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We predict a new effect of an anomalous temperature dependence of the magnon spectrum of 
ferromagnetic metals with collectivized electrons. This effect is caused by the influence of the 
dynamics of the crystal lattice on the properties of the spin fluctuations and by the anisotropy 
of the electron and magnon spectra, and manifests itself in differences in the magnon rigidity 
coefficient in various frequency and temperature ranges. The anomalous frequency and 
temperature dependence of the magnon-spectrum rigidity reveals the cause of the difference 
between the results of experimental studies of the magnon spectrum obtained from magnetic 
measurements and from inelastic neutron scattering. 

1. INTRODUCTION Ak Ak 
A phenomenological approach to the theory of con- ( ~ , P + I P ( ~ )  I ~ ~ , P - ~ )  

ducting magnetics with collectivized electrons leads to the 
following temperature dependence of the magnon spectrum = ( 2 ~ ) '  6 (k) 6,,.n0(p) + 6p0"' (p, k) , 
at low temperatures:'-3 

o (k, T) =w (k, 0) [ 1-AT2't-BTs'2+CT4]. 

The term a T is determined here by the Fermi excitations of 
the electrons, and the terms with T ' ' ~  and T4 are caused, 
respectively, by spin fluctuations and by the interaction 
between the magnons and the lattice vibrations. The theory 
of the calculation of the coefficients A, B, C using various 
models and approximations has been discussed in a number 
of papers (see Ref. 4 and the citations there). It is important 
that in such a theory the temperature dependence ( 1.1 ) with 
constant coefficients A, B, C occurs in the entire low-tem- 
perature range x T <  fiw,,, (&I,,, is the maximum magnon 
energy and x the Boltzmann constant). 

The present paper is devoted to a new effect of an anom- 
alous temperature dependence of the magnon spectrum of 
ferromagnetic metals, which manifests itself in an anoma- 
lous change of the coefficient B at temperatures and magnon 
frequencies which are determined by the dynamics of the 
crystal lattice and of the electron fluid in the metals. It is 
caused by the dynamical screening by the lattice of the long- 
range Coulomb interaction between the electrons and also 
by the effect of an anisotropic momentum dependence of the 
electron energy and an anisotropic wave vector dependence 
of the magnon frequency. In this case an estimate of the 
widths of the temperature range AT and of the frequency 
range Aw in which the coefficient B changes gives 
AT- h,,, / x  and Ao -a,, . 

Following Ref. 4 we use the following representation of 
the density matrix: 

and of the matrix elements of the energy operator 

= (2n)' 6 (k) 6,,reu(p) + 6~"" '  (p, k), (1.3) 

where nU(p) = n, [ ~ " ( p )  1 =n(p)  + us(p) is the equilibri- 
um Fermi distribution function which depends on the ener- 
gy ~ ~ ( p )  = E (p)  - d f 2 d 2  of quasi-particles with momen- 
tum p and spin component o = + 1 and which neglects 
fluctuations, k = (o,k).  The energy of the spin splitting 

is here determined by the spontaneous spin density S, where 
Y is the exchange interaction constant, dr = d~/(2?rfi)~. 

For the matrix elements of the nonequilibrium self-con- 
sistent electron potential (p,k) we use the following 
model functional dependence: 

6euu'(k) =26,,1@(k)6n(k)+2(a)..,Y (k)6s(k) 
+i6,,,N~[4nZe"+A(k) ] (ku(k) ) , 

(1.5) 
6,v~n (k) + (i) ,, 6s (k) = j dt 8pm1 (p, k). 

where 6 is the Pauli matrix, 4 (k)  = 4.rre2/kz + p(k ) ,  u(k)  
is the Fourier component of the displacement of the crystal 
ions. Z and Ni are their charge and density. The first and 
second terms on the right-hand side of (1.5) describe the 
way the electron energy depends on their non-equilibrium 
distributions. The last term is caused by the interaction 
between the electrons and the longitudinal lattice vibrations; 
we confine ourselves to them for the sake of simplicity. The 
functions Y (k) ,  p (k )  characterize the short-range electron- 
electron interaction, and A (k)  characterizes the deforma- 
tion interaction between the particles and the crystal lattice. 
We shall in what follows use in the long-wavelength approxi- 
mation 

of the quasi-particles: Y (k) = Y +klk,Y//2+kik,k,k,~ ::,,,/24, ( 1.6) 
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where Y = Y (O), and the ki are components of the wave 
vector. 

