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We construct doubly periodic solutions in a one-dimensional exactly integrable discrete Peierls 
transition model. We consider spinless strong-coupling solitons on a background of the 
periodic structure. We find their electrical charge and energy as functions of the total particle 
number density in the system. 

It has been established in papers devoted to quasi-one- 
dimensional conductors (such as MX,, M = Nb, X = Se, S, 
and so on) that in Peierls models with a number p of elec- 
trons per atom an important role in determining the nature 
of the ground state and the excitation spectrum is played by 
particle-like structures such as solitons which have a definite 
charge and spin (see, e.g., Refs. 1-3). To describe the prop- 
erties of Peierls dielectrics, an exactly integrable discrete 
model of a Peierls transition was constructed and solved in 
Ref. 4 this model included as limiting cases all continuum 
models considered earlier (see Refs. 1-3 ). 

We consider in the present paper a discrete, exactly sol 
uble model4 corresponding to a continuum model of a com- 
posite type dielectric.' It was shown in Ref. 2 that the Peierls 
effect in such systems may lead to the occurrence of a strong 
self-trapping; the most interesting manifestation of such sys- 
tems may be the existence of bipolarons (spinless charged 
solitons). We analyze here, in the framework of an exactly 
soluble discrete model, the conditions for the existence of 
spinless charged solitons and their physical characteristics. 

As in Ref. 4, we consider a one-dimensional chain of N 
atoms positioned at points x, . We assume N, <2N electrons 
per atom. The energy of the system consists of the energy of 
the electrons ZEi in the self-consistent field of the atoms and 
the potential energy U(x, ) of the atoms: 

We neglect the kinetic energy of the atoms (their mass 
M+ co ). The electron spectrum is determined by the strong 
coupling Hamiltonian (i.e., by a discrete Schrodinger equa- 
tion) : 

where n = 0, 1, ... numbers the Natoms, with periodic bound- 
ary conditions Y n + = Y n  The jump integrals 
C, (c, + = C, ) can be expressed in terms of the coordinates 
by the formula c, = exp(x, - x, - , ). It is convenient to 
introduce also the displacement of the nth atom relative to 
its average position nu: x, = nu + u, . The potential energy 
is chosen in the form of a sum of integrals of the Toda lat- 
t i ~ e : ~  

where a is the average distance between the atoms, P the 
pressure, x a real positive constant, and x, a real positive or 
negative constant. The properties of the model considered 
depend strongly on the number and the degree of occupation 
p ( 1 < p  < 2) of the electron bands in the metal phase and the 
number q of forbidden bands does not exceed 41 - 2, where I 
is the number of integrals in ( 1 ) . In the general case of arbi- 
trary I a multi-band picture was considered in Ref. 5. It was 
shown there that the state with the maximum possible num- 
ber of bands is unstable, except the two-band state for I = 1 
(model I in Ref. 4). 

Earlier, in Refs. 3,4, 6, the case was studied when only 
one term, x12 is retained in the energy functional ( 1 ). Refs. 3 
and 4 were the first to study completely for such a functional 
all possible spin excitations, assuming that the number of 
electrons with spin down, p/2, differs from the number of 
electrons with spin up, (p/2) + m, and m -0 (m is the spin 
moment). Excitations of the domain-wall or symmetric-po- 
laron (bound state of a single electron and two walls) type 
were obtained in the limit of a half-filled band, 
Ip - 1 I < e - ' I A ,  and of the domain-wall type in the Frohlich 
limit, (p - 1 1 ) e - ''A, where A is the dimensionless electron- 
phonon interaction constant, defined below in (9a). 

In contrast to Refs. 3 and 6 we consider specifically spin 
states in an exactly integrable, discrete Peierls-transition 
model when we retain in the functional of the lattice defor- 
mation energy ( 1 ) the two terms xl, and %,I4. This leads to 
the fact that, in addition to the cases described above, bound 
states of two electrons and two domain walls or simply a 
bound state of two walls without the localization of an extra 
electron are also possible. 

In the present paper we study a stable spectrum with 
four forbidden bands (see Fig. 1 ). The structure of the spec- 
trum is symmetric under the substitution E+ - E. More- 
over, we assume that the electron Fermi levels p ,  and p,  
pass through the forbidden bands of the potential in the fig- 

FIG. 1. 
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ure. When p, p + m < 1 (the electron band is less than half 
full) the bands E > E+,E, > E > El, and E- > E > - E- are 
empty and the band E < - E+ is two-fold occupied. The 
occupation of the band - E, < E < - El may vary depend- 
ing on the position of the levels p,  and p , .  (The case 
1 < p  < 2, 1 < p  + m < 2 differs only by the replacement of 
electrons by holes. ) For the multiplicity of the occupation of 
the states of this band we have 

1 0, -E,>p,>-E+, --Ez>~>--+l 
V =  I, -E->pt>-El ,  - E z > y > - E + ,  

2, --E->pt>-E1, -E->pl>-Ei .  

