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The long-time asymptotic behavior of the unequal-time current correlator in disordered 
conductors is considered. It is shown that scattering of electrons by systems with a well- 
defined discrete spectrum (defects with an internal degree of freedom, tunneling states of 
atoms, and optical phonons) leads to oscillations of the current correlator in time. In this case 
the other processes determining the relaxation of the electron phase do not lead to damping of 
the oscillations in time, but only affect their amplitude. 

1. INTRODUCTION 

Recently, the question of fluctuations of the electrical 
conductance of small (but macroscopic) samples has been 
discussed intensively. In Refs. 1-3 and other papers it has 
been shown that the conductivity of samples of identical 
chemical composition and geometry fluctuates strongly 
from sample to sample. The appearance of these fluctuations 
is due to quantum effects-in particular, to the interference 
that arises between an electron state and the time-reversed 
state as a consequence of the fact that the two states are 
scattered by the same impurities. 

We shall be interested in another aspect of this problem: 
We shall consider large samples and shall study the interfer- 

small dispersion and damping). We shall see that the pres- 
ence of scatterers of the second kind leads to a new qualita- 
tive effect in the fluctuations-to oscillations of s in time 
with a characteristic frequency w,, where ho is the energy 
of excitation of the scatterer. Here it is important that scat- 
terers of the first type, which determine the phase-relaxation 
time rp ,  do not lead to damping of the oscillations but only 
affect their amplitude. The damping of the oscillations is 
determined entirely by the intrinsic damping y of the scat- 
terers or (in the case of optical phonons) by their dispersion. 

In the next section we shall elucidate the qualitative 
physics of this phenomenon, and in Sec. 3 we shall give the 
quantitative calculation. 

ence contribution to the correlator of the current densities 
i (R.  t )  at different times: 2. QUALITATIVE PICTURE1' 

In the correlator s ( t )  there appears the product of the 
( ) probability W"' of a transition of the first electron from the 

The angular brackets here denote averaging over the config- 
urations of the scatterers, The time dependence (of the cor- 
relator s) of interest to us arises from the presence in the 
ensemble of scatterers of intrinsic degrees of freedom that 
can exchange energy with the electrons. 

The problem of the quantum contribution to the low- 
frequency noise was considered recently in Refs. 4 and 5. In 
the latter the quantum contribution to the shot noise in the 
case of purely elastic scattering of electrons by impurities 
was considered. The appearance of the time dependence of 
the current correlator in such a situation is due to the fact 
that one and the same electron can pass along segments of 
trajectories with self-intersection at different times. In the 
framework of the calculations performed in Refs. 4 and 5 the 
above-indicated contribution is associated with matrix ele- 
ments of the current-density operator 3 that are off-diagonal 
in the electron states. 

In the case of interest to us the correlation is due to the 
scattering of two different electrons by the same scatterers 
(see Fig. la) .  We shall see that in a number of important 
cases the contribution of inelastic scattering to the time-de- 
pendent part of the current correlator turns out to be domi- 
nant. In particular, it attenuates slowly in time and can be 
distinguished experimentally by its time dependence. 

We shall consider a Fermi gas of electrons interacting 
with impurities and inelastic scatterers. The latter will be in 
the form of both acoustic phonons and scatterers with a well- 
defined discrete spectrum (defects with an internal degree of 
freedom, tunneling states of atoms, or optical phonons with 

point r ,  to the point r,  in a certain time to, with the probabil- 
ity w2' of an analogous transition ofa second electron in the 
time to + t. Each of these probabilities can be written in the 
form 

where A jk' is the amplitude of the transition of the k th elec- 
tron along the ith trajectory. 

The product W"' W2' should be averaged over the con- 
figurations of the impurities and also over the ensemble of 
the inelastic scatterers, and then the product of the average 
probabilities should be subtracted from the result obtained. 

