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Several new acoustic effects associated with the antiferromagnetic vector order parameter are 
predicted. Their existence is derived from requirements imposed by the symmetry of the 
crystal lattice of an antiferromagnet and by the Onsager relationships applicable to 
components of the tensor of the elastic moduli. 

The antiferromagnetic order, characterized by the anti- 
ferromagnetic vector L = MI - M, in terms of the magne- 
tizations M, and M, of two magnetic sublattices, gives rise 
to a number of specific physical properties the existence of 
which follows from the symmetry requirements and from 
other first principles of physics. Equilibrium properties of 
this type include weak ferromagnetism described by the total 
magnetization M = MI + M,, and also piezomagnetic and 
magnetoelectric effects.' Later many antiferromagnetic ef- 
fects in transport phenomena and in optics have been theo- 
retically predicted and confirmed experimentally (for infor- 
mation see the reviews in Refs. 2-5). We shall consider what 
can be regarded as analogs of these effects in acoustics, but 
there is a special feature of the acoustic effects which is for- 
mally due to the fact that the elastic properties are described 
by a fourth-rank tensor, in contrast to transport (galvano- 
magnetic) and optical properties which are described by sec- 
ond-rank tensors. Moreover, in acoustics we encounter not 
only transverse but also longitudinal waves. 

Our aim will not be to establish the existence of some 
effect for antiferromagnetic (AFM) structures, but also to 
identify the laws governing the behavior of this effect as the 
magnetic state described by the direction of the vector L is 
varied. Therefore, we shall represent the tensor of the elastic 
moduli CaB as an expansion in powers of the components of 
L and also of vectors representing the magnetic B and elec- 
tric E fields, and of the wave vector k (in order to allow for 
possible spatial dispersion). The terms with M, which are of 
the same form as those with B, will not be written down 
because they do not give rise to effects of interest to us. The 
coefficients of this expansion will be determined from the 
requirement of invariance of the tensor Cap,,, under the 
transformation of the symmetry in accordance with the crys- 
tallographic space (Fedorov) group G. More accurately, in- 
stead of G we should use its subgroup g ,  which is obtained 
from G by replacing all pure translations in this group with 
the identity element. This is due to the fact that we shall 
consider only those AFM structures which have coincident 
magnetic and crystallographic periods. 

The time-reversal symmetry (t-. - t )  should be al- 
lowed for by the Onsager relationships: 

If the group 8 of the investigated crystal is known for a 
given AFM structure (i.e., when the atomic magnetic mo- 
ments are divided into sublattices), it is sufficient to indicate 
the parity of the independent elements of this group.6 We 
shall use the terms even and odd for the elementsg + andg- 
relating the magnetic atoms which belong to the same or to 
the different sublattices, respectively. It is important to re- 
call the differences between the transformation properties of 
the antiferromagnetic vector L compared with the corre- 
sponding properties of the vector B (or M )  . If g * B = gB, 
then g * L = + gL, where g is an element of the point sym- 
metry acting on B and L, in the same way as on the usual 
axial vector. 

By way of example we shall consider AFM structures of 
the type i+3,f2; (a-Fe,O,, FeBO,, MnCO,, etc. and - 
1-3; 2; (Cr,O,) for rhombohedra1 crystals (group R 3c) 
and a structure of the type i+4; 22  (CoF,,MnF,,etc. ) for 
tetragonal crystals (group P4/mnm). Here, i represents in- 
version, 3, is a threefold symmetry axis selected as the coor- 
dinate axis z, 4, is a fourfold screw axis (with translation by 
half a period), and 2, and 2, are twofold symmetry axes 
directed along the x axis or along the diagonal of the basal 
square ( [ 1 101 ), respectively. 

The presence or absence of defects is affected decisively 
by whether the inversion i is an even or odd symmetry ele- 
ment. From the point of view of the magnetic symmetry, in 
the former case the magnetic structure has a center of sym- 
metry,.whereas in the latter it has a center of antisymmetry. 
We shall therefore consider separately centrosymmetric and 
anticentrosymmetric structures. 

In the case of centrosymmetric structures the expansion 
of CcrB,,S described above contains, firstly, terms which are 
even in respect of the magnetic vectors B and L, for example 
those of the L a ,  LaBBB,, LaEBE, types and others. Ac- 
cording to Eq. ( I ) ,  such terms govern the antisymmetric 
part of Cap,,, and are responsible for the acoustic activity 
(which is an analog of the optical activity). Secondly, there 
should be terms which are even in respect of the set of the 
vectors L and B and these contribute to the symmetric part 
of Cap,,, . Among them the greatest interest lies in terms of 
the La Bp type, which are responsible for birefringence char- 
acteristic because of its linearity with respect to the field B. 
In the case of nonantiferromagnetic crystals the linear mag- 
netic birefringence is usually &adratic in B or M. The terms 

A medium will be assumed to be transparent to sound, so of both types of a centrosymmetric structure should be of 
that the tensor CrrS,,s should be Hermitian: even power in respect of the electric field E. 

