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We investigate analytically the asymptotic behavior of a surface perturbation of the density 
profile of a liquid at large distances from the surface. A representation of the density of an 
ordered layer is obtained in the form of an aggregate of exponentially damped density waves. 
The reciprocal lattice and the correlation lengths of the layer structure are expressed in terms 
of experimentally obtained quantities. The predominant ordering, in the form of layers parallel 
to the surface, leads to oscillations of the free energy of a thin film as a function of its 
thickness. These oscillations determine the physics of the wetting of various surfaces by a 
dense liquid. 

1. INTRODUCTION 

The atomic structure of a liquid near phase boundaries 
is manifested in the properties of these phase boundaries and 
of thin films, and is investigated in experiments on wedging- 
out press~re, ' ,~  on surface melting3 and on wetting.4 Sur- 
face-layer structure was investigated also by computer simu- 
l a t i ~ n ~ . ~  and, finally, analytically for a number of models. In 
particular, an expression was obtained7 for the density pro- 
file n ( r )  of hard-sphere (HS) and hard-wall (HW) liquids 
by solving the Percus-Yevick (PY) equations for a mixture 
of HS having different radii, in the limit when the radius of 
the large spheres tends to infinity and their density to zero. 
The use of this solution, and also of a large number of data on 
the simulation of an HS-HW system had permitted develop- 
ment of a perturbation theory5 for systems with real poten- 
tials. The most sophisticated variant of the theory8 is in ex- 
cellent agreement with the simulation, but no longer leads to 
analytic solutions. 

An alternate approach for a liquid-gas interface was de- 
veloped in Ref. 9. It is based on a representation of the sys- 
tem's free energy in the form of a functional of the liquid 
density (cf. Ref. 10, 5 8.3), and its parameters are correla- 

tion function of the liquid, which is known from diffraction 
experiments and determines fully both the nonlocal quadrat- 
ic functional of the density,14 and the Ornstein-Zernike 
equation used here. Both methods lead to a representation of 
the near-surface density in the form of a superposition of a 
discrete set of waves (cf. Ref. 15) with characteristic wave 
vectors kj determined by intrinsic short-range order of the 
liquid and by symmetry-group transformations that are ab- 
sent in a system with a surface. These waves attenuate ex- 
ponentially over correlation lengths {, = <(k, ) that can be 
expressed in terms of the structure factor G(k) of the liquid. 
Thus, any surface violating the translational symmetry 
along the z axis, excites in the liquid waves of smectic order 
exp ( + ik,z) exp( - z/lj ), where kj corresponds to the jth 
maximum of G(k), and gj is equal to the reciprocal half- 
width of this maximum. 

Using next the PY solution for a HS-HW system and 
the density functional, we determine the amplitude of the 
waves and the energy density in them, obtain the structure 
term of the free energy of a thin film, investigate the influ- 
ence of van der Waals forces, and obtain finally the condi- 
tions for wetting a solid surface. 

tion functions of a massive liquid. A numerical investigation 
2. EQUATIONS OF SURFACE-LAYER STRUCTURE AND 

of a reasonable nonlocal model of this functional1' yields 
good results. An analytic solution was obtained in Ref. 12, 
but only for a model in which the melt is represented by a The Ornstein-Zernike relation (Ref. 10, p. 280) 

sum of density waves with having the vectors of the recipro- 
cal lattice of the crystal into which it crystallizes and on h (4, r2) = ~ ( r , ,  rI) + no S C ( ~ , ,  r3) h b ,  r2) d3r3 

which it The of these waves are regard- determines the direct correlation function c(rl,r2) in terms 
ed as functions of the distance z from the wall, which vary of the complete one h (r,,r2) n2 ( r1,r2 )ln; - 1, where no is 
slowly over distances on the order of interatomic. Accord- the density of the uniform liquid, and n,  is the two-particle 
ingly, the nonlocality of the density of the free energy is tak- density. In a homogeneous system we have y(rl,r,) 
en into account by gradient terms, and this leads to an expo- = y( l r 1  - r21 1, where = c, h. ~ ~ ~ ~ ~ f ~ ~ ~ i ~ ~  
nential decrease of the amplitudes into the interior of the - 
liquid.13 Such a law  follow^ directly also from the "relay" 
mechanism-each succeeding atomic layer (counting from 
the surface) inherits a definite fraction of the ordering of the 
preceding one. 