We shall assume that the inelastic scatterers give rise to 
a random potential field U(r,t) acting on the electrons; it 
will be necessary to average the answer over all realizations 
of this field. For the following it will be important that this 
field is a rapid function of the spatial coordinate r and a slow 
function of the time t. The first property is a consequence of 
the fact that in a collision the momentum transfer Sp is of the 
order of the initial electron momentum p, which is much 
greater than the mean free path I: 

The second property is a consequence of the condition that 
the scattering be quasi-elastic: 

where E is the electron energy and T is the temperature. 
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The product W"'W'2' is a sum over trajectories of 
products of type A jl)A,?'"A j2'A z'2'. Most of these terms 
disappear in the averaging, since for each of the trajectories 
the phase advance of the quantity Ai is not correlated with 
the advance of the phases on the other trajectories. The only 
exception is provided by those combinations of trajectories 
on which the advances of the phase cancel in the principal 
approximation-namely, those closed segments of trajec- 
tory that pass in mutually opposite directions. Here there are 
two possibilities. The first (i = j, I = m) appears in the prod- 
uct of the average probabilities and is unimportant for the 
correlation. The second ( i  = m, j = I) corresponds to the 
passage by different electrons along the closed segment of 
trajectory in opposite directions. In fact, if the energies of the 
first and second electrons are equal ( E ,  = E, ) and the field 
does not depend on t, the phase advances for the states 1 and 
2 should be equal and interference of these states should 
appear. This interference is manifested in the correlator s to 
an extent determined by the smallness of the energy differ- 
ence I E ,  - E~ I 5; f i / ~ ~  and by the slowness of the time depen- 
dence of U. It is this interference contribution that we shall 
consider. 

We now take into account the time dependence of the 
potential U(r,t). Let the total time of the motion along the 
closed part of the trajectory be to, and let the coordinate of 
the intersection point be r,. We parametrize the motion 
along the trajectory by the time t, required to reach the point 
r of the trajectory in the counterclockwise direction if at the 
time t = 0 the electron wave emerged from the point r,. 
Then the contribution of the field U to the phase advance in 
the passage of the first electron along the trajectory segment 
of interest to us is 

to 

A-1 J dtl U[r(tl) , t l l .  
0 

Moving in the opposite direction and starting at time t from 

FIG. 1 .  The signs + and - denote the Green functions G, and G,, 
respectively. 

the point r,, the secondelectron arrives at the point r at time 
to + t - t, . As a result the phase difference will be equal to 

where the first term is the trivial phase advance due to the 
difference in the energies of the electrons, and 

Next it is necessary to average exp [iA , q, ( U) ] over all 
realizations of the random potential U. Since in quasi-elastic 
scattering the transfer of energy occurs in small portions and 
is equally probable in both directions, we shall assume that 
the distribution of A,  p( U) is Gau~s ian ,~ '  i.e., 

Thus, the problem reduces to the averaging of products of 
the type 

(Ti ( t , )  = t,; T,  (t ,)  = t + to - t,), appearingin the expres- 
sion for (A, p)'. We now take into account that the potential 
U(r, t )  depends very rapidly on the first argument. By virtue 
of this, the potentials at different points of the trajectory are 
practically uncorrelated. Therefore, the average of products 
of the type (2.6) is proportional to S[r( t ,  ) - r(t ,  ) 1, which, 
in turn, is proportional to S (t, - t ,  ) . As a result we have 

( [A,lp(U) I ~ ) , = ~ ~ - ' J  dtl{(U2[r(tl), to-tt-ti]), 
0 

-2(U[r(t,), to+t-tllU[tl, r(tl) I),+(UZlr(tl), tll),), 

(2.7) 

where 0 is a dimensional constant whose value we shall es- 
tablish below. 

In order to illustrate the phenomenon, we shall be inter- 
ested in large times t,substantially exceeding the characteris- 
tic phase-relaxation time 7, due to other channels of phase 
relaxation. Here we should assume that the time to is much 
shorter than 7,; otherwise, interference cannot be manifest- 
ed. We shall also assume that the characteristic frequency wo 
of the scatterer, and also the damping y of the scatterer, is 
much smaller than r; I .  Then in the time arguments of U we 
can neglect that terms t, and to - t, in comparison with t. 
With these assumptions the two equal-time terms in (2.7) 
give the same contribution, and the unequal-time term is 
proportional to cosw,t.exp[ - ylt 1 1. It remains to estimate 
the quantity fiP2P (U2(r, t))".  It does not depend on the 
time (since in the averaging we should sample all possible 
configurations of the fields U(t) ) and, from the meaning of 
the derivation, is proportional to the probability of scatter- 
ing of the electron by one quasi-elastic scatterer; if we take 
into account that it has the dimensions of inverse time, it 
becomes clear that in order of magnitude it is 7; '. As a 
result, the average (2.5) can be represented in the form 

