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A theory of fluctuations of the acceptor population is developed. I t  is shown that a 
characteristic relaxation frequency v is governed not only by the width of the acceptor level, 
but also by the acceptor concentration NA . An increase in NA reduces the frequency v and this 
increases the fluctuations of the population in the low-frequency range. This theory is 
generalized to the case of degeneracy of electron states at one impurity. The commutation 
relationships for the electron creation and annihilation operators differ then from the usual 
Fermi operators, because they allow for the fact that not more than one electron can reside at 
an impurity. 

The interaction of carriers with impurities in zero-gap 
semiconductors is a subject of considerable topical inter- 
e ~ t . ' - ~  Impurity levels lie within the continuous part of the 
spectrum so that an electron can always leave a bound state 
without a change in its energy. The probability of such a 
transition increases on increase in the density of the final 
states, i.e., on increase in the effective mass of electrons in the 
relevant energy band. In HgTe-type semiconductors the 
mass of a hole me is much greater than the mass of an elec- 
tron me,  so that acceptor levels are far fewer than donor 
levels. The energy E, of binding a hole to an acceptor divided 
by the width of a level is of the order of (m, /me )3'2 (Refs. 
1 and 4).  The presence of a sharp maximum in the density of 
states of the conduction band electrons at an energy E, gives 
rise to a nonmonotonic temperature dependence of the con- 
ductivity if the Fermi level F, is close to E, (see, for example, 
Ref. 5) .  

The capture of carriers by acceptor levels and the re- 
lease from these levels are random processes, which give rise 
to additional noise in a sample. Relaxation of fluctuations of 
the population of acceptor levels Sn, is governed by the level 
width r and by the rate of exchange of particles between 
states with different energies. If a semiconductor is subjected 
to a dc voltage, then the fluctuations Sn, give rise to fluctu- 
ations of the current. These occur not only because of a 
change in the number of electrons participating in the elec- 
trical conduction process, but also because of a change in the 
number of charged impurities which scatter free carriers. 

DERIVATION OF THE CORRELATION FUNCTION OF 
FLUCTUATIONS OF THE POPULATION OF ELECTRON 
STATES NEAR ENERGIES OF ACCEPTOR LEVELS 

The populations of one-electron states _la) are de- 
scribed by occupation-number operators fa = a, +a,, 
where a,+ and a, are the particle creation and annihilation 
operators. We shall assume that the wave functions la) rep- 
resent electron states in a field of impurities. The density of 
the distri!ution of the particle energies can be expressed ii: 
terms of fa and in terms of the imaginary part of the Green 
function Gaa (E) as follows: 

A h 

where Gaa (E) = ~8 (E - H) ,, , and H is the Hamiltonian of 
an electron in an impurity field. The time dependence of the 

number of particles with a given energy is governed by the 
evolution of the Heisenberg operator A'. We shall assume 
that in addition to a strong interaction of electrons with im- 
purities, there is also a weak electron-phonon interaction 
which we shall allow for (as usual) in the Born approxima- 
tion. The Hamiltonian is of the form 

aa'q 

where b ,f and 6 ,  are the phonon operators. Employing the 
explicit form of Eq. (2), we can readily obtain the following 
expression for the time derivative of A": 

Since we are interested in the time dependence of the popula- 
tion of the acceptor levels, we shall limit our analysis to such 
energies E which are within the level width: le - E, I 5 r. 
The right-hand side of Eq. ( 3 )  governs the electron-phonon 
collision integral and a Langevin source of fluctuations 
jL ( ~ , t ) .  This is of identical form with the right-hand side of 
Eq. (3),  but the equations of motion of the operators a, a +, 
b, and b + occurring in jL ( ~ , t )  are exactly the same as in the 
case of noninteracting particles6 Simple calculations yield 
the following expression for the spectral function of the Lan- 
gevin source correlator: 

where w, and Nq are the energy and number of phonons 
with a momentum q; E, and fa are the energy and number of 
electrons in a state la). Equation (4)  is derived in the semi- 
classical approximation, i.e., on the assumption that 
6 4 g A ,  T, where T is the temperature in energy units. 