We present here a general solution of the problem of the 
structure and energy of the surface layer of a liquid; the solu- 
tion is valid outside the atomic vicinity of the wall, i.e., at z 
exceeding several (in practice, one or two) atomic diameters 
a. In the region z z a  we use the PY approximation. The 
asymptotic form of the solution uses only the pair correla- 

g(k)  = no (r) eikr  d3r=lnk-'no y (r) rin(b.)r  dr, (2)  
0 

we solve ( 1 ) in the form 

The structure factor G ( k ) ,  in the case of an ordinary dense 
liquid considered incompressible in hydrodynamics, is char- 
acterized (see Ref. 10, p. 3 18) by a high sharp peak at the 
point kl  = 5r /2a  [at the triple point G(k,)  ~ 3 1 ,  which re- 
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FIG. 1 .  Structure factor of simple liquid: 1-T=: T,; 2 - - n O ~ a - ~ .  

flects spatial modulation of the short-range order, and a 
minimum at the point k, = 0: G(0) = n,Tx- lo-', andx is 
the compressibility (Fig. 1, curve 2). Predominating at the 
critical point, however, is a peak at zero, which corresponds 
to advanced fluctuations of the density (Fig. 1, curve 1 ). 

For this density profile we can introduce a direct sur- 
face-liquid correlation function c, (cf. Ref. 7) by means of 
the relation 

where h corresponds to the homogeneous state. 
Introducing the function 

where x is the wave vector in the plane of the surface, and 
y = c,, h, An, we rewrite (4) in the form 

OD 

An' (x, Z) =cat (x, z) -I- J cat (x, zl) h1 (x, 2-2,) dzl. ( 6 )  
-m 

The symmetry of c, in the plane of the surface should coin- 
cide with the lowest of the symmetries of the boundary 
phases. Therefore c& ( x s )  $0 only for x = 0 in the case of a 
structureless substrate and for x from the set {g) of the reci- 
procal lattice vectors of the crystalline surface. In the theory 
of liquids it is usually assumedI6 that as r- co we have 
c(r)  z - v(r)/T, where v is the interparticle potential. In 
accord with the ideas of perturbation t h e ~ r y , ~ . ' ~  we assume 

cs (r) = c ~ ( z - - z ~ )  +Vs (r), (7) 

where c, is the modified PY solution7 for c, of the HS-HW 
system, and V, is the summary potential of the substrate 
with the singular repulsive part subtracted. For the coordi- 
nate of the effective HW (Ref. 5)  we assume zo = 0. Then 
C, (z) #O only in the region of the wall (z < 0). Therefore, 
neglecting for the time being the weak power-law tail of V,, 
we find that c, ( 2 )  differs from zero only near the surface 
itself, at z < a. It follows hence that the asymptote n' differs 
from the asymptote h ': 

m 

h. (x, z) = jTz[ ( x ,  q )  ] eiqz dq/2n = i ehz res ?i [ ( x ,  q.) 1, 
- m Irn g,>0 

(8) 
since the integral in (2) converges regularly for the short- 
range function c(r) ,  so that ? is an analytic function of the 
complex k and the poles h are simple. 

FIG. 2. Structure of solutions in k-space: points-l waves, dashed-m 
waves; solid c u r v e t  waves. 

According to (3), q, = q + i/{-the poles h [x, ql- 
are roots of the equation 

This equation can be obtained also by minimizing a quadrat- 
ic functional that is valid in the asymptotic region (Ref. 10, $ 
8.3), viz., 

Indeed, by varying ( 10) in the absence of an external field 
( V = 0), we obtain an equation for An: 

no J c(r-r,) dn(r,) hrl=An(r). (1 1) 

The transformation (2) of this equation returns us to ( 9 ) ,  
i.e., the sought solution is a superposition of density waves 
with k such that ? (k)  = 1. Being interested in weakly 
damped waves with small { - ', we expand c in (9  ) in terms of 
this parameter and equate the imaginary and real parts: 

where k = ( x 2  + q2) 'I2. Expressing ? in terms of G ( 13) 
with the aid of (3),  we obtain three types of solutions of the 
system ( 12) and ( 13) (Fig. 2),  i.e., three types of wave. 