Bearing in mind that u(k)  satisfies the equation of mo- 
tion for the longitudinal lattice vibrations 

and using that equation to eliminate u(k)  we write Eq. ( 1.5) 
in the form 

The function 

which appears here characterizes the dynamic electron-elec- 
tron interaction and, in particular, describes the effects of 
the dynamic screening of such an interaction by the crystal 
lattice. Here the w:, + c3k2 are the diagonal elements of the 
dynamicmatrix which respond to the lattice vibrations with- 
out taking into account the influence of the electron fluid 
which we shall assume, restricting our consideration to an 
isotropic metal, not to depend on the direction of the wave- 
vector k wLi (4nZ 2Nie2/M) 'I2 and M are the ion plasma 
Langmuir frequency and mass. 

The frequency dependence of the function ( 1.9) due to 
the dynamics of the crystal lattice is the cause of the new 
effect in the temperature dependence of the magnon spec- 
trum considered by us which, as we shall show below, mani- 
fests itself in an anomalous dependence of the coefficient B in 
Eq. ( 1.1 ) on the temperature and the magnon frequency. 

To construct a theory of the temperature dependence of 
the magnon spectrum we restrict ourselves in what follows 
to considering low-frequency and long-wavelength fluctu- 
ations. This will mean that the frequency in our consider- 
ations is small compared to the maximum magnon frequen- 
cy a,,, and the wavevector small compared to the 
maximum wavevector k,,, . Under those conditions the fol- 
lowing quantities can be considered to be small: 

Using these inequalities we can write Eq. ( 1.9) in the follow- 
ing asymptotic form: 

where B(x) = 1 when x > 0 and B(x) = 0 when x < 0. In the 
low-frequency limit o2 < cik2 and under the additional as- 
sumption cik2 < w:, it follows from ( 1. lo) ,  that the long- 
wavelength Coulomb interaction is thus completely 
screened by the crystalline ion lattice which in this limit is 
adiabatically, without any lag, displaced, following the elec- 
trons. In that case 

In the intermediate frequency range ci k < w2 < mii, where, 
according to (1.10), 4, (k)  =: - (4?re2/k2) (a2/& ) there 

occurs a partial screening of the long-range Coulomb inter- 
action of the electrons. Finally, in the high-frequency limit 
w2 > a t i ,  when the lattice is practically undeformed, there is 
no dynamical screening: #,, (k)  =:4ne2/k2. We shall show in 
sections 2 and 3 that this frequency dependence of #,, (k )  
caused by the dynamics of the crystal lattice is the cause of 
the anomalous change in the coefficient B near a tempera- 
ture -fiO/x and the frequency of the intersection of the 
magnon and the sound modes. It is just for the low-frequen- 
cy (cold) magnons with frequencies w (k,O) < ttT / f i  that the 
coefficient B changes steeply with increasing temperature 
near T-fin/% from a value B, to B, + B2 where the quanti- 
ties B, and B2 are of the same order. In the low-temperature 
limit x T < h ( k , O )  a similar change in the coefficient B by 
an amount B2 occurs with an increase of magnon frequency 
near w(k,O) -a. Another reason, established below, for an 
anomalous change in the coefficient B is caused by singulari- 
ties in the effective magnon-electron interaction without 
electron spin flip (Sec. 2). Such singularities lead under con- 
ditions of an anisotropic momentum dependence of the elec- 
tron energy and an anisotropic wavevector dependence of 
the magnon frequency to an anomalous change in the coeffi- 
cient B near a temperature T-h(k,O)/tt which we consid- 
er in Sec. 4 using a simple model for the band structure. 