1n the case of anticentro~~mmetric structures there are 
(2)  no terms which are linear (and generally odd) in respect of 
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L. However, in the case of these structures the expansion of 
Ca,,v6 contains terms of the La E, type in the antisymmetric 
part and terms of the La k, type in the symmetric part. The 
former give rise to the antiferromagnetic-electric Faraday 
effect and the latter to an effect, the analog of which in optics 
is known as the gyrotropic linear birefringence.' 

Knowing the form of the antiferromagnetic corrections 
to Cap,y6, we can write down the stress tensor 
uap = Ca,,y6ey6 including them [ea, = (dua/axs + sup/ 
dxa )/2 is the strain tensor] and solve the equation of elastic 
dynanics for wave displacements u a exp(ikr - iwt): 

We shall now give the results of such calculations for 
specific cases. We shall first consider antisymmetric struc- 
tures and list the most characteristic effects. 

1. Spontaneous antiferromagnetic acoustlc activity 
associated with terms AC,,, - L 

a)  In the case of the T+4; 2 2  structure when kllx, this 
effect is related to corrections to a,, corresponding to AC:; 

where a is a real function of the frequency w (and, generally 
o f L 2 ) .  

The solution of the system (3)  gives two elliptically 
polarized waves with the wave vectors1' 

The polarization ellipses of the displacement vector (ulx)  
are described by 

In the paramagnetic range (L = 0) these two modes would 
have been linearly polarized relative to the y and z axes, 
respectively. We are assuming in Eqs. (5)  and (6) that 
laL I 4 (C,, - C,,). The effect is maximal for Lll y and it dis- 
appears for Lll xJl k. 

b) For the 1 +3,+ 2; structure (which is the most popu- 
lar in experimental studies), we shall write down all the 
components of haa, : 

However, the results of the calculations are given here only 
for the case when kllz in the state with Llz. The correspond- 
ing expressions for ad (a,, a,, , and a,, ) which then occur 
in the system (3) are isotropic under rotation about the z 
axis, so that we can set the new axis Y to be the direction of 
the vector L (which means that L, = 0) and this can 'be 
done without any loss of generality. Finally, the wave vec- 
tors and polarizations of the three waves can be described by 

The first wave (with the wave vector unperturbed by the 
action ofL) has a transverse polarization with u,lL (so that 
its polarization varies with rotation of L in the XY plane). 
The second wave, which is degenerate with the first for 
L = 0, is combined with the longitudinal wave, which gives 
rise to two elliptically polarized waves. Then, in contrast to 
the preceding case, when the planes of the polarization el- 
lipses are perpendicular to k, the plane identified here passes 
through the vectors k and L. This situation distinguishes 
acoustics from optics. 

It is important to point out the following. Although the 
vector L is related linearly to the spontaneous weak ferro- 
magnetic moment M, , the effects described above cannot be 
reduced to those due to the terms proportional to M in the 
expansion Ca,,yS (L,M, ...) This is demonstrated by the ex- 
periments involving an analog of the investigated (linear in 
L) effects in transport phenomena, which is the spontaneous 
antiferromagnetic Hall effect: when the field is altered by a 
factor of 8 (from 2 to 16 kG) the magnetization M of hema- 
tite increases by a factor of 2, whereas the Hall field which is 
proportional to L remains practically ~nchanged.~  An ana- 
log of these effects had been discovered also in the case of 
optics (Ref. 8).2' 

2. Antiferromagnetic Faraday effect in a transverse 
magnetic (electric) fleid 

In the case of the i+4; 2 2  structure where kllLllz and 
Bllz, it is due to the following terms in a,,: 

Equation (3) then contributes circularly polarized waves 
with the wave vectors 

This means that the plane polarization of a transverse linear- 
ly polarized wave is rotated by an angle 

1 'q 9~ = -(k+-k-) h e n  - LB,B, = =L,B' sin 2qB 
2 Ckc 2Cth (9) 

when the distance traversed is one wavelength A. 
The features which distinguish this effect from the ordi- 

nary (linear in the field) Faraday effect are as follows: first- 
ly, it is quadratic in respect of B and, secondly, it does not 
occur in a longitudinal (relative to the wave vector k) field 
but in a transverse field. The latter circumstance is impor- 
tant because this quadratic effect is not a correction to the 
linear effect but can be observed against zero background 
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(when Blk) .  Moreover, the magnitude of the effect varies 
periodically (as sin 2p, ) with an azimuthal angle p, for the 
field B. 

The optical analog of this effect had been discovered 
recently9 for CoF, . 