where 7, is the mean free time of the electron between scat- 
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terings by defects possessing a discrete spectrum. The quan- 
tity 

is the contribution of these scatterers to the frequency of the 
phase relaxation. We note that yo oscillates as a function of 
the time of observation of the correlation. The physical rea- 
son for the oscillations of this quantity is that in the presence 
of scatterers with a fixed energy their action on the electrons 
at different times is correlated. The source of the time depen- 
dence of the correlator is the transitions of scatterers from 
one energy state to another. In fact, if the electrons of inter- 
est to us are scattered at different times by scatterers in the 
same state, the interference contribution is not small. This 
situation obtains over time intervals that are multiples of the 
period 27~/w, of the oscillations of the scatterer. The elec- 
trons here play the role only of an indicator of how much the 
states of the scatterers have changed in the time t of observa- 
tion of the correlator. For phenomena of this type the auth- 
ors of Ref. 6 introduced what is in our view an appropriate 
name-"correlation via the medium." 

In order to calculate the current-density fluctuations, it 
is necessary to sum the contributions of all the electrons. 
This is done in the usual way (see, e.g., Refs. 1 and 7) ,  and 
this calculation will be performed in the next section. Here 
we shall give the answer for the two-dimensional case in the 
conditions that were discussed above: 

It has the form 
3 e4E2 

sp ( t )  = - --- 
4 ( 2 4 4 ~ ~  [a ( t )  -a(=) I ,  

where E is the electric-field intensity, and 

In the case when there are scatterers with different frequen- 
cies a,, or one scatterer has several energy states, in the 
expression for Y, ( t )  (2.9) the sum 

should appear. Thus, we can judge the nature of the spec- 
trum of the low-energy excitations of the conductor from the 
spectrum of the current fluctuations. 

Calculations of the fluctuations of the total current for a 
given spatially uniform distribution of the electric field un- 
der the same conditions leads to the estimate 

The processes considered in Ref. 5 give a contribution, pro- 
portional to E *, of order 

Thus, the contribution considered by us turns out to be more 
important, at least at large observation times. 

We now compare the contribution of interest to us with 
that considered in Ref. 6, which is due to fluctuations of the 

phonon degrees of freedom. The characteristic magnitude of 
the ratio of these contributions is of order ( f i /~ l )~N, ,  where 
Nc is the number of fluctuating phonon modes. In the case 
when the phonons are equilibrium phonons, and the tem- 
peratr-e fluctuates, N, - (T/*)  3V0 (s is the sound velocity 
and V, is the volume of the system), and for samples that are 
not too small the contribution of interest to us is the the 
much greater. But if the phonons are not in equilibrium, 
then, as shown in Ref. 6, the characteristic number of fluctu- 
ating modes can be substantially smaller. We note that the 
spectrum of the fluctuations in this case6 has dispersion at 
the characteristic frequency of the nonequilibrium phonons. 

3. CALCULATION OF THE CURRENT FLUCTUATIONS 

For the calculation of s ( t )  it is necessary to take into 
account all the two-loop graphs in which the electron loops 
are joined together by two cooperons (i.e., by sums of fan 
diagrams).' Since we shall be interested in the single-point 
but unequal-time correlator s, the calculation must be car- 
ried out for finite values of the wave vector Q corresponding 
to the Fourier transformation in the coordinate difference 
R, - R, (in the region QI< 1, where I is the mean free path 
of the electrons). A check on the correctness of the calcula- 
tion should be provided by fulfillmentof the identity 

(s(Q, Q, ) is the Fourier transform of s(R, t )  ) , which is in 
fact a form of the law of conservation of the number of elec- 
trons. One can verify that for (3.1 ) to be fulfilled it is neces- 
sary to take into account a sufficiently large number of 
graphs and to perform a subtraction that we shall discuss in 
the Appendix. 

