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The quasistationary approximation is used in an analysis of low-frequency (w (w, = eH /me)  
electrical properties of bounded quantum superlattices in a strong magnetic field. It is assumed 
that superlattices can be described by the average permittivity tensor and the Hall currents can 
exceed greatly the ohmic currents. These assumptions are used to show that natural 
oscillations of the Hall current can exist in bounded superlattices. The spectrum of natural 
oscillations is calculated for samples of simple shape (sphere, ellipsoid of revolution). The 
main distinguishing feature of these oscillations is that resonance frequencies depend only on 
the shape but not on the absolute dimensions of a sample. 

1. INTRODUCTION 

The discovery of the quantum Hall effect has stimulat- 
ed theoretical and experimental studies of two-dimensional 
(2D) conducting channels in strong magnetic fields. In ad- 
dition to investigations of microscopic properties of 2D 
channels, there have been several studies of the electro-dy- 
namics of ideal Hall conductors (i.e., 2D channels in which 
the number of filled Landau levels is an integer). One can 
include in this group the work on the distribution of the 
current in an ideal Hall cond~ctor ' .~  and at the boundary of 
such a conductor with a metal ~ o n t a c t , ~  and also studies of 
the screening of the charge and eddy currents in 2D chan- 
n e l ~ . ~ , ~  In work of this type it is usual to study an inhomo- 
geneous distribution of the charge in a 2D channel. Such a 
distribution is the source of an electric field and of the asso- 
ciated Hall currents (i.e., of currents perpendicular to the 
electric field). In the case of an ideal Hall conductor the 
ohmic currents (parallel to the field) can be ignored com- 
pared with the Hall currents. We shall consider low-frequen- 
cy electrical properties of bounded superlattices, for exam- 
ple those based on GaAs-AlGaAs, in the approximation 
when a superlattice can be approximated by a homogeneous 
anisotropic medium. Superlattices consist of alternate layers 
of semiconductors of two types and conducting 2D channels 
appear at the interfaces between them. The electrical con- 
ductivity of a single 2D channel in a magnetic field is de- 
scribed by the tensor 

In Eq. ( 1)  we are using a system of Cartesian coordinates 
with the x and y axes lying in the plane of a 2D layer; the z 
axis is perpendicular to this layer. An external static magnet- 
ic field is directed along thez axis. When the magnetic field is 
sufficiently strong, we find that Cxx <Zx,, whereas under the 
conditions of the quantum Hall effect when carriers in a 2D 
channel fill an integer (n)  number of Landau levels, we find 
that if,, = 0 and ox,, = e2n/h. 

The low-frequency oscillations are of interest because 
when the frequencies of these oscillations are sufficiently 
low, we find that 2D channels can retain their unique prop- 
erties which are demonstrated under dc conditions. There- 
fore, we can expect to observe oscillatory processes under 

the conditions of the quantum Hall effect. In view of this, we 
shall study low-frequency (w <w, ) oscillations which can 
appear in media with zero diagonal components of the elec- 
trical conductivity tensor, i.e., oscillations of the Hall cur- 
rent. We shall show that if the delay effects are ignored, such 
oscillations can appear only in the presence of an inhomoge- 
neity in the system. In particular, the boundaries of a sample 
can act as such an inhomogeneity. We are therefore facing 
the problem of natural oscillations in bounded quantum su- 
perlattices. 