In contrast to the case x, = 0 (see Ref. 3) when for Y = 0 the 
empty band ( - E,, - El) is shifted and combined with the 
empty band lying above it ( - E-,E-), for Y = 2 the com- 
pletely filled band ( - E,, - El ) is combined while conserv- 
ing its finite width corresponding to the number of particles 
with the completely filled band lying below it 
( - E m ,  - E+ ). In our case, for a definite value of x, # 0, 
the existence of additional bands ( - E,, - El) is possible 
even for Y = 0 or Y = 2. In the limit in which we are interest- 
ed they shrink to localized levels. 

w e  find below the ground state of such a system, the 
electron spectrum, and the lattice deformation. In the limit 
as m -0 we obtain a formula for the deformation of the spin 
excitation against the background of the periodic super- 
structure. We evaluate the electrical charge of the soliton 
and find the connection between the phase shift of the defor- 
mation at the soliton and the magnitude of the electrical 
charge. We use the mathematical formalism and some re- 
sults from Ref. 4. 

We use the spectrum symmetry by virtue of which the 
square of the wave function '4: depends solely on E = A. 
We introduce the notation 

The function '4: is completely determined once we specify 
the points A1A2A3A+A-,~1,~2, where 
A2>yl>A+A->y2>A3. The boundaries of the bands deter- 
mine the hyperelliptic Riemann surface T: 

We use the relations 

i d ~ = ~ / ~ ( h ~ +  r,h+r,) [ L R  ( A )  ] -'"a, ( 2 )  

where the coefficients rl and r, are found from the conditions 
k. AS 

to introduce the quasi-momentum. By analogy with Ref. 4 
we get self-consistency equations determining the boundary 
points A, : 

k f l  

We consider now the case of low spin density m - 0. The 
band (A + ,A - ) then shrinks to a localized level A, which is 
determined from the self-consistency condition (3 ) : 

Ao(cp, r)  = ~ / 2 - ~ 2  [ (hi-ha) (hz-ha) (ho-ha)] l h ,  

cp=arcsin [ (ho-ha) / (Az-ha)] I h ,  r= [ (Al-hz) / (Al-ha)] 

(4) 

We have introduced here Heuman's A, function.' Using the 
definition of A,(p,r) we note easily that for Y = 0 Eq. (4) 
has a solution different from A, only when x, < 0. And, on 
the other hand, for Y = 2 there is a solution (&#A,) only 
when x, > 0. In the case Y = 1 there are solutions for both 
signs of the constant x,. 

In order to consider the properties of a single soliton we 
must calculate the quantities x, and c, up to terms of first 
order in the density m. As the whole calculation is a repeat of 
the corresponding calculations of Ref. 6 in which the case 
Y = 1 was considered, we only give the final results: 

cn2=C28 (n-no+2)fj (n-no-1) / B  (n-no) B (n-no+l) . (5)  

Here 

0 (1-no) =e3[ P 2 (l-n.) + - " I  2 g I ecUt  

R(A) = (A - A l ) ( A  --A,)(A -A,), and B(v lg )  is Jacobi's 
theta function. It follows from Eq. (5)  that the change in the 
phase of the deformation c: on an isolated polaron equals 

We find the electrical charge of the polaron from the formula 

q= lim e(p,-pnm)/m, 
m-0 

where p," is the asymptotic single-periodic solution in the 
presence of a single soliton (p: = p i  " ) . Carrying out cal- 
culations analogous to those performed in Ref. 6 we finally 
have 
q(''=2e{F(@, k)/K(k)-~/2)--2e{I-v/2-F(~, k ) / K ( k ) : ,  

where 

Comparing Eqs. (6)  and (7 )  we see that the soliton charge is 
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connected with the phase change of the function c i  through 
the relation 

qCv)= (eln) (cp-nv) . (8) 

We consider to begin with the formulae obtained in the 
Frohlich limit Ip - 11 )exp( - l/A). In that limit the ex- 
pressions for Al,A2,A3 (which depend on x,) found in the 
same way as in Ref. 4 are equal to 

We have introduced here A,,, -the dimensionless electron- 
phonon interaction constant: 

We use (9) and Eq. (4)  which we managed to solve 
only approximately, to determine the local level. We restrict 
ourselves to the case where when the interaction is switched 
on (x,#O) the local level is shifted relative to the case 
x, = 0 by an amount SA which is much less than the total 
bandwidth,i.e.,SA /(A, - A 3 )  ( 1. Whenv = 1, the presence 
of x,#O leads only to an unimportant correction as com- 
pared to the results of Ref. 6. We give therefore only the 
expressions for the electrical charge and for the polaron en- 
ergy: 