2. GENERAL FORMULAE DESCRIBING THE MAGNON 
SPECTRUM 

To determine the magnon spectrum with fluctuations 
taken into account we use a nonlinear equation of motion 

for the electron density matrix ( 1.2). Following the dynami- 
cal approach of our Ref. 4 we use ( 1.8) and (2.1 ) to elimi- 
nate the variables Spud ( p,k ) and Scud (k  ) which character- 
ize the fluctuations in the density matrix, the charge and the 
longitudinal component of the spin density, and also u (k)- 
the amplitude of the crystal lattice vibrations. As a result we 
get the following dynamical equation 

D+ (k) 6s' (k) = J (dk') (dkJ') T (k, kt, k") 6si (k-k') 

for the transverse Fourier components of the spin density 
Ss * = 6s" f iW (the z-axis is taken along the spontaneous 
spin density S )  . Here 

is the well known magnon dispersion function, neglecting 
fluctuations, (dk) = dud k/(2n14, 

11""' (k) =2 dr nu' (p, k) 

The kernel T(k, k ', k " ) characterizes the interaction of the 
transverse spin fluctuations and differs from the one given in 
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Ref. 4 through the substitution 4 ( k )  -#,, ( k )  correspond- 
ing to taking into account the effects of the crystal lattice 
dynamics. 

Averaging the dynamic Eq. (2.2) we are led to the mag- 
non dispersion equation 

dk' 
D+ (k) - 5 Ti;;i; T (k, kr) (8si 6s-) ~ 0 ,  (2.5) 

which takes into account the effects of the fluctuations, 
where 

T(k, kl)=[T(k, 0, -k')+T(k, k-k', -kl)] ,=,, k),.,,,(kl,, 

w (k)  is the magnon frequency, if we neglect fluctuations, 

is the phase density of the fluctuations for magnons of wave- 
vector k. 

Thermodynamic considerations4 show that the value 
T(k, 0,-k ') of the kernel T must be taken in the sense of a 
limit 

T (k, 0, -k' ) = lim lim T (k, k", -k'). 
k"+o o' ' -ro 

As we are interested in the fluctuation temperature depen- 
dence of the magnon spectrum, we shall in what follows ne- 
glect in (2.5) the change with temperature of the distribu- 
tion function nu (p) and of the energy E" (p) of the electrons 
which is caused by the Fermi excitations which lead to cor- 
rections a AT2 to the rnagnon frequency. 

For what follows it is necessary to expand the quantities 
D+ (k)  and T(km k') in (2.5) in power series in k and k'. 
Restricting our consideration of the magnon spectrum to the 
quadratic approximation (o(k ,  T) a k2) we retain in the 
expansion of D+ (k )  terms a k2: 

where a.. r /  = a?' Y + abH' is the rnagnon rigidity coefficient, 

v = a ~ ( p ) / d p  is the electron velocity. In the expansion ofthe 
function T(k,k') we retain the terms cc (kek') and k2*k1. 
As a result we get 

The first term on the right-hand side of (2.10) a aVkik; be- 
ing bilinear in k and k' does not contribute to the tempera- 
ture dependence of the rnagnon spectrum. The function 

~ ( k ,  k') = ( t~ ,~ ' ,+ t~ :~)  kikjkl'km'+r(2' (k, k') + T ( ~ '  (k, k') 
+dl' (k, k') +d5' (k, k') (2.11) 

characterizes the fluctuation effects in the magnon spectrum 
where the functions d2' (k,k' ) and ~ ' ~ ' ( k , k ' )  contain #,, 
(k  - k ' )  and take into account the effects of the crystal lat- 
tice dynamics. 