It is formally simpler to discuss a superlattice than a 
bounded single 2D layer if the superlattice can be modeled 
by a continuous anisotropic medium. The natural oscilla- 
tions in bounded superlattices discussed below are closely 
related to surface magnetoplasmons, which seems to be nat- 
ural in view of the important role played by boundaries in the 
oscillation mechanism. Natural oscillations of the Hall cur- 
rent in a superlattice will be shown to be formally very simi- 
lar to oscillations of the magnetization in bounded ferromag- 
nets (Walker modess ). The similarity between oscillations 
of the Hall current and the Walker modes is due to the sym- 
metry of the Maxwell equations when a magnetic field is 
replaced with an electric one, and also due to the circum- 
stance that oscillations of the magnetization in the Walker 
modes, like oscillations of the Hall current are two-dimen- 
sional, i.e., the corresponding modes depend on coordinates 
in planes perpendicular to a static magnetic field. We shall 
show that the distribution of the electric field in oscillations 
in superlattices is simply identical in form with the distribu- 
tion of the magnetic field in the corresponding Walker 
modes. We can therefore say that oscillations in a superlat- 
tice are an "electric" analog of magnetostatic oscillations in 
ferromagnets. We shall stress the similarity by referring to 
oscillations of the Hall current in a superlattice as electro- 
static oscillations. 

We shall now formulate the main assumptions used in 
the present study. 

1. The distanced between the 2D channels in a superlat- 
tice is much less than the characteristic dimensions of a 
change in the field (and, in particular, the dimensions of a 
sample). In this case we can describe electrical properties of 
a superlattice by means of the average values of the electrical 
conductivity (8 )  and permittivity (2.) tensors: 

â  = i = e, - 4ni &lo. (2) 
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Here, E~ is the average permittivity of the semiconductors 
composing the superlattice; w is the frequency of the field; 
the time dependence is selected to be exp(iwt). Therefore, a 
superlattice can be modeled by an anisotropic (a,, = 0) ho- 
mogeneous medium. 

2. We shall also assume that uxx = 0. We shall show 
that this assumption does not distort the results significantly 
if ax, is much smaller than the frequencies of natural oscilla- 
tions of a superlattice found below. Since these natural fre- 
quencies are often of the order of ax, (axy = d ' CXy ), we 
then find that ax, 4aXy.  Clearly, the values of the external 
magnetic field most favorable for satisfying this condition 
correspond to the filling of an integral number of the Landau 
levels in the 2D channels of the superlattice. 

3. We shall consider sufficiently low frequencies (in 
particular, we shall assume that w (o, = eH /m*c), so that 
we can ignore the frequency dependence of axy . 

4. We shall employ a quasistationary approximation, 
i.e., we shall ignore the delay effects. This approximation is 
known to be valid if the frequency is sufficiently low. It im- 
plies that we can ignore the vortex electric field (E, ) com- 
pared with the potential field (E).  If the characteristic di- 
mension in the change of the field in an oscillation is a, it 
follows from the Maxwell equations that 

Hence, we find that 

where A = 2rrcc; 1'20-1 is the electromagnetic wavelength 
in a medium with a permittivity c0 . 

We shall show below that in cases of practical interest 
the quantity a should be regarded as of the order of the size of 
a sample. If the right-hand side of Eq. ( 3 )  is much less than 
unity, then the quasistationary approximation is valid. We 
shall derive formulas relating the oscillation frequency w to 
the value of ax, and thus use Eq. (3) to determine (set the 
upper limit to) the permissible values of a,,. 

We shall first consider qualitatively the mechanism of 
the appearance of electrostatic oscillations. First of all, we 
note that in the quasistationary approximation and when the 
condition ax, = 0 is met an electric charge cannot accumu- 
late (or change) within the superlattice. The quasistationary 
approximation means that the electric field in the superlat- 
tice can be represented by E = V$ and the equation of con- 
tinuity 

dp/at+ div j=O 

yields 

However, at the boundary of the superlattice an electric 
charge may accumulate and this circumstance is decisive for 
the appearance of low-frequency oscillations (W (w, ) in 
bounded superlattices. We shall assume that on the surface 
of a sample there is a certain charge distribution (and the 
total charge of each 2D layer is zero). The surface charge 
creates an electric field inside the sample and this induces a 
Hall current (we are ignoring the ohmic current). The Hall 
current carries charges to the surface of the sample and thus 

alters the initial distribution of the surface charge. 
There is a set of distributions of the surface charge (this 