It should be noted that from the point of view of symme- 
try we can replace B in Eqs. (7)-(9) with the electric field E 
(this is also true of the optical analog of the effect). More- 
over, we can replace B in these formulas with a static shear 
strain: B, By -. eg'. 

3. Birefringence in a linear (in B) longitudinal field 

a )  In the case of the i+4; 2 2  structure it is interesting 
to consider the kll BllLllz configuration. Including relevant 
corrections of the L, Bg type to gap, namely 

we find that in this case there are two transverse linearly 
polarized waves: 

which correspond to u, 1 1  [ 1 101 and u,ll[ 1701 respectively. 
Clearly, this effect makes it possible to achieve direct 
"acoustic visualization" of antiferromagnetic domains 
which differ in the sign of L, even in the case of crystals 
which are not transparent to light. 

b)  In the case of the i+3, t  2; structure when Llz and 
kllBIIz, we similarly find that 

L, =-(!?) =-- (PL 
uv LSL,  = tg2. 

The polarization of normal modes is now governed by the 
azimuthal angle p, for the vector L. Therefore, transmitted 
transverse sound reflects to some degree the distribution of 
the vector L in the xy plane, i.e., it reflects the domain struc- 
ture. 

C )  For the same i+3:2; structure in the same state 
with Llz and for kllz, but Blz, the expressions for the com- 
ponents crM corresponding to such value of k are again in- 
variant under arbitrary rotation about the z axis. Taking in 
this case the field B to be the new X axis on condition that the 
field is sufficiently strong to ensure LIB we find that 

Consequently, we now obtain two linearly polarized waves: 

= ( I  L B ~ )  for ~Ilxlle 
2Cha 

and 

kZ=k (i +LL,B,) for ullY IIL. 
2C14 

We must draw attention to the fact that in the last three 
cases (3a, 3b, and 3c) the difference between the phases of 

two normal modes (and we can always expand a linearly 
polarized wave entering a medium into such modes) de- 
pends on the field B. In particular, in the case c, we have 

This means that when a wave traverses a plate of thickness z, 
the elastic displacement along this direction oscillate at the 
exit in the same was as B and the period is 

d )  In the case of Lllz and the i+3: 2; structure, the 
terms of the L, Bp type in oap appear for B l z  and they are 
related to the birefringence of waves with klz.  We shall not 
give the relevant solutions because for these values of k the 
normal modes in a rhombohedra1 crystal are usually neither 
longitudinal nor transverse even in the absence of the terms 
with L. Inclusion of these terms complicates the situation 
even further. A fairly simple case is obtained only for B112,, 
when kllB or klB. In such cases the terms with L, Bp result 
in simple renormalization of the dynamic modulus C 14 (re- 
sponsible for the anisotropy of the elastic properties in thexy 
plane) which reduces to the replacement 
C14-C,, +P,L,B, in the case kJIBllx and 
CI4+Cl4 - P5L,B, in the case klly. 

It should be noted that phenomenological theoretical 
parameters Pi are not generally constant, but are functions 
of the frequency w and of the absolute value of the magnetic 
field B. 

Some analogs of the above effects in transport phenom- 
ena and in optics of centrosymmetric antiferro-magnets can 
be found in the reviews given in Refs. 2 and 5. 

We shall now consider some effects in anticentrosym- 
metric structures of the 7-3: 2; (Cr,O,) type. 

I .  Gyrotropic (i.e., dependent on k,) linear birefringence 
associated with the symmetric part of Cao,, 

If Llz and kllz, then the terms in uag responsible for 
this effect are 

Consequently, we obtain two transverse linearly polarized 
waves with phase velocities and polarizations given by the 
relationships 

The polarization of the modes is again determined by the 
angle p, and the velocity of each of the modes changes as a 
result of reversal of the sign of k, (these modes transform 
into one another). 

It should be noted that our assumption about the spatial 
dispersion (dependence of CaS,rS on the wave vector k )  for 
magnetic materials is not in any way unusual. It is known2 
that near the points of magnetic orientational phase transi- 
tions an inhomogeneous exchange contributing to the effec- 
tive dynamic moduli Cap,,, of a quasiacoustic mode due to 
the magnetoelastic coupling can make these moduli indeed 
functions of k. 

1062 Sov. Phys. JETP 65 (5), May 1987 E. A. Turov 1062 



2. Antiferromagnetic-electric Faraday vector iinear in the 
vector L and in the electric field E 

We shall consider only the simplest situation, kll EIILIIz, 
for which the necessary terms in aaB are 

We thus obtain two transverse circularly polarized 
waves with the wave vectors 

3. Acoustic Faraday effect quadratic in L 

Without altering the symmetry requirements, we can 
make the substitution E, = aL, B, in Eqs. ( 12) and ( 13 ) 
(here, a is a constant). This relationship is invariant under 
the symmetry transformations 7- ,  3,t, and 2;, and it repre- 
sents one of the equations governing the inverse magnetoe- 
lectric effect." Consequently, instead of Eq. ( 13), we obtain 

where Y, is a new parameter. This is the acoustic Faraday 
effect which appears in this situation if kllBIIL1(3,. 

