to introduce the 
Milne coordinate frame x',  y', z', t ' with the metric ghD 
(Refs. 10 and 11): 
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On the Minkowski z, t diagram, its hypersurfaces with con- 
stant t ' are hyperbolas, whereas hypersurfaces with constant 
z' are straight lines passing through the origin. We then have 

The second equation is written for tB  w; ', whereas the re- 
gion M' can be replaced with M '<, which is the part of M 
lying between the hyperplanes z' = - ( and z' = (, where 

(t2-Wo-2) 'b 
%=5 ( t )  =wo-' Arth 

t 

The expression for Am that follows from (23) can be repre- 
sented by the integral (13') over an arbitrary time-like hy- 
persurface S; the Rindler region does not contribute to it. 

In the Milne frame, the field of the uniformly acceler- 
ated charge is independent of the cyclic coordinates q, and z', 

and is identical with the field of the uniformly accelerated 
charge on thez = 0 plane of the inertial frame. This field and 
the corresponding set of Maxwell equations 

have an interesting symmetry under the interchange p 2 t ': 
the dependence of the field on time t ' is the same as its de- 
pendence on the radiusp. This important global property of 
the field is discussed below. 

Let us now examine the expression for A W in terms of 
the covariant divergence in the Milne system: 

Since c--g'~ '" is independent of z', the integral with re- 
spect toz' yields 2(, and the integral of the three-dimensional 
divergence is equal to the two terms in brackets in (27), 
which can be explicitly evaluated: 

Since the field E :  (p,t ') does not change sign, and the 
potential A ; (p,t ') = w,t 'A  : (p,t) varies continuously with 
p,t ', we can use the mean value theorem and the conservation 
of the flux of the electric field through the x,y plane 

J dz d y ~ , ' ( p ,  t ' )  =-e, (30) 

to write the first integral in the form 

I ,  ( t ' )  =A,' (p,  t ' )  J dx dyE,' ( p ,  t ' )  =-eA,' (p, t ' )  , 

p=p ( t ' ) ,  (31) 

i.e., in the form of the cdvariant third component of the po- 
tential, averaged over the electric field flux. It is clear from 
(27)-(29) that the mass shift is completely determined by 
the first integral: 

1 1 1 Am = - I ,  ( t ' )  I ::f," = - - eA,' (p ,  t ' )  I f : ~ :  = - - 
2 2 2 

(32 

so the total change in time of the third component of the 
potential averaged over the field flux is well-defined. 

If we integrate the relationship between the field and 
the potential with respect to time, 

we find that the change in the potential at any point with 
fixed p is 

rn 

ew0 
A,' ( p ,  t ' )  1 5 dt'wotrE.. ( p ,  t r )  = - . 

0 2x 
(34) 

The quantity ew0/2?r follows exclusively from thep 2 t ' sym- 
metry of the field and the conservation of the flux (30). On 
the other hand, it is clear from (32) that, at the point corre- 
sponding to the average flux, the result is smaller by a factor 
of two: 

t ' = m  ewo 
A,' (p ,  t ' )  ( t r = o  = ---. 

4n (35) 

The point is that /5 depends significantly on t '. The electric 
field flux through thex,y plane has a maximum density at the 
center p = 0 only for O(t ' < 2-'I2w; '. This maximum is 
reduced in the course of time and eventually becomes a mini- 
mum for t ' > 2-'/'wg ', whereas the flux density maximum 
shifts top > 0 and the flux concentrates in the ring of radius 
p~t'andwidthAp-w;'fort'~w;',sothat/5~t'.Inoth- 
er words, the entire electric field flux is transported by the 
resulting solitary light wave (which is cylindrical in the 
Milne system) with a symmetric field distribution relative to 
p =  t ' :  

e wo 
Ez' ( p ,  t ' )  =-HV1 ( p ,  t ' )  - 2n (p+t f )  [ ~ ~ ~ ( ~ - t ' ) ~ + l ] - ~ ,  

p-t'> wo-', (36) 

and an antisymmetric distribution of potential, so that the 
change in the potential on the crest of the wave is equal to 
half the total change in the potential. 

The unvarying asymptotic form of (36), the constant 
velocity of the crest, and the constant electric field give the 
electromagnetic field (25) in the Milne sector the properties 
of a soliton. It would be interesting to find other symmetric 
solutions of (26) with a constant flux, e. g., flux distributed 
over several crests. 

We draw attention to the fact that the appearance of the 
solitary light wave is accompanied by the vanishing, in a 
time -w; ', of the negative pressure (tension) in the field 
along the z-axis, given by 

or the force of attraction that decreases with time in accor- 
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dance with (5 ) and is analytically continued into the Milne 
region: u = iu, u = w,t '. Because of the flux conservation de- 
scribed by (30), the relaxation of this tension results not in 
the vanishing of the potential, but in the appearance of a 
magnetic field of amplitude equal to the amplitude of the 
electric field. The flux of the negative z-component of mo- 
mentum, which decays in time, flows through the z' = const 
plane, so that the change in this flux is always equal to the 
mass shift; see (32). This is the significance of this physical 
quantity for Milne observers. 

V. RADIUS-TIME SYMMETRY IN THE MlLNE SYSTEM 

We have seen that the Maxwell equations (26), the 
electric and magnetic fields (25), and the Lagrangian of the 
field of the uniformly accelerated charge in the Milne system 
of coordinates exhibt thep ~i t 'symmetry. For the uniformly 
accelerated scalar charge (source of the scalar field @), this 
symmetry immediately leads to a zero mass shift. Actually, 
the wave equation for @, and @ itself, arep s t ' symmetric in 
the Milne system, 

which may be compared with (25) and (26). Hence, the 
Lagrangian 

is antisymmetric, and its integral, which determines the 
mass shift, is equal to zero because of thep ~i t ' symmetry of 
the volume element and the region of integration. 