will be shown later) for which this change simply reduces to 
rotation about the direction of a static external magnetic 
field. In other words, the surface charge induces the Hall 
current which seems to rotate the initial charge and, there- 
fore, the electric field in the sample. The rotated field rotates 
the Hall current, and so on. This allows us to estimate the 
frequency of such oscillations. We shall assume that the 
sample is spherical (with a diameter a )  and it consists of a 
superlattice. On one part of the surface of the sample there is 
a charge + q and on the other the charge is - q. Since in the 
quasistationary approximation the field E is determined en- 
tirely by the electric charge, it follows that E a q/a2~,. The 
density of the Hall current is ja uxyE a crXyq/a2co and the 
total Hall current is of the order of I  a ja2  a ~U,~ /E , .  We 
shall find the oscillation period from the condition ITa  q 
which gives the period Tac,aXy -' and the oscillation fre- 

- 1 quenc y o a  uxy co . 

2. QUANTITATIVE ANALYSIS 

In the quasistationary approximation the Maxwell 
equations reduce to 

curl E=O or E=VQ, 
div D=O, 

where 

and b is defined by Eqs. ( 1 ) and (2).  Adopting the Cartesian 
coordinates (we recall that thex andy axes are parallel to the 
2D layers and thez axis is perpendicular to these layers), we 
obtain 

In Eqs. (7) and (8)  the quantities $"' and $"' represent 
the values of the function $ inside and outside the sample, 
respectively. Equations (4) and (5) yield the boundary con- 
ditions of continuity of the potential function $ and of the 
normal (to the surface) component of the electric induction 
vector D: 

$01 8 = $ ( e )  1 s, (9) 

Here, no is a unit vector along the normal to the surface of 
the sample. As already mentioned, we shall use the approxi- 
mation cr,. = 0. It follows from Eq. (7 )  that this is permissi- 
ble if 

The real part of a,, describes the damping, whereas the 
imaginary contributes to the frequency of electrostatic oscil- 
lations. Since eo - 10 for superlattices of the GaAs-AlGaAs 
type, Eq. ( 11) indicates that we can ignore the damping if 
Re a,, (w. This is one of the principal approximations we 
shall make in this study. It  should be pointed out that oscilla- 
tions of this nature have been observed experimentally in a 
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single 2D channel of a GaAs-AlGaAs heterostructure in the 
frequency range 10' -lo9 Hz (Ref. 6). This supports the 
hypothesis that weakly damped low-frequency oscillations 
exist in a superlattice. We can estimate the correction to the 
frequency of electrostatic oscillations associated with the 
imaginary part of (T,, on the basis of the Drude model. In 
this model we find that if w ( a , ,  then 

We can see that the correction to the frequency of electro- 
static oscillations Im a,, can be ignored if 

This condition is easily satisfied. For example, if the distance 
between the 2D layers in a superlattice is d = 1 p, the density 
of electrons in a layer is E - 10'' cm - ' , the effective mass is 
m * 5 0.06m0, and the applied magnetic field is B - 10 T, we 
find that E; 'w;w, '=: 1. If a,, = 0, Eq. (7)  for Wi' , 
known in the theory of magnetism as the Walker equation,' 
reduces to the Laplace equation 

We therefore have to solve Eqs. (8)  and ( 12) subject to the 
boundary conditions of Eqs. (9) and ( lo).  

We shall first consider a spherical sample of radius R. 
We shall introduce spherical coordinates r, 8, and p: 

x=r sin 0 cos cp, y=r sin 0 sin cp, z=r cos 0. 