1) m wave (mixed)-smectic layers with normal k/k: 

k, is the abscissa of the ith peak of G (Fig. 2). 
2) A particular case of m waves: at x = 0 we have I 

waves (longitudinal)-smectic layers parallel to the sur- 
face: 

li is the reciprocal half width of the ith peak; only these 
waves contribute to the density profile n (z) = In (r)dxdy/S 
(S is the surface area) that is presented in papers on model- 
ing. 

972 Sov. Phys. JETP 65 (5), May 1987 L. V. Mikheev and A. A. Chernov 972 



3)  t waves ("transverse") -two-dimensional order in the surface plane: 

x ~ k , :  qiz (k,/~,)'", gim(i2/ki)'h; 

x>k,: q=k,/t, (x2-k?) Ih, t= (x2-k?) 'Ir. 

Substitution of (14)-(16) in (8)  yields the asymptote h ': 

,om ( k ,  z) erp [- k11z1 
El (k12-x2) 1 ,  OGxGk,, 

The asymptote of the radial distribution function of a bulk 
liquid is obtained analog~usly'~ 

Finally, substitution of ( 17) in (4)  expresses the complex 
amplitude of the wave An, in terms of c,. Namely, for an I 
wave we have 

nl+=nl-' = noG(kl) j c 8  (r) exp[ (-ik,+~l-i)zl 
BE18 

3. BOUNDARY LAYER OF LIQUID 

1. Structure of boundary layer. We note first of all that, 
naturally, expansion of E ( k ) in powers of (kg) - ' is equiva- 
lent to representing a nonlocal correlation interaction in the 
form of an expansion in powers of the squares of the density 
gradients (dn, /dz)'. Namely, an inverse Fourier transform 
of ( 12) with respect to the imaginary part of the wave vector, 
with allowance for ( 13), yields an equation that can be ob- 
tained by variation of the functional 

where the set k is defined by the condition ( 13). The single 
density wave obtained correspondingly in Ref. 13 by a gauge 
expansion near a structureless wall is equivalent to our I 
wave ( 16). Ref. 13, however, contains an algebraic error in 
the calculation of 6,. 

Minimizing (10) at V #O, it is easy to show with 
allowance for (3) that G has the meaning of linear suscepti- 
bility-the classical Green's function of a liquid, and Eq. (9)  
determines its poles, i.e., the elementary excitations. Clearly, 
the lowest to attenuate are the waves corresponding to poles 
in the vicinity of the principal susceptibility peaks at real k, 
i.e., the soft modes easiest to excite. 

If the density (and temperature) of the liquid are close 
to critical, G(k) has a single peak ko = 0. Substitution of ko 
in ( 15) and ( 16) yields k = 0, i.e., the density of the rarefied 
liquid (fluid ) decreases monotonically as the distance from 

the wall becomes of the order of the characteristic correla- 
tion length go which is equal to the reciprocal of the half 
width of the G(0) peak. The inhomogeneous system is de- 
scribed in this case by the functional (2 1 ) with a single gradi- 
ent term fork = 0. This functional describes a transition into 
a state of total wetting.'994 

Predominant in a dense liquid is a susceptibility peak at 
finite kl = 5 ~ / 2 a ,  and at the point k, the function G has a 
minimum (in this sense a liquid is analogous to paramagnet 
with ferromagnetic short-range order in the critical region, 
and with antiferromagnetic short-range order at high densi- 
tiesI3). Therefore the monotonically decreasing condensa- 
tion or rarefaction near the walls becomes unstable in the 
asymptotic zone-the coefficient of d 'n0/dzz in (2 1 ) is pro- 
portional to - G " (0) and is consequently negative (this cir- 
cumstance was omitted in Ref. 13). 