3. EFFECT OF THE CHANGE IN THE T 5 ' 2  LAW IN THE 
ISOTROPIC MODEL 

In this section we demonstrate that qualitative change 
in the magnon-spectrum temperature dependence which is 

determined by the dispersion of the effective electron inter- 
action 4,,(k) caused by the electron-lattice coupling. We 
shall then assume that the electron energy E depends on the 
modulus of p and neglecting the contribution from the ther- 
mal fluctuations the expression for the magnon frequency 
has the form w = ak2, where a = a, + a,, 

(3.1) 
In this case, using the asymptotic expression ( 1.10) we get 
for the terms on the right-hand side of Eq. (2.1 1 ) 

tij:~kikjklrk,~ = k2k'2 { ( a , + ~ ( ) ~  
(I-Y rIn)Qo2 

a2 z'3' (k, kt) =-YII, --. k2kf2 
Qo 

We have used in this case the notation 

where 

m-1(p)=a2E (p)/ap2, c ~ = c ~ ~ - z ~ N ~ ( ~ - ~ ~ ~ ) I M ~  

is the square of the longitudinal sound speed. 
After that we find, in accordance with Eq. (2.6) and 

taking into account the anti-symmetry of the functions d4', 
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d5' under the substitution k ~ k ' ,  in the isotropic case consid- 
ered by us that T ( ~ '  = T ' ~ '  = 0. 

Substituting Eqs. (2.1 l ) ,  (3.2)-(3.5) into Eq. (2.5) we 
get for the magnon spectrum the expression 

o (k, T) =o (k, 0) - 2xT 
(3.9) 

where 

a2' 2a (3d+as-2arr-at) 
T,= (6-~n, )  - + 

Qo2 Qo" 

and the integration over k' is taken up to the value k,,, . The 
magnon frequency w(k,O) is determined here by Eq. (2.5) 
and takes into account fluctuation effects at T = 0 which we 
do not discuss in what follows as we are interested in the 
temperature dependence of the magnon spectrum. 

~ h e i n t e ~ r a l  terms on the right-hand side of (3.9) de- 
scribe the effect of the spin fluctuations on the magnon spec- 
trum. When evaluating the integral which occurs here we 
retain only the main terms corresponding to the term 
cc BT 512 in Eq. ( 1.1 ) . However, the presence of 8-functions 
on the right-hand side of (3.9) indicates that the coefficient 
B in our considerations is a function, firstly, of the magnon 
wavevector k (or frequency) and, secondly, due to the pres- 
ence of 8(kt2-+ k : ) a function of the temperature. Using the 
notation a = c2/a for the frequency where the sound and 
magnon modes intersect we can, using (3.9) write down the 
following asymptotic formula which characterizes the func- 
tional dependence B [w (k)  , TI : 

B=BI if ~ ~ Q B x T ,  fiw (k) 

Here 

where [(x) is Riemann's zeta function. 
We see thus from Eqs. (3.11) and (3.12) that there is an 

anomalous B(w,T) dependence which qualitatively distin- 
guishes the effect of spin fluctuations in the case of a ferro- 
magnetic with mobile electrons from the corresponding ef- 
fect in a Heisenberg ferr~magnet.~ In particular, for 
relatively low-frequency magnons when, w (k )  4 fl, the 
function B(w,T) changes when the temperature increases at 
xT4fifl from a value B, to a value B, + B,. On the other 
hand, in the range of relatively low temperatures, when 
x T  = fiR, Eqs. (3.11 ) describe an anomalous frequency de- 
pendence corresponding for increasing frequency to a 
change in the function B(w,T) from a value B, to a value 
B, + B, for w(k) - a .  

At the same time we must note that according Eq. (3.7) 
under conditions when the ion contribution c, to the sound 
speed c appreciably exceeds the contribution from the mo- 

bile electrons and when the difference between c2 and 4 is 
thus small, the quantity B, turns out to be negligibly small 
which allows us to see it as the condition for a small manifes- 
tation of the anomalous B(w,T) dependence. The limit 
c2 = C; formally corresponds to the theory of the tempera- 
ture dependence of the magnon spectrum4 in which the lat- 
tice dynamics is neglected. 

The way the coefficients B, and B2 depend on the sound 
velocity c allows us also to confirm that the sound-speed 
change connected, for instance, with the invar anomalies 
and with structural phase transitions, may show up in 
changes in the coefficient B of Eq. ( 1.1 ) determining the 
fluctuation temperature dependence of the magnon spec- 
trum. 