We can simplify Eq. (4)  by eliminating the a' depen- 
dence of the expression in the braces. This can be done be- 
cause under equilibrium conditions the function f :, depends 
only on the energy E:. In fact, if we multiply the expression 
in the braces by S(E, - E:, ) and integrate with respect to E ,  , 
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we find that we can replace EL with E ,  in the braces. After 
this transformation and averaging over the impurity config- 
uration, we obtain 

2 
m 

= - 1 V q  1% Id&, Tr  . (G (e )  e i q r ~  (el) e-'qr} 
n2A 

9 -m 

x [ 6  (E - E')  - 6 (el  - E')]  [ ( N q  + 1 )  6 ( E  - - mq) 
+ Np6 ( E  - -t %)I f~ ( 1  - fe,). (5 

The bar above Tr{ . . .I denotes averaging over the impurity 
configuration. Equation (5) is derived using the equilibrium 
relationship 

The electron-phonon collision integral is obtained subject to 
the same approximations as Eq. (5),  by the method of equa- 
tions ofmotion for the operators b +a +a and ba +a. We then 
find 

where Sn' = A' - (A' ). The symbol S in front of the braces 
means that the functions fa and fa,  should be replaced with 
fa + Sf, and fa, + 6fa, and terms in linear in Sf should be 
retained. 

We shall simplify the problem by averaging Eq. (6)  
over a time interval At which is considerably greater than 
fi/T, but smaller than the characteristic relaxation times of 
fluctuations of the acceptor level population. After such 
averaging we find that Sf, ( t )  no longer depends on the in- 
dex a, which determines the coordinate of an impurity at 
which an electron is localized. In fact, in a time At an elec- 
tron can migrate between many impurities since having left 
one impurity it may be captured by another impurity as a 
result of a resonant interaction and so on. Since Sf, = Sf,, it 
follows that 

where 

is the density of the electron states in the conduction band. 
Subject to the above comments, Eq. (6)  becomes 

As in Eq. ( 6 ) ,  we averaged over the impurity configurations. 
The influence of impurities on fluctuations Sf, is due to 

the dependence of the density of states g ( e )  and also of 

Tr{ ...I on the impurity concentration and on the acceptor 
level parameters. If the number of impurities is small, so that 
the wave functions of electrons at neighboring impurities do 
not overlap, we can average over the impurity configurations 
on the assumption that 

and then the kinetics of electrons interacting with phonons 
in the field of acceptor impurities is determined entirely by 
the imaginary part of the one-particle Green function aver- 
aged over the impurity configurations. The approximations 
for the latter are known (see, for example, Ref. 7).  After 
such transformations the problem of fluctuations of the elec- 
tron distribution function reduces to solution of the trans- 
port Eq. (7)  in which the collisional integral and the Lange- 
vin source correlator are renormalized by a strong 
interaction with the acceptor impurities. 

In Eqs. (5)  and (7)  we can go to the limit by consider- 
ing the case when there are no impurities. Then, the eigen- 
function of the one-electron Hamiltonian are Bloch func- 
tions governed by the quasimomentum p and 

Using this expression, we readily find that the relaxation 
term in Eq. (7)  reduces to the usual Boltzmann collision 
integral averaged over the constant-energy surface of elec- 
tron in the conduction band. The correlation function of Eq. 
( 5 ) can be simplified in a similar manner. 

CALCULATION OF FLUCTUATIONS OF THE ACCEPTOR 
POPULATION 

The solution of Eq. (7)  depends strongly on the degree 
of inelasticity of the electron-phonon collisions, i.e., on the 
characteristic values of the energy 0,. We shall now consid- 
er the case when $ T. This inequality means that an elec- 
tron of energy E ( I E  - E, 15 T )  which has emitted or ab- 
sorbed a phonon finds itself far outside the limits of the level 
width. Such electrons are no longer bound to impurities and 
behave as ordinary band electrons. We shall assume the fre- 
quency of resonant scattering to be the largest parameter 
(compared with T/fi and the momentum relaxation fre- 
quency). Then, in a time At the electrons outside the limits 
of a resonance level become thermalized as a result of elec- 
tron-phonon and electron-electron collisions. Their distri- 
bution functions differ then only from the equilibrium func- 
tion solely because of fluctuations of the acceptor population 
and because of the corresponding changes in the number of 
electrons n in the continuous spectrum. 

We therefore have 

where 

and Sn, are the fluctuations of the acceptor populations; the 
energy A is selected in such a way that the interval 2A in- 
cludes all the additional states to pure acceptors (A 2 T) .  
Substituting Sf,, in Eq. (7) ,  we obtain 
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L 

(8)  

where G i  =(pi G(E) (P); 

In the derivation of Eq. (8) we have allowed for the fact that 
the relaxation term on the right-hand side of Eq. (7) vanish- 
es if we assume that Sf, and Sf,,, are equal to Snd,f, and 
sna,f,,, , respectively. 