Soft modes are waves of smectic order 
An a cos(kr + p) with lkl = k,. These modes are constant- 
ly present in a bulk liquid at thermal equilibrium, but the 
arbitrariness of the phase p in the k direction causes them to 
cancel out. A surface, on the other hand, fixes both the phase 
and the direction of k and "displays" the soft mode. 

The first G ( k )  for a Lennard-Jones potentialZ0 and for 
melts of similar metals is well described by the analytic solu- 
tion c,, of a liquid of hard-spheres1' with suitably chosen1' 
diameters. The universal dependence of the characteristic 
damping length g, of the density waves on the average liquid 
density no, obtained by numerically solving (9),  is shown in 
Fig. 3. The density at the triple point corresponds to 
n&3z0.85-0.9 (Refs. 20 and 6), i.e., g,,--(1.35-1.55)a 
( =:5 A for lead). It follows hence that c1kl z 10) 1, thereby 
justifying the expansion ( 12), ( 13) and also the gradient 
expansion of the free-energy functional. The validity of the 
expansion is confirmed also by the fact that the wave damp- 
ing length gl, calculated using ( 15), differs from the values 
in Fig. 3 by less than 10%. An estimate of the damping 
lengthg, of the second harmonic of an I wave using the G( k)  
curves from, e.g., Refs. 20, 21, and p. 3 18 of Ref. 10, yields 
{, = g1/4. For t waves with x,--kI we get 6, zg1/3 from 
(16). 

The asymptote of the surface density perturbation, as 
well as of the radial distribution function, is determined pri- 
marily by the I wave ( 18) which is due to the breaking, by the 
surface, of the translational symmetry along the z axis. On a 
crystal surface, the symmetry is broken also in its plane, so 
that m and t waves are observed on the plane, with x from the 
set Cgl. 

To complete the solution we use a suitably renormal- 
izedl' correlation function for hard spheres near a hard 
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FIG. 3. Correlation length of I waves vs density. 

well7; we substitute c, = c, from Ref. 7 [see Eq. (7) ] in (20) 
and ( 19) and obtain the amplitudes n,, for I waves. The 
amplitudes of the other wave follow similarly from ( 17) and 
(4). A numerical analysis (the analytic expressions are un- 
wieldy) has shown that when n 4 3  increases from 0.75 to 
0.90, the ratio In, [/no increases respectively from 0.7 to 
0.8. At the point of the first and deepest minimum of n (z) 
with z s a ,  expression ( 18) yields 

The proximity of these last numbers to unity shows the high 
degree of modulation of the density of the liquid near a solid 
wall-it is only 20-30% lower than that of the crystal sur- 
face. It is this modulation that causes the periodic depen- 
dence, discussed in Sec. 4 below, of the energy of a thin film 
on its thickness, and the discrete character of the wetting 
effects (Sec. 6). 

We analyze now the results of simulation of the struc- 
ture of the melt of a Lennard-Jones crystal near the faces 
( I l l ) ,  (110), and (100). The faces (111) and (100) excite 
well-pronounced 1 waves, and as the distance from (100) 
increases we get the theoretically predicted restructuring of 
the period of the oscillations, from the interplanar distance 
dl, imposed by the crystal, to the natural wavelength 2n-/ 
k l z d l l l  of a close-packed liquid. The I wave is not pro- 
nounced on the ( 1 10) face; this is due, in our opinion, to the 
strong disparity between dl, = (3/8) 112dlll s0 .6d l I1  and 
the period of the I wave, and also to the advanced fluctu- 
ations of the surface roughnesses (see below). 

Of greater importance for the structure of the liquid 
perturbation at the ( 110) face of an m wave with 

which is a continuation of two systems of ( 11 1 ) planes. Ac- 
tually, m waves with {zf, are produced on planes with 
large Miller indices, where {g) includes Ig( ( a -  I. On the 
faces ( 1 1 1 ) and ( 100), the two-dimensional crystalline or- 
der carried by the t waves attenuates much more rapidly 
than the smectic I order. 