We apply the formulae obtained here to the case of a 
weak ferromagnet (2S(ZN, ) in the model with the simplest 
dispersion law for the electron energy ~ ( p )  = p2/2m. Using 
the estimates 

UH 2yii"ppz 
-= = T, 
U B  YA" 

where Y = mpF/r2fi3 is the electron density of states at the 
Fermi surface, E~ = pg/2m is the Fermi energy, we get using 
Eqs. (3.7), (3.10), (3.12) 

Here 

@,,=(,I (k) (~q=k , , ,~~= ( l f  q)  (520148) (hQOleF)2, 

and the quantity k,,, -- n,m/pF is determined by the occur- 
rence of collisionless magnon damping caused by their decay 
into Fermi excitations. 

We emphasize here that the occurrence of anomalies in 
the magnon spectrum caused by the crystal lattice must be 
expected in those metals where the contribution of the itiner- 
ant electrons to the sound speed is not small (c2-ci -c2). 
Invar alloys with an anomalous temperature dependence of 
the elastic moduli belong, for instance, to such metals. 

4. EFFECT OF A CHANGE IN THE T5'2 LAW DUE TO AN 
ANISOTROPIC DISPERSION OF THE ELECTRON ENERGY 

A change in the T~~~ law can, according to our theory, 
also be caused by anisotropic dependences of the electron 
energy on their quasi-momentum and of the magnon fre- 
quency on the wave vector. This effect which is new as com- 
pared to what is expounded in the previous section is, ac- 
cording to Eq. (2.11 ) , caused by the vanishing of the terms 
T '~ '  and T ' ~ '  in the isotropic model. Such terms are non-van- 
ishing when k2 > kf2 and lead to a singularity in the function 
r(k,k') close to k2 = kf2 which is connected with the scatter- 
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ing of magnons by electrons. In other words, this means that 
the anisotropy of the electron and magnon dispersion leads 
to an additional anisotropic contribution to the coefficient B 
which changes suddenly in the vicinity of xT-&(k)  by an 
amount B, ( k )  -B. 

To illustrate this effect we consider the limit of a weak 
ferromagnet with an anisotropic electron dispersion law. We 
use here the simple electron structure model of a metal with 
parabolic bands 

which corresponds to a Fermi surface in the shape of spheres 
connected by cylindrical sections (the unit vectors e, are 
directed along the axes of the cylinders). 

In the model considered the function r ( k , k l )  which de- 
termines the fluctuation temperature dependence of the 
magnon spectrum is given by Eq. (2.1 1 ) where 

(k -k t )  IIn a' 
T ( ~ )  (k ,  k')  = -\ (2 -Yv . )  (kk') 

D(k-k') Qo2 
kkr- (ke,) (k'e,) 

9 

ad. E{[k':l2 (k ,  k') =e (k2-k' 2 )  k2k' 
Po [ : I 2 } ,  

i -@eff  (k-kt)  I I n  aZ 1 
T ' ~ '  (k ,  k ' )  =f3 (k2-kr 2 ,  Yv , -  

D(k-k') QoZ 

Here 

We have assumed here that 

( k ,  k') =0, arjkikj=ak2=(a~+a.) k", 

Yvfi2S20 Y n .  yn, (4 .7 )  
a .  = - , a,=- , dCP-, 

24m.e, Q0m. Qom, 

v ,  = n,/EF and v, = 3 n , / k F  are the electron densities of 
state on the cylindrical and spherical sections of the Fermi 
surface, n, and n, are the number densities of the electrons 
filling the corresponding bands, and the quantities Y and 
fin, are connected through the equation of state (find 
E~ )' = 96( 1 + Y v ) / Y v ,  where vis the total number of elec- 
tron states on the Fermi surface. We have here in Eqs. (4 .2)-  
(4.6) neglected terms a a2/flg which are small compared to 

terms - ( a 2 / f l i  ) ( ~ , / f i f l , ) ~  -ad,, , /f lg.  
One can simplify the expression for the function 7 ( k , k 1 )  

considerably when the electrons of the cylindrical sections of 
the Fermi surface turn out to be "light": m, <m,  and 
n, 2 n,. In that case we arrive, using Eqs. (2.11 ), (4 .2)-  
(4 .6)  and neglecting terms containing t ,T '~ ' ,  T ' ~ ' ,  which 
are smaller than the terms with t and T ' ~ '  by a factor 
n,m,/n,m, $ 1 ,  at the following expression for this function: 

(4 .8)  

Substituting (4 .8 )  into the dispersion Eq. (2 .5 )  we find the 
magnon spectrum in the model considered here of a metal 
with an anisotropic electron dispersion law: 

dk' hak' " 
2xT 

Performing the integration in (4 .9 )  and retaining only the 
main terms - T'" we arrive at the following expression for 
the coefficient: 

B=B+2Bo(k) npH ho ( k )  <xT, 
(4.10) 

B=B+B. ( k )  npE ho ( k )  > K T ,  

where the quantities 

are of the same order of magnitude, ZS,,, = 2 a f l g ~ , / m , .  It 
follows from (4.11 ), (4.12) that in this case the quantity 
B, ( k )  vanishes when averaged over the directions of the 
vector k.  We note that there is no anisotropic part B, ( k )  of 
the coefficient B in the case of cubic symmetry of the ferro- 
magnet, when the anisotropy of the electron energy disper- 
sion is determined by three mutually orthogonal vectors e, . 

On the other hand, under the conditions when the quan- 
tity (4.12) occurs the sudden change in the coefficient 
(4.10) in the quantity B, ( e )  in the vicinity ofw ( k )  - x T / f i  
corresponds to an anomalous temperature dependence of 
the magnon spectrum of ferromagnetic metals with an aniso- 
tropic electron energy dispersion. Comparing the coeffi- 
cients (4.10)-(4.12) with the values (3 .14) ,  (3.15) ob- 
tained in the preceding section for an isotropic metal model 
we find that the presence of "light" electrons corresponding 
to the cylindrical sections of the Fermi surface leads to an 
appreciable increase-by a factor m , / m ,  % 1-in the quanti- 
ty B(k ,T)  in metals with an anisotropic electron dispersion 
law. 

In conclusion we emphasize that the anomaly consid- 
ered by us of the temperature dependence of the magnon 
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spectrum of ferromagnetic metals caused by the effects of the 
dynamics of the crystal lattice and the anisotropies in the 
electron and magnon energies correspond to a difference in 
the magnon rigidity in different temperature and frequency 
ranges. Such a difference allows us, in particular, to see the 
cause of the discrepancy of the results of studies of the mag- 
non spectrum using magnetic measurements6 and using var- 
ious methods of inelastic scattering of thermal neutrons.' 

'W. Marshall, Proc. 8th Internat. Conf. Low Temp. Phys., Butterworth, 
London, 1963, p. 215. 

1018 Sov. Phys. JETP 65 (5), May 1987 

2T. Izuyama and R. Kubo, J. Appl. Phys. 35, 1074 (1964). 
3C. Herring, in Magnetism4 (Ms.  G. T. Rado and H. Suhl), Academic 
Press, New York, p. 407. 
4V. P. Silin and A. Z. Solontsov, Dokl. Akad. Nauk SSSR 263, 580 
(1982); Zh. Eksp. Teor. Fiz. 89, 1443 (1985) [Sov. Phys. Dokl. 27,204 
(1982); Sov. Phys. JETP 62,837 (1985)l. 

'B. G. Baryakhtar, V. N. Krivoruchko, and D. A. Yablovskii, Funktsii 
Grina v teorii magnetizma (Green functions in the theory of magnetism) 
Nauk. Dumka, Kiev, 1984, p. 336. 

6R. Pauthenet, in High Field Magnetism (Ed. M. Date), North Holland, 
Amsterdam, 1983, p.77. 

'P. W. Mitchell and D. McK. Paul, Phys. Rev. B32, 3273 ( 1985). 

Translated by D.ter Haar 

V. P. Silin and A. Z. Solontsov 1018 