L 
E,  = - A ( l a ) ,  Ao= (hZ-h3)'", 

3t 

As the expression for v = 0 and v = 2 are similar in struc- 
ture, we give for simplicity only the formulae for the charge, 
deformation, and soliton energy for the case v = 2. One can 
determine the phase from its connection (8 )  with the charge: 

In the general case the magnitude of the phase can take any 
value. In the Frohlich limit q, - n- for x = 1 and q, - 2 r  for 
Y = 2. It follows from Eqs. ( 10) and ( 1 1 ) for the electrical 
charge that it is localized in a finite region with a characteris- 
tic dimension 6 and q'"-0, q'2'-0, i.e., there is almost com- 
plete screening of the charge introduced in the system. 

We note that in order that there exist a local level inside 
the band (A2,A3) the constant x, must take the values 

n 
X~>A: ; /&~  cos' (T 1 p-1 I ) , 

We now consider the limit of a half-filled band 
Ip - 1 I 4 e - 'IA. For the boundaries of the bands of the spec- 
trum we have in this case 

h1=4F2, h2=64Eze-2", hs/hz=16 exp (-8e-';'/l p-1 1 ), 
(13) 

where 

The charge and the energy for the case v = 1 are equal to 

where E, and E, are, respectively, the soliton and polaron 
energies. The plus or minus signs in these expressions are 
connected with the aforementioned leeway in the choice of 
the sign of x,. In the limit x, = 0 the quantities ( 14) are the 
smae as the results of Ref. 6. 

In the case v = 2 we have for the charge and energy of 
the soliton and the bipolaron 

For n = 2 the expression for the deformation equals 

n-n -1 

I - t h y t h ( - f - ) t h f ]  - I t h l ) ,  
E E E E 

where 
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1 1 j~ Aha '' - n Ahz '" ----(--) 6 4 12-hs , thy"-(-) 4 hz-hs . 

In the general case the periodic structure A, describes a lat- 
tice of bipolaron kind of spinless solitons with charge q"'. 

In the weak coupling limit and under the condition 
Ip - 1 I (exp ( - 1//2 ) (limit of rare domain walls) the 
phase p - 2~ when v = 1 and p - 4 ~  when v = 2. We find 
the magnitudes of the electrical charge of the polaron q( l ) -+e  
(see ( 14) ) and of the spinless bipolaron q"'-+ - 2e (see 
( 15) ). It follows from ( 14) that the charge of the polaron 
differs only a little from that of a single electron i.e., the 
charge introduced in the system hardly interacts with the 
charge wave density. The evaluation of discrete 
shows that for x, = 0 only the formation of polarons is possi- 
ble. In the present paper we show that for sufficiently large 
x, (see ( 12) ) a bipolaron state is possible which in that case, 
as follows from ( 15 ) is the most favorable. 

In conclusion the author expresses his deep gratitude to 
I. E. Dzyaloshinskiy for posing the problem and constant 
attention to his work and to S. I. Matveenko for useful dis- 
cussions. 

'S. A. Brazovskii and N. N. Kirova, Pis'ma Zh. Eksp. Teor. Fiz. 33, 6 
(1981) [JETP Lett. 33,4 (1981)l. 

'S. A. Brazovskii, S. I. Matveenko, and N. N. Kirova, Zh. Eksp. Teor. Fiz. 
86,743 ( 1984) [Sov. Phys. JETP 59,434 ( 1984) 1. 

3S. A. Brazovskii, I. E. Dzyaloshinskii, and N. N. Kirova, Zh. Eksp. Teor. 
Fiz. 81,2279 ( 1981) [Sov. Phys. JETP 54, 1209 (1981)l. 

4S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, Zh. Eksp. 
Teor. Fiz. 83, 389 ( 1982) [Sov. Phys. JETP 56,212 ( 1982) 1. 

'1. E. Dzyaloshinskii and I. M. Krichever, Zh. Eksp. Teor. Fiz. 85, 1771 
(1983) [Sov. Phys. JETP 58, 1031 (1983)l. 

'S. I. Matveenko, Zh. Eksp. Teor. Fiz. 87, 1784 ( 1984) [Sov. Phys. JETP 
60, 1026 (1984)l. 

'A. Erdtlyi (ed.) Higher Transcendental Functions (California Institute 
of Technology H. Bateman MS Project) McGraw-Hill, New York, Vol. 
3, 1955, Ch. 13. 

Translated by D.ter Haar 

1024 Sov. Phys. JETP 65 (5). May 1987 J. Hronek 1024 