It is interesting to note that the acoustic activity of 
waves with kllL113,, which is quadratic in L and linear in B, 
should exist also for Blz. In this case, we find that 

Here, as in the case of a centrosymmetric structure described 
by the system of Eq. (7), the acoustic activity mixes one of 
the transverse waves (with the polarization ulB) with a lon- 
gitudinal wave, giving rise to two elliptically polarized 
modes. Both polarization ellipses lie in a plane perpendicu- 
lar to B and passing through k. If we take the direction of B 
as the new X axis, then we find that these waves are described 
by formulas of the type given by Eq. ( 7 )  provided a,  L is 
replaced with v2L 2B. 

We shall now consider experimental investigations of 
the magnetic birefringence of sound in antiferromagnets. 
Unfortunately, the present author is aware of only two such 
 investigation^,"^'^ which are discussed in the review of Ref. 
13. We shall consider the results of these investigations on 
the basis of the above representations 

The acoustic birefringence in a centrosymmetric anti- 
ferromagnetic MnCO, was discovered in Ref. 11 in a situa- 
tion corresponding to Eqs. ( 10) and ( 1 1 ) (L  and Blz, kllz, ) . 
The theory is in agreement with the experimental results, 
with the exception that the experimental period of oscilla- 
tions of the intensity of the transmitted hypersound ( 104 
and 204 MHz) increases strongly on increase in the field B, 
whereas the theoretical formula ( 11) does not include an 
explicit field dependence. This is due to the fact that oscilla- 
tions were observed in the range of fields (B  < 4 kG) in the 
vicinity of an orientational phase transition (see Chap. 3 in 
Ref. 2), for which the effective magnetoelastic coupling pa- 
rameter ( depends strongly on the field, falling rapidly on 
increase in B away from this point. There are grounds for 

expecting the phenomehological parameters P ,  and 8, oc- 
curring in Eqs. ( 10) and ( 11 ) to be proportional to (. In any 
case, this is true if the effect under consideration is due to the 
interaction of elastic and spin waves, as assumed in Ref. 11 
(although generally speaking there may be other mecha- 
nisms). 

The acoustic Faraday effect in the state with BllL((3, 
for the waves kllz was observed in an anticentrosymmetric 
antiferromagnet Cr, O, (Ref. 12). This case corresponds to 
Eq. ( 14). The experiments were carried out right up to high 
fields ( - lo5 G )  which included the point of the spin flop 
transition (B,,- -- 60 kG). A strong increase in the Faraday 
rotation angle was observed on approach to this point. (The 
rotation was measured in tens of a for a sample 4.4 mm 
long.) This indicated that the parameter Y, in Eq. (14) was 
again proportional to the effective parameter of the magne- 
toelastic coupling, which increased in the phase transition 
region. 

These two investigations thus demonstrated that the 
birefringence and acoustic activity effects in antiferromag- 
nets were not weak at all. Therefore, systematic investiga- 
tions of these effects and experimental discovery of some 
new effects predicted in the present note would be of interest 
not only in the physics of antiferromagnets (particularly in 
connection with the studies of the nature of the magnetoelas- 
tic coupling and laws governing orientational transitions), 
but may possibly be useful from the point of view of applica- 
tions of antiferromagnets in acoustoelectronics. One could 
hope that such systematic investigations would be helped by 
the above symmetry analysis, which predicts a number of 
new effects (or some new features of the known effects) typi- 
cal specifically of antiferromagnets. It should be mentioned 
here that the present note does not deal at all with the effects 
of the La Lp type, which from the point of symmetry do not 
differ from the effects of the Ma MB or B, Bp type, charac- 
teristic of ferromagnets and paramagnets. 

Further progress in this field of magnetoacoustics of 
antiferromagnets would involve not only experimental in- 
vestigations of the predicted effects, but further develop- 
ments of the theory on the basis of specific model representa- 
tions. There are grounds for assuming14 that it would be of 
considerable interest to extend such investigations to nonlin- 
ear phenomena. 

' )  Here and later we shall ignore the waves which are not affected by the 
vector L in this geometry. Here, C,, is the usual abbreviated form used 
for the moduli Cnays (i, j = 1,2 ,..., 6).  

2' Unfortunately, when Vonsovskii and the present author wrote the 
monograph on dynamic and transport properties of magnetic materi- 
a l ~ , ~  they were not aware of Ref. 8 and did not refer to it, and apologies 
are due for this omission. 
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