We can easily show that the boundary condition of Eq. ( 10) 
is of the following form in terms of these spherical coordi- 
nates: 

These solutions of Eqs. (8) and ( 12), which are finite every- 
where and satisfy the boundary condition (9),  can be written 
in the form7 

$ , ! , ~ = R - ~ " - ' ~ ~ P , ~  (cos 0) eimlP, (4) 

$ ~ : ~ = r - n - ' ~ n m  (cos 0) efq, (15) 

where P: are the associated Legendre polynomials of the 
first kind. Substituting the solutions (14) and (15) into the 
boundary condition ( 13 1, we obtain the dispersion equation 
for the frequencies of natural oscillations of a sphere: 

The case of electrostatic oscillations with m  = n = 1 was 
discussed in Ref. 8 by a different method. In the present case 
the numbers n and m  are integers such that 0 < m a .  The 
solution with m  = 0 should be considered separately, be- 
cause Eq. (2) loses its physical meaning form = 0. An anal- 
ysis shows that this solution describes a situation when con- 
stant annular currents flow in a sample, but the total charge 
on the boundary of a single layer is no longer zero (although 
the total charge on the surface of a sample is still zero). Since 
in a superlattice the charge cannot leak from one 2D layer to 
another, the solution with m  = 0 should be rejected. We can 
therefore see that a spherical sample can support natural 
electrostatic oscillations and that their frequency is indepen- 
dent of the size of the sample. 

Since the electric field of electrostatic oscillations exists 
also outside a sample (the sample is then called an "open" 
resonator), the ambient medium may affect the resonance 
frequencies. We shall consider the case which is simple to 
tackle by calculation when a spherical sample is surrounded 
by a concentric metal sphere of radius R , . Then, the solu- 
tions of Eqs. (8)  and ( 12), which are finite inside the metal 
sphere, can be written in the form 

- + , ! f l , = ~ r ~ P , ~  (cos 0) eimm, (17) 

We shall regard the metal sphere as perfectly conducting. 
Then the following boundary condition is obeyed: 

The boundary condition of Eq. (8)  reduces to 

The conditions ( 19) and (20) allow us to determine the con- 
stants C and A in Eqs. ( 17) and ( 18). Substituting then Eqs. 
( 17) and ( 18) into the boundary condition ( lo), we obtain 
the following expression for the frequencies of natural oscil- 
lations of the system under discussion: 

where x = (R /R + . It follows from Eq. (2 1 ) that 
on,, - 0 if R , - R. Therefore, a metal sphere can reduce con- 
siderably the natural frequencies of electrostatic oscilla- 
tions. The reduction in w,,, occurs because charges appear 
on the metal surface and the sign of these is opposite to the 
sign on the nearby surface of the sample (superlattice). This 
reduces the electric field and the Hall currents in the sample 
and, consequently, lowers the natural frequency. Clearly, 
this conclusion applies to samples of any shape. 

We shall now consider samples in the form of an ellip- 
soid of revolution (spheroid). The equation for a spheroid in 
Cartesian coordinates is 

Here, a and b are the semiaxes of the spheroid, where b is the 
rotation axis directed along the magnetic field. We shall in- 
troduce spheroidal coordinates (, 7, and p (Fig. 1 ) : 

FIG. 1 .  System of coordinates of a oblate spheroid (showing transverse 
section). The coordinate surfaces are: oblate spheroids, { = const; 2 )  un- 
iaxial hyperboloids, { = const; 3 )  half-planes q = const, passing through 
the z axis. 
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In these formulas we have c2 = a2 - b * . We shall now as- 
sume that a > b, i.e., we shall consider an oblate (flattened) 
spheroid. The surface of a sample is described by the follow- 
ing equation in terms of the spheroidal coordinates: 

It is known from Ref. 7 that the solutions of the Laplace 
equations (8) and ( 12), finite everywhere and satisfying the 
boundary condition (9), can be written in the form 

Q.':;=Q~~ (it)  Pnm (q) einlv, (25) 

where Q are the associated Legendre polynomials of the 
second kind. We shall now write down the boundary condi- 
tion ( 10) in spheroidal coordinates. We shall consider sepa- 
rately the term n,BV$(", which stands on the right-hand 
side of the condition ( 10). We shall expand the electric field 
at the boundary of the sample into the components along the 
coordinate lines {, 7, and e, (Fig. 1 ) : 

V$(i)=E:O +E,(i)+EE(i'. 