2. Influence of surface perturbations. In accordance 
with the foregoing, density waves should appear whenever 
translational invariance is violated, i.e., also on a liquid-gas 
boundary. It is indeed observed in models,22 if one considers 
instantaneous photographs of a structure not averaged over 
areas along the surface which are large in atomic scale. In 
opposite cases, the density waves inside the liquid should 
obviously be smeared out by displacements of the surface 

when capillary waves propagate over it. If the effective 
smearing of the surface is equal to A s [ ( T /a ) ln (aa /  
mg) ] ' I2  (Ref. 23), the observed amplitude n, of the density 
waves in the liquid decreases to n, exp [ - ( k , ~ ) ' ] .  Here a is 
the free-surface energy, m the mass of the liquid particle, and 
g the acceleration due to gravity. For water at T s  300 K we 
have Tz300 K, A s 1 4  A, k 1 s 2  A-1 and n, <no, i.e., a 
layered structure is observed only at frequencies much high- 
er than capillary. Nonetheless, this structure does manifest 
itself in thin films, where the interaction with the other sur- 
face suppresses the capillary fluctuations and exerts the deci- 
sive influence on the physics of the wetting (Sec. 5).  

A similar smearing of density waves is possible also in a 
liquid bordering on an atomically rough crystal boundary 
(provided, of course, that the distance between the crystal 
grids parallel to the surface differ noticeably from the wave- 
length 2n-/k, in the liquid). This is apparently the situation 
on the ( 110) face of a Lennard-Jones system, where the ob- 
served propagation, into the interior of the melt, of oscilla- 
tions with period dl,, is a manifestation of the fluctuation 
smearing -exp [ - (nd /A)2/2], i.e., of the nonzero prob- 
ability of successive elementary steps on the s ~ r f a c e . ~ ~ . ~ ~  On 
the contrary, on the atomically smooth sections of the sur- 
face, in view of the discrete character of the atomic structure 
of the crystal, we have A <a and the density waves in the 
liquid should be distinctly pronounced. Steps of other inho- 
mogeneities, with distances considerably greater than 2n-/kl 
between them, lead to a block structure of the surface layer, 
but does not upset the order over any smooth terrace. 

3. It is easily seen that a slowly damped 1 wave carries 
with it a perturbation, proportional to (An, ) 2, of the average 
scalar properties of the system. Therefore, for example, a 
surface perturbation of the average energy of the particles, or 
the monotonic component of the density perturbation, de- 
creases like exp( - 2z/l1) in accordance with the simula- 
tion r e s ~ l t s . ~  On the other hand, substitution in ( 10) of a 
density wave that satisfies ( 1 1 ) yields zero, i.e., the free- 
energy density is o[ (An, )2] and is concentrated in a narrow 
surface zone. 

4. FREE ENERGY OF A THIN FILM 

The arguments in Sec. 3.3. show that any scalar order 
parameter that characterizes a surface perturbation has a 
correlation lengthc = c1/2. Constructing a functional of the 
Ginzburg-Landau type for such an order parameter, we ob- 

a monotonic dimensional free-energy increment pro- 
portional to exp( - 2H /cl ), where H is the film thickness. 
There exists, however, a stronger interaction mechanism 
between the film boundary surfaces, via density waves. In- 
deed, the interaction between an I wave excited by the sur- 
face located at z = 0 and the field w of the surface located at 
z = 0 is of the form 

Jw (z) exp[ (ik1-Fl-')  (H-z )  ldz exp[ ( i k i - U S , )  H I .  
0 

Summing over the four I waves in the film, we obtain a free- 
energy shift (per unit area) equal to 

This law is proved in the Appendix. The amplitude E will be 
estimated below. A t or m wave in which x # O  [see ( 14), 
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( 15) ] can interact only with a x harmonic of the field w. But 
w, just as c, [see (23) below] has nonzero harmonics for x 
from {g) of the given surface. Coincidence of two crystal 
meshes in the laboratory frame, however, is impossible: an