If we ignore the Langevin source on the right-hand side 
of Eq. (8), the above equation describes the process of relax- 
ation of perturbations of the populations of electron states of 
energy s. 

We shall describe the function G i by the following ap- 
proximation': 

where A = NA I'/rgo(sA ), NA is the number of acceptors, 
and go (E) is the unperturbed density of electron states: 

Since G i is independent of the direction of p, the relaxa- 
tion of Sf, is governed by the average (over the directions of 
p) frequency v, (p), which from now on we shall denote by 
v,(p). If A ' < r s A ,  i.e., NA <3m/2, then Gf; has a sharp 
peak at e = sp and in Eq. ( 8 ) we can sum over p, which gives 

where the value of v, corresponds to the momentum p satis- 
fying the condition sp = s, . It follows from Eq. ( 10) that 
the relaxation frequency v of perturbations of the popula- 
tions of states of energy e is v,go(s)/g(s). If the density of 
the impurity states is considerably greater than go(&) 
[NA 9 r r g o ( s )  1, g( s )  is governed by the concentration of 
impurities using the relationship8 

In this case we have g(e)  )go(&) and the characteristic re- 
laxation frequency of the population of the acceptors de- 
creases on increase in their number. We can clarify the phys- 
ical meaning of this result by representing the relaxation 
frequency in a somewhat different form. We note that the 
imaginary part of the denominator of the Green function of 
Eq. (9) represents decay of an electron state of energy close 
to ep .  In other words, the quantity Im 24 2fi-' 
x (E - sA - i r ) - l ,  which fore = e, is equal to 

represents the frequency of v, of resonance scattering of 
electrons of energy close to e, . We then readily find that the 
frequency v is given by 

We recall that Eq. ( 10) is valid if v, ) v, . In this case the 
relaxation frequency of acceptors is considerably less than 
r/fi. The dependence of v on r ,  v,, and v, described by Eq. 
( 11) is due to the fact, as already pointed out, that electrons 
leaving localized states (at a frequency I'/fi) with a high 
probability (characterized by a frequency v,) are captured 
by other impurities and only a small fraction of them escapes 
beyond the limits of the level width (at a frequency v, ) col- 
liding with phonons or other electrons. 

It readily follows from Eq. ( 10) that the Fourier com- 
ponent Sf, (a) is maximal and is independent of the frequen- 
cy w if w < rv ,  / t f v , .  At higher frequencies (but still lower 
than r/fi) the value of Sf, (w) decreases on increase in the 
frequency as w - '. In the low-frequency range we readily 
obtain 

Using the explicit form of the frequency v, (p) ,  we find that 
the correlation function of Eq. (5)  can be written in the 
simpler form 

Then, in the same approximation as that used in Eq. ( 12) the 
correlation function of fluctuations of the acceptor popula- 
tion becomes 

In the integration with respect to E we assumed that T ,  T 
and took the smoothly varying function outside the integral 
at the maximum of the function g2(s ) .  After integration 
with respect to E, Eq. ( 14 ) becomes 

Using the above expression for the relaxation frequency v, 
we can rewrite Eq. ( 15 ) as follows: 

where 

The Fermi energy F, is determined by the number of un- 
bound electrons n in accordance with the usual expression 
F, a n2I3. In numerical estimates of the quantity ( (Sn, ) 2 ) ,  

we shall bear in mind that the value of the parameter N, is 
limited to the range of validity of our formulas. In particular, 
the peak of the function G is small if N, ( 3rn/2. However, 
we can easily see that even for comparable values of N, and 
3m/2, Eq. ( 15) gives the correct order of magnitude of the 
value of ( (Sn, ) 2), and Eq. ( 16) can be regarded generally 
as exact, although the relaxation frequency differs from the 
value given by Eq. ( 11 ). We find the frequency v for the 
general case if we know the explicit form of v, ( p )  and G ",n 
a wide range of s. It should be pointed out that the approxi- 
mate expression for G(E) for practically all values of e and 
N, can be found in Ref. 9. It follows from Eq. (16) that 
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fluctuations of the acceptor population are small if 
- Fe 1 T. The fluctuations are maximal if the param- 

eters of the system are such that X = 1 and the frequency v is 
low, which is true at high values of N, . At the limit of valid- 
ity of our theory we have N,"""-n. It is important to point 
out that at low temperatures we can expect electrons to leave 
states of energies 1.c - E,  / 5 I' not because of the electron- 
phonon interaction, but because of electron-electron colli- 
sions. Then the frequency v, ( p )  is governed by the linear- 
ized electron-electron collision integral and Eqs. ( 13)-( 16) 
remain valid. 