If a,., = 0, we can readily see that the Hall currents due to 
the components E:' and EY flow along the surface and, 
moreover, 

( 3 )  ( i )  
n,6E, =n,6Et =O. 

It now remains to consider the expression n,BEg'. We have 

no&;) - - jz (i) cos (n,x,) ' + j:) cos (noyo). 

Here, x, and y, are unit vectors directed along the indicated 
Cartesian axes; j:' and j:' are the components of the Hall 
current created by the field Eg': 

( 5 )  (0 ( 3 )  ( i i  
j x  =-oxvEq coscp, lv  =osvE, sincp. 

The direction cosines of the normal to the boundary of a 
sample (no is directed along the coordinate line 6) can be 
obtained from the system (23) : 

1 - 92 q2 -I12 ( I  - q2)'Jz 
cos (n,x,) = [ T + F )  a cos v, 

/ 1 - q2 q2 -'I* ( I  - q2,11z 
(29) 

cos (no).,) = (7 + F )  a sin cp. 

Substituting Eqs. (28) and (29) into Eq. (27), we find that 

In the case of E ', we have 

Here, h,  is the corresponding Lam6 coefficient. 
At the boundary of a sample we have 6 = 6, = b / c  and 

Using Eqs. (30) and (32), we obtain the boundary condition 
( 10) in the form 

Substituting into Eq. (33) the solutions (25) and (26) we 
get the dispersion equation for natural frequencies of a 
spheroid: 

Pnm' (ito) Qnm' (ito) 
P m  ( i )  Qnm(ito) 

(34) 

where 

We shall consider the natural frequencies w,,, of some of the 
simplest oscillation modes in the case of a strongly oblate 
(b<a)  ellipsoid of revolution. The expressions for the Le- 
gendre polynomials in the case of low values of the argument 
reduce to 

Pii( ix) =1+0 (x2), Qli (ix) =2~- ' /~n+O(x~) ,  

PZi(ix) =3ix+O(x3), QZi(ix) =2i-3/2nix+0(x2), 

PZ2(ix) =3+0 (x2), QZ2(ix) =3/2ni-8ix+0(x2), 

P,'(ix) =-3/2+0(x2), Q3'(ix) =3/ln-8x+0 (x2), 

PS2(ix) = 15ix+O(x3), QQ2(ix) =8-i5/2nx+0 (x2). 

Using these formulas, we find from Eqs. (34) and (35) that 

In these expressions we retain the terms with the lowest pow- 
er of the parameter b /a. 

We shall now consider the expressions for the potential 
function q,,, . In the case of we have 

Using the transformation of Eq. (23), we obtain 

Similarly, in the case of A,, we have 

and we can generally show that 

If m = n - 1, then 

In the remaining cases the expressions for $,,, are more 
complex. For example, we have 

In contrast to the expressions in the system (36), Eqs. (37)- 
(42) are valid for any (and not just small) values of b /a.  In 
particular, they are valid for a spherical sample. The struc- 
ture of Eqs. (38)-(42) shows that in a coordinate system 
rotating about the axisz in the counterclockwise direction at 
an angular frequency d m ,  the function $,, is independent 
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of time. The functions $,, and $,,, - are identical with the 
functions of the magnetic potentials $,,,, and $,,, - , ,  ob- 
tained by Walker.5 The expressions for the other functions 
$,,, also show a strong formal similarity to the functions of 
the magnetic p~ten t ia l .~  It therefore follows that a superlat- 
tice may exhibit oscillations in which the electric field is dis- 
tributed exactly in the same way as the magnetic field in the 
corresponding magnetostatic oscillations. 