The graphs depicted in Fig. l a  automatically satisfy the 
identity (3.1 ), and therefore, for simplicity of the account, 
we shall first discuss their contribution to the correlator s 
and then analyze the diagrams that require subtractions. 
The left vertices of these graphs correspond to operators of 
the interaction with the electric field (we use the Lorentz 
gauge and E = - c - ' A).  The right vertices correspond to 
current-density operators, and the so-called correlation mo- 
mentum Q and frequency Q, (corresponding to the Fourier 
transformations with respect to R ,  - R, and t )  flow across 
from the external electron line to the internal line; it is as- 
sumed that all the phenomena of interest to us are due to the 
region Ql, Q, T < 1. Because this condition is fulfilled it turns 
out to be necessary, for finite values of Rc and Q, to take into 
account the ladder graphs in the right vertices (Fig. lb) .  As 
a result, the last three graphs give, in order of magnitude, the 
same contribution as the first graph. As usual, we shall cal- 
culates for a finite frequency R of the external field, and then 
let a -0 .  For definiteness we shall be interested in times 
t$r,, where T, is the energy-relaxation time. In this case 
only the fan graphs are important, and graphs of the diffu- 
sion type (see Ref. 1) can be disregarded. In addition, we 
shall assume that the strongest scattering mechanism is scat- 
tering by elastic impurities. It is assumed that besides this 
scattering there is scattering by acoustic phonons and scat- 
tererswith a fixed frequency w, (%, < T). For the corre- 
sponding relaxation times in respect of these processes the 
inequalities 
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are fulfilled. We note that smallness of the product rimwo is 
required only for representation of the results in the simplest 
analytical form. The oscillations should exist for an arbi- 
trary magnitude of this parameter. 

The wavy lines on the graphs denote "cooperons," in 
the calculation of which we should take into account all 
three scattering mechanisms-impurity scattering (the 
dashed lines), scattering by acoustic phonons (the wavy 
dashed line), and scattering by quasi-elastic scatterers (the 
wavy dashed-dotted line) (Fig. lc) .  

The calculation of the graphs of Fig. l a  by means of the 
Matsubara technique leads to the expression 

ano ano 
s!:' (Q,  Qc )=  ( 2 e 2 D T ) 2  1 det de, zz (dq)  d o  

( 2 ~ ) ~  

where no is the Fermi function, 

D is the diffusion coefficient, and F is the sum of the fan 
graphs, reduced in the appropriate manner to a dimension- 
less sum. A calculation analogous to that given in Ref. 8 
shows that the quantity F in  the time representation satisfies 
the integral equation 

( I f  A ) F ( E ~ - - E ~ ,  Q, t )  
L., 

1 
=I + 5 dt, e x p ( - t , / r ) ~ ( e , - e , ,  Q, 1,-t) [- ~ , ( t + t , )  

0 Tac 

1 1  + - + - exp (-7 1 t+t,  1 cos oo ( t+ t t )  1, 
Tim To (3.5 1 

where 

After going over to the time representation and per- 
forming the integration over the frequency w, we can repre- 
sent the expression (3.3) in the form - 

sik(Q, t ) =  1 d ~ t  dez(dp) j dt ,  F(e2-e l ,  Q+q,t- t , )  
- rn 

X F(q ,  et-e2, t t - t )  Ask(&), (3.7) 

where the function Aik ( E ,  , eZ, Q) incorporates all the fac- 
tors except the cooperon factors. The time dependence of the 
function Aik is determined by the pole characte of the func- 
tion Iik. However, one can verify that this time dependence 
has a 6-function character. In fact, the characteristic value of 
the product D@ in the calculation of the single-point corre- 
lator turns out to be of the order of 7; - 7; I. But we are 
interested in the behavior at large times r$ rq ,  7,. There- 
fore, the quantity iR,/D can be replaced by is, i.e., we can 

take into account only rhe passage round the pole. As a re- 
sult, the time dependence of s ( t )  is determined by the inte- 
gral over q of a product of two cooperons. To determine this 
time dependence we must solve Eq. ( 3.5 ) . This can be done 
in the same way as in Ref. 8. (Henceforth, for definiteness, 
we shall assume the samples to be quasi-two-dimensional. ) 
The solution looks simplest for t% l/ps, when the kernel K, 
can be neglected. (In this situation the acoustic phonons are 
taken into account only in the self-energy insertions of the 
Green functions; physically, this means that the correlation 
arising from the scattering of electrons by acoustic phonons 
is already damped on this time scale.) If, moreover, we as- 
sume that war,, < 1, then, with allowance for the inequal- 
ities (3.2), we obtain 

x [exp( -*  ( t ( )sin mot + exp ( - y  1 t -rx 1 ) sin(o0rx-mot)  I}. 
(3.8) 

In the case of extremely low frequencies w,, 

O O < T ~ ~ - ~ ,  To-', (3.9) 

from (3.8) we have 

F ( t ,  Q, E I - E ~ ) = [ A + T v ( ~ )  I ,  (3.10) 

where 

Y ( t )  = ~ ~ , - ~ + ~ ~ - ~ ( l - e x p ( - - y  1tl)cos mot) .  