All the general relationships for the uniformly acceler- 
ated scalar charge can be deduced from the corresponding 
relations for a uniformly accelerated electric charge by in- 
troducing the replacements 

A j -  E2-Hz+ (dam)', FaBAe+-@aacD, 

The fact that the Lagrangian (38) is antisymmetric ensures 
that the force 

between portions of the field in the Milne region separated 
by the plane z' = const will eventually change sign: attrac- 
tion will be replaced by repulsion, so that the change in thez- 
component of the field momentum will always be zero. From 
the point of view of an accelerated observer, the absence of a 
mass shift in the case of the uniformly accelerated scalar 
charge is due to the precise cancellation of the red shift of the 
energy of the self-field in the region 0 <zf  < w, ' by the blue 
shift in the region w; ' <z' < w ; see ( 13) and (39). 

The p * t ' symmetry in the Milne system is a conse- 
quence of the dynamic symmetry of the field equations and 
the invariance of the field due to the uniformly accelerated 
charge under rotations around the z-axis and boosts along 
thez-axis. Thus, the scalar-field dynamics is described by the 
general covariant wave equation 

Invariance under rotations and boosts indicates that the 
field is independent of the coordinates z' and q, in the Milne 
cylindrical frame with the metric given by (22). As a result, 
the d'Alembertian in (41) becomes p s t  '-antisymmetric 
and, since there is no source in the Milne system, (41) re- 
duces to the p F! t '-symmetric equation (37). For the same 
reasons, in the Rindler system, the d'Alembertian is p s z f -  
symmetric but, because of the nonsymmetric source 
j' = e8(p)S(z1 - w, ')/2np, neither the equation nor the 
field exhibits this symmetry. 

Using the analytic continuation (z-iz, ,t-+t, ) of (41) 
from the Minkowski space into the 4-space R of zero signa- 
ture and metric given by gap = diag( l, l, - l, - l ), we find 
that (41) becomes an ultrahyperbolic equation1' and the 
symmetry with respect to the boosts along the z-axis be- 
comes a symmetry under rotations of the plane z, ,t, around 
the origin. Taking into account the symmetry of the field 
under rotations in thex,y, and z, ,t, planes and transforming 
to polar coordinates, we obtain (37), where 

2 112 t ' = (zi + t . ) , p = (x2 + y2)'I2. For the same reasons, 
the Maxwell equations become indentical with (26) after 
analytic continuation into R i. All these scalar field func- 
tions in the Milne region of the Minkowski space are identi- 
cal with their analytic continuations into the space R : if the 
pointsz = t ' sinh $, t = r ' cosh $ on hyperbolas in the Milne 
region are continued into the points z, = t'sin 0, 
t, = t 'cos 0 on circles in thez,, t, plane in the cyclic coordi- 
nate $-iQ, 0 = 2 arctan $, which is thus compactified: 
- n < 8 < T. The edge t = Izl of the Milne region thus be- 

comes the center z, = t, = 0 of the z,, t, plane. The fields 
(37) and (25) of the uniformly accelerated scalar and elec- 
tric charges have the properties of instantons in the space: 
R ': : they are localized near the origin in a region of size w, I ,  

they have no singularities, and they have finite action that 
vanishes for the scalar field and equals 

m m 

for the Maxwell field, where 

Similarly, we can perform the analytic continuation 
z-z,, t-it, of the wave equation from the Minkowski 
space w; to the Euclidean space R 4, having transformed 
the symmetry under boosts along the z-axis into the symme- 
try under rotations of the z,, t, plane. Scalar field functions 
in the Rindler region of the Minkowski space will be indenti- 
cal with their analytic continuations into the Euclidean 
space if the point z = z' cosh $, F = z' sinh $ are continued 
into the points z, = z'cos 0, t, = z'sin 0 in the cyclic coor- 
dinate $ - i0, B = 2 arctan $, so that the edge z = / t 1 of the 
Rindler region becomes the center of the Euclidean plane. 
The field of the uniformly accelerated scalar and electric 
charges are localized near the origin of the Euclidean space 
in a region of size -w, I ,  but are singular on the source 
circlep = 0, zI2 = zg + t = W; 2. Their action changes by 
a finite amount, given by 
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u = w ~ '  for the Maxwell field and equal to zero for the sca- 
lar field. 

We thus see that analytic continuation in the cyclic 
variable and its compactification ensure that the action is 
finite and there is no change in the dynamic equations or in 
their solutions. 

VI. CONCLUSION 

Since our basic results have already been adequately 
summarized in the text and in the Introduction, we need 
only emphasize that the change in the topology of the mani- 
fold occupied by the self-field and the nonzero spin of the 
field are the most significant qualitative conditions for the 
existence of the mass shift. In this connection, it would be 
interesting to deduce the mass shift of a uniformly acceler- 
ated field source of spin 2 or more. It is reasonable to suppose 
that the shift is proportional to the spin of the field. At any 
rate, after the compactification of the cyclic variable into an 
angle, the compactified action and angle become conjugate 
quantities. Hence, Amw; ' may be looked upon as the radia- 
tive correction to the component of the angular momentum 
of the uniformly accelerated charge in the direction of accel- 

eration, which physical considerations indicate should be of 
the order of af in ,  where fin is the spin of the free field. 

The author is indebted to A. I. Nikishov for discussions 
and advice. 
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