The expressions for the natural frequencies given by Eq. 
(36) for the case of a strongly flattened spheroid are similar 
to the corresponding expressions for the Walker modes. It is 
the frequencies of different (even or odd relative to the coor- 
dinate z)  oscillations that approach in a different way the 
limiting value (zero in the case of electrostatic oscillations 
and a finite value in the magnetic case) as b /a approaches 
zero. For example, w,,, - b /a, whereas w,,, - , - (b /a) '. 
This result is important in the experiments because it pro- 
vides a technique for determining very low natural frequen- 
cies of electrostatic oscillations. Obviously, we need to use a 
sample with a sufficiently small ratio b /a and excite oscilla- 
tions which are odd relative to the coordinate z. The reason 
why oscillations with m = n and m = n - 1 behave differ- 
ently on approach of b /a to zero can be demonstrated by 
considering oscillations with m = n = 1 and m = 1, n = 2. 
In the former cases the oscillations of the field in all the 2D 
layers of the investigated spheroid are in phase, whereas in 
the latter case the oscillations in the 2D layers with z > 0 are 
shifted in phase by 180" relative to the oscillations in layers 
characterized by z < 0. In other words, parts of the spheroid 
surface with the same coordinates x and y and with identical 
magnitudes but different signs of the coordinate z carry op- 
posite charges. Therefore, the electric field inside the spher- 
oid is weaker because of mutual compensation of the charges 
at the boundaries with z > 0 and z < 0. The degree of decom- 
pensation increases on reduction in the ratio b /a. A reduc- 
tion of the internal field results in an additional (by a factor 
ofb /a) reduction in the natural frequency of electromagnet- 
ic oscillations. An analogy with the Walker modes is sup- 
ported also by experimental observations of electrostatic os- 
cillations. The oscillations with m = n = 1 can be excited by 
a homogeneous external alternating electric field. The other 
types of electrostatic oscillations appear in a sample subject- 
ed to an inhomogeneous external field of suitable symmetry. 
In experiments carried out in the microwave range it is desir- 
able to use the methods of Ref. 10 (naturally, replacing mag- 
netic fields in the resonator with electric fields). 

An increase in the indices m and n drives the electric 
field and current associated with electrostatic oscillations 
toward the surface of a sample [this follows from Eqs. (17) 
and (25 1; electrostatic oscillations in this case are of small 
scale compared with the dimensions of an excited sample. 
Since the influence of the shape of a sample on such pertur- 
bations is fairly weak, small-scale excitations can clearly be 
regarded as due to a surface magnetoplasma." Such a de- 
scription has the advantage that it allows us to classify exci- 
tations by means of the quasimomentum. However, large- 
scale excitations are described satisfactorily as electrostatic 
oscillations. 

Clearly, the distinguishing property of electrostatic os- 
cillations [which follows from Eq. ( 16) and (34) 1 is inde- 
pendence of natural frequencies of the absolute dimensions 
of a body when its shape is maintained. This property does 

not allow us to interpret electrostatic oscillations as reson- 
ances which occur when a certain relationship between the 
wavelength of a surface magnetoplasmon and the size of the 
sample is obeyed. From the logic point of view the relation- 
ship between electrostatic oscillations and surface magneto- 
plasmons is analogous to the relationship between the Walk- 
er modes and spin waves.5 

We shall now obtain numerical estimates. A character- 
istic conductivity of a single 2D layer is Cxy - (lo4 
R )  - - lo8 cm/sec. At a distance of d - cm we obtain 
uxy = d -  ' ax, - 10" sec - ' and in the case of a spherical 
sample we find that w,,, - 10'' sec- ' (f,,, - 15 GHz). For 
these values of uxy the quasistationary approximation of Eq. 
(3) limits the size of the sample to a 5 1 mm. Therefore, the 
quasistationary approximation imposes quite stringent con- 
ditions on the value ofuxy and, consequently, on the distance 
between the 2D channels. When this distance is reduced, uxy, 
and a,,, increase and the influence of the delay effects be- 
comes stronger. However, in the case of oscillations which 
are odd relative to z(m = n - 1) the delay effects in a 
strongly flattened spheroid are unimportant even for 
d <  10 - cm. This is due to the low natural frequency of 
such oscillations. If d- 1000 A and Cxy - 10' cm/sec, we 
obtain uxy - lOI3 sec-' and forb /a- lo-' Eq. (36) yields 
mz,, - lo9 s e c  ' - 150 MHz. Equation (3)  imposes the limit 
a <  1 mm on the spheroid diameter. However, oscillations 
with m # n  - 1 clearly will not be observed in such a sample. 

Our calculation shows that electrostatic oscillations are 
possible in any bounded body the conductivity of which is 
described by a tensor of the Eq. ( 1 ) type. A superlattice is an 
actual (and possibly one of the most interesting, because of 
the quantum Hall effect) realization of such a body. Impor- 
tant properties of a superlattice necessary for the observa- 
tion of electrostatic oscillations is the anisotropy (a,, = 0, 
and in fact u,, can be subjected to the same limitations as 
ox, ) and fairly low values of CT,. (obtained because of large 
values ofd).  The latter property is essential in order to satis- 
fy the quasistationary approximation. Oscillations with m 
= n can exist also in media with an arbitrary value of a = ,  

because for these oscillations we have E, = 0. Clearly, elec- 
trostatic oscillations should also be observed in a superlat- 
tice with two types of carrier. 

We investigated natural oscillations of a bounded aniso- 
tropic (u,, = 0)  and gyrotropic (uxy = - uyx 9 ax, = uyy ) 
conducting sphere. A practical realization of such a sphere is 
a quantum superlattice in a strong magnetic field applied at 
right-angles to 2D layers. It is shown above that natural os- 
cillations of the Hall current can occur in such a medium and 
they represent the limiting case of surface magnetoplasma 
oscillations under conditions when the spatial scale of the 
change in the fields and currents is comparable with the di- 
mensions of a sample. A distinguishing feature of these oscil- 
lations, which are called electrostatic, is the fact that their 
natural frequencies depend only on the shape and not on the 
absolute dimensions of a sample. There is a formal analogy 
between electrostatic oscillations in a superlattice and mag- 
netostatic oscillations (Walker modes) in bounded ferro- 
magnets ; the relationship between electrostatic oscillations 
and surface magnetoplasmons is similar to the relationship 
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between the Walker modes and spin waves. 
The author is grateful to D. E. Khmel'nitskiy and V.F. 

Gantmakher for valuable discussions. 

'A. H. MacDonald, T. M. Rice, and W. F. Brinkman, Phys. Rev. B 28, 
3648 (1983). 

'D. J. Thouless, J. Phvs. C 18, 6211 (1985). 
J. B. SO~OIOE, J. P ~ G .  c 18, ~ 9 9 7  (i985). 

4J. B. Sokoloff, Phys. Rev. B 31, 1924 (1985). 
5L. R. Walker, Phys. Rev. 105, 390 (1957). 
'S. A. Govorkov, M. I. Reznikov, A. P. Senichkin, and V. I. Tal'yanskii, 

1041 Sov. Phys. JETP 65 (5), May 1987 

Pis'ma Zh. Eksp. Teor. Fiz. 44, 380 (1986) [JETP Lett. 44, 487 
(1986)l. 

'P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 2 vols., 
McGraw-Hill, New York ( 1953). 
V. I. Tal'vanskii. Pis'rna Zh. Eksp. Teor. Fiz. 43,96 ( 1986) [JETP Lett. 
43, 127 (>986)]. 

9 ~ .  C. Fletcher and R. 0. Bell. J.  ADD^. Phvs. 30,687 (1959). 
IOJ. F. Dillon Jr., Phys. Rev. 112, 59'(1958j. 
"Ji-Wei Wu, P. Hawrylak, G. Eliasson, and J. J. Quinn, Phys. Rev. B 33, 

7091 (1986). 

Translated by A. Tybulewicz 