We shall now consider the case when the characteristic 
phonon energy is low compared with the level width: ( r. 
This inequality is obeyed only in the interaction with acous- 
tic phonons and can be reduced to the following expression: 
sp, 4 r (S is the velocity of sound andp, is the momentum 
of a band electron of energy E ,  ). In this case Eq. ( 7 )  simpli- 
fies greatly after expansion of the relaxation contribution in 
terms of a small parameter w q .  Simple transformations give 

Similar parameters can be used also to describe the correla- 
tion function of Eq. (5 )  : 

1 
<jL ( E ,  t )  jL (E', t ' )  )o = - - deLL (d,+p.) f ,  ( 1 - f , )  6 (E-e') 

n 

It follows from Eq. ( 17) that the process of energy relaxa- 
tion is a form of diffusion. If we assume that the characteris- 
tic parameter of the change Sf, is the temperature T (i.e., if 
in estimates we assume that d ,  - l / T ) ,  we find that L, / 
g ( e )  T 2  can be regarded as a characteristic value of the elec- 
tron energy relaxation frequency. Since we are interested in 
the relaxation frequency of the populations of the acceptor 
levels, the latter will be clearly T / r  times greater than the 
value just given because electrons escape outside the level 
width when their energy changes by a value of the order of I'. 
Adopting the same approximations as before, we obtain 

Then, the coefficient L, is of the order of go(&)vC ',, 
where v ,  has the same meaning as before, i.e., it determines 
the frequency of collisions of band electrons with phonons. 
We then find that the characteristic frequency of the relaxa- 
tion of the acceptor populations is of the order of 

As expected, this frequency is considerably less than in 
the case of a narrow level (the difference is a factor of 
m/ c). The exact solution of Eq. ( 17) is easy and in the 
low-frequency case it becomes 

We can determine the integration constants from the conser- 
vation of the total number of electrons (J  SfEgE d~ = O ) ,  
which is equivalent to the condition Sn = - Sn, , used ear- 
lier, and from the boundary condition ( d ,  + f l ,  )Sf, = 0 in 
the limit E-+  w . Equation ( 19) is derived using also the iden- 
tity 

exp {- J B.. d e l }  = a . f . / a . ~ . - .  
e 

Equations ( 18) and ( 19) yield the following expression for 
the correlation function of the fluctuations of the acceptor 
populations: 

The function fEA ( 1 - f, ) ch [ ( e ,  - F, )/TI depends 
weakly on E , .  If E, = F,, it amounts to 1/4. Comparing at 
this point Eqs. ( 2 0 )  and ( 16),  we can see that the coefficient 
LFs /TNA,  which apart from the factor rr, is equal to 

and plays the role of the relaxation frequency of the acceptor 
populations. This conclusion supports the earlier quantita- 
tive estimates of this quantity. 

The above theory can be applied in the case when the 
state of an electron at an impurity is nondegenerate. How- 
ever as shown in Ref. l ,  the lowest level of a localized elec- 
tron is quadruply degenerate. A strong Coulomb repulsion 
between electrons at the same site can be allowed for auto- 
matically by assuming that the existence of such states is 
forbidden. In other words, we shall assume that not more 
than one electron may be located at one site. This condition 
changes the commutation relationships between the particle 
creation and annihilation operators for one site. If the index 
a denotes the coordinate of an impurity and the number of a 
degenerate state is identified by an index i, then instead of the 
usual Fermi transposition relationships, we now have 

Then, all the above formulas can be generalized to the degen- 
erate case by replacing N, everywhere with 4NA. Moreover, 
the average occupation number of a state ai with an energy E 

differs from that in the case of the Fermi distribution and is 
given by 

e-F, -' 
1: = [1+4 exp (,)I . 

Consequently, in all the above formulas we have to replace f ,  
with f  and the factors 1 - f, with 1 - 4f= = 1 - Zi f 6. 