It is now necessary to subtract from the unequal-time 
correlator the contribution of the diagrams in which the in- 
elastic interaction has been taken into account only in the 
self-energy insertions and the electron loops are connected 
only by Green functions describing the elastic scattering 
(such graphs are proportional to 6(w) and are a time aver- 
age of our expression). Their value can be obtained from the 
expression (3.10) by letting y or t+ co . It is this limit which 
gives the contribution of the diagrams indicated above. Such 
processes appear in the product of the average currents, and 
their contributions should be subtracted in the correlator. 
But if the condition wore > 1 is fulfilled, the expression (3.8) 
can be expanded in a series in l/woro. This regime corre- 
sponds to the fact that the electron phase is shifted by an 
amount of order unity during one collision with a scatterer 
with a fixed frequency. In this case the answer could be ob- 
tained directly by means of perturbation theory and the 
time-dependent term would have order of smallness 
(00ro)-~. 

We turn now to the graphs depicted in Fig. 2a, in which 
both cooperons are on the same side of the vertex (to these, 
of course, we must add the mirror-image graphs in which the 
cooperons are on the lower line). The necessity of taking 
these graphs into account was first pointed out in Ref. 9. 

Up to now, in the calculation of the current correlator it 
has been assumed that a contribution to the dissipative cur- 
rent is given only by terms containing a product of an ad- 
vanced and a retarded Green function in each electron loop 
(as in the calculation of the current density averaged over 
the scatterers); i.e., in the exact expression for the current 
density (before the averaging over the positions of the im- 
purities) 
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only the first term has been taken into account. (The coordi- 
nate arguments, vertices, and all the remaining integrations 
have been left out for simplicity.) Here it has been assumed 
that the last two terms, as usual, are cancelled by the diamag- 
netic current. Our assertion is that in the calculation of the 
correlator this is not so. If only the first term is taken into 
account, the identity (3.1) will not be fulfilled (and this, of 
course, contradicts the law of conservation of electrons). We 
shall discuss first the difference between the current density 
averaged over the positions of the impurities, and the prod- 
uct of two densities (3.11 ) which are subsequently averaged 
over the positions of the impurities. The first question has 
been discussed repeatedly in the literature. The answer re- 
duces to the following: In the calculation of any loop, expres- 
sions of the type 

arise. In the leading approximation in (pl  / f i )  $1 all the lim- 
its of integration can be assumed to be infinite, and all the 
Green functions depend only on the combination E - E,. 

Therefore, after the change to the new variable x = E, - E 

the internal integral ceases to depend on the variable E, but 
has both poles in the same complex half-plane. The external 
integral diverges logarithmically at the lower limit of inte- 
gration. Thus, from a mathematical point of view, an inde- 
terminacy of the type 0. OJ arises (here the difference of the 
arguments of the Fermi functions in the second and third 
terms of (3.1 1 ) is unimportant, since the term 

does not have a divergence in E) .  The indeterminacy is re- 
vealed in the manner required by the gauge invariance; these 
terms cancel the diamagnetic current. This procedure can be 
formally deduced, e.g., by means of thef-sum rule.'' In the 
calculation of the correlator of the current densities, retard- 
ed and advanced Green functions appear in the integrals 
over all the energies E, (see Fig. 2b); from a mathematical 
point of view, these graphs are infinite and it is necessary to 
perform a subtraction. The assertion that we shall prove in 
the Appendix is that in the second term in formula (3.11) it 
is necessary to represent n (E + R )  = n (E) + flan/ae, after 
which terms with n ( E )  (part of the second and third terms in 
(3.11) ) are cancelled by the diamagnetic current before the 
averaging over the positions of the impurities. Thus, in the 
calculation of the current calculator in the Lorentz gauge a 
contribution to the dissipative current is given by the terms 

The expression (3.12) must be multiplied by the current 
density from the second loop and averaged over the positions 
of the impurities. After this, terms of the type 

give the same contributions tos( t )  as do the graphs depicted 
in Fig. 2a. The extra graphs that have arisen from the second 
term in the expression (3.12) are depicted in Fig. 2b (plus 

FIG. 2. The signs + and - denote the Green functions G, and G,, 
respectively. 

the mirror-image graphs in which the cooperons are situated 
in the lower part of the loop; the external loop consists of 
only advanced functions, and the internal loop consists of 
retarded and advanced functions). Besides these diagrams 
there are also diagrams of the type depicted in Fig. 2c. The 
fan-diagram sum corresponding to these graphs has pole 
expression of the form 

[ D Q ' - ~ ( E ~ + Q , - E ~ - Q ~ )  + - I-' , 
Tac 

and, consequently, the current has a singularity in the lower 
half-plane in the frequency R, of the external field. This, of 
course, contradicts causality, and therefore such diagrams 
cancel each other in the sum. The sum of the diagrams de- 
picted in Figs. 2a and 2b (compare with Ref. 3 )  satisfies the 
identity (3.1 ) . It is equal to 

dn, an, 
s::' (Q, '2,) = d&,  hz ( d g )  dw -- 

(an) a & ,  

The expression (3.13) has the same form as (3.3), and is 
analyzed further in the same manner. Summing the contri- 
butions s"' and s"', using the expression (3.10) for F, and 
integrating over E,,  E,, and Q, we arrive at the expression 
(2.10) for the single-point correlator. The fluctuations of 
the total current are expressed in terms ofs(t, Q = 0 ) .  In this 
case only the first term in formula (3.4) turns out to be 
important; as a result, the fluctuations of the total current 
for a given spatially uniform distribution of the electric field 
are determined in order of magnitude by the formula (2.12). 
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APPENDIX 

In order to justify the subtraction formulated in Sec. 3, 
it is necessary to prove that before the averaging over the 
positions of the impurities the contribution to the current 
density from the term proportional to 

is cancelled, in the zeroth approximation in a, by the dia- 
magnetic current, and the term linear in is equal to zero. 
The question of interest to us also exists in the simplest prob- 
lem, in which electrons are scattered only by elastic impuri- 
ties. Therefore, for simplicity we shall discuss just this case. 
We shall find it convenient to work in the basis of the exact 
wavefunctions p, (x) ,  to assume that the vector potential A 
depends only on the coordinates (or on the wave vector q)  , 
and to let q- 0 only in the final answers: 

g ( x )  .cpn ( x )  =h'ncpn ( x )  , i ( x )  = H " a + ~ i m p  ( x )  . (A. 1 ) 

Here Ui,, is the impurity potential. The exact (with respect 
to the impurities) Green function can be represented in the 
form 

and the expression for the current density is 

- inme' ( x i )  jmna (xz )  
(8 -En- i s )  ( s f  62-Em-is) 

where ja is the momentum operator. Taking into account 
only the pole contributions, using the continuity equation, 
and taking into account the invariance of the theory under 
time reversal, according to which for each quantity 
p,, (x)  = pm (x )p  X(X) we can find a quantity pz, equal to 
it (to within an unimportant phase factor), we can represent 
the expression for nap in the form 

(A.4) 

Now we must prove that naD ( a=  0) is cancelled by the 
diamagnetic current. The proof consists in generalizing the 
f-sum rule to the nonuniform case. It is based on the direct 
calculation of the commutator of the density matrix with 
the Hamiltonian and the use of the continuity equation: 

Taking this equality into account, we can convince ourselves 
that naD (a = 0)  is cancelled exactly by the diamagnetic 
current. 

We shall discuss the term linear in the frequency of the 
external field. It is nonzero and gives a current density equal 

where E is the intensity of the electric field and N is the 
electron density: 

m 

In order that its physical nature should become clear, we 
shall calculate divj and go over to the gauge A = 0, 
eE = - iqU ( U is the potential of the field). Going over to 
the coordinate representation, we obtain 

d 
- N ( x ,  t ) =  - 1 e l A - ' U ( x , t ) N ( x , t ) ,  
at (A.7) 

i.e., the current (A.6) is nondissipative and arises because of 
the fact that the gas of free fermions overflows from one 
point to another in order that its energy in the external field 
be a minimum. At this point it is necessary to recall that our 
system as a whole is electrically neutral: The ions of the crys- 
tal lattice are arranged in such a way as to compensate the 
electron charge. The field created by these ions induces a 
current that compensates the current (A.6). 

"The idea of qualitative interpretations of this type is due to A. L. Shelan- 
kov. 

"The confirmation of this assumption is one of the tasks of the quantita- 
tive calculation given below. 
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