NUMERICAL ESTIMATES 

We shall now estimate the influence of fluctuations of 
the acceptor populations on the general noise in a semicon- 
ductor. We shall consider the case when the levels are due to 
the presence of mercury vacancies in HgTe. The region of 
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localization of the impurity potential is of the same order as 
the lattice constant. The wave function of the lower level has 
similar typical dimensions. Therefore, the wave functions of 
electrons at the nearby impurities do not overlap and do not 
contribute to the process of conduction in such a semicon- 
ductor. A fluctuation Sn, alters a current (in the presence of 
a given electric field E) flowing in the direction of E and the 
change in the current is 

where o is the electrical conductivity. We can estimate SnAa  
if we know the electron momentum relaxation frequency Y, . 
Since the energy E, is low ( E ,  = 2.2 meV for mercury vacan- 
cies in HgTe), it follows that for F, -E, the main electron 
scattering mechanism is the interaction with ionized impuri- 
ties. In this case we have 

where N, is the number of ionized impurities. The change in 
the conductivity a is 

We shall assume that n a N, . We then obtain an, u = - 3a/ 
n. We shall compare the correlation function of the current 
fluctuations given by Eq. (22) with the thermal noise S,  
given by the Nyquist formula u T / r .  Using Eqs. ( 11 ) and 
( 16) and allowing for the quadruple degeneracy of the impu- 
rity levels, we readily find that 

If we substitute in this formula the values X = 1, n = N,,  Y ,  

= 10" sec-', v, = 10" sec-' and r =  lo-'&,, we find 
that the population fluctuations make the same contribution 
to the noise as the thermal fluctuations if the electric field is 5 
V/cm. At low temperatures even moderate fields E can heat 
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the electron gas. If electron-electron collisions then control 
the formation of the symmetric part of the distribution func- 
tionf,, the form off, will be the same as before, except that 
now T should be replaced with T,. 

We conclude by noting that it is clear from the above 
theory that the characteristic relaxation time of perturba- 
tions of the acceptor populations is not equal to the electron 
lifetime at an impurity fi/T and in the case of strong resonant 
scattering it is much greater than this quantity. An increase 
in the lifetime of the population perturbations increases the 
fluctuations ( (Sn, )2),  in the low-frequency range and 
these in turn can enhance greatly the noise in a sample in 
which an electric current is flowing. Then, Eqs. (13) and 
( 18) cease to be exact although the initial formulas (4)  and 
( 7 )  remain unchanged. A similar situation occurs also in the 
case of nonequilibrium electron-phonon systems which are 
described by the Boltzmann equation (see, for example, Ref. 
10). 

IN. N. Ablyazov, B. L. Gel'mont, M. E. Raikh, and A. L. ~ f r o s ,  Zh. 
Eksp. Teor. Fiz. 87,646 ( 1984) [Sov. Phys. JETP 60, 370 ( 1984) 1. 

'M. I. D'yakonov and A. V. Khaetskii, Zh. Eksp. Teor. Fiz. 86, 1843 
( 1984) [Sov. Phys. JETP 59, 1072 ( 1984) 1. 

3N. N. Ablyazov and M. E. Raikh, Fiz. Tekh. Poluprovodn. 18, 883 
(1984) [Sov. Phys. Semicond. 18, 550 (1984)l. 

4B. L. Gel'mont, V. I. Ivanov-Omskii, and I.M. Tsidil'kovskii, Usp. Fiz. 
Nauk 120,337 (1976) [Sov. Phys. Usp. 19, 879 ( 1976) 1. 

5C. Verie, F. Raymond, F. Bailly, I. Vacquie, G. Weill, A. Kozacki, and J. 
Rioux, Proc. Intern. Conf. on Physics of Semiconductors, Edinburgh, 
1978, publ. by Institute of Physics, London (1979), p. 241. 

6P. M. Tomchuk and A. A. Chumak, Preprint No. 9 (in Russian), Insti- 
tute of Physics, Academy of Sciences of the Ukrainian SSR, Kiev 
(1971); Fiz. Tverd. Tela (Leningrad) 15,101 1 ( 1973) [Sov. Phys. Solid 
State 15, 697 ( 1973) 1. 

'P. Gosar, Proc. Intern. Conf. on Physics of Semiconductors, Edinburgh, 
1978, publ. by Institute of Physics, London (1979), p. 269. 

'A. Mauger and J. Friedel, Phys. Rev. B 12,2412 ( 1975). 
9G. Bastard, Phys. Status Solidi B 80,641 ( 1977). 
'OS. V. Gantsevich, V. L. Gurevich, and R. Katilius, Riv. Nuovo Cimento 

2, No. 5, 1 (1979). 

Translated by A. Tybulewicz 

A. A. Tarasenko and A. A. Chumak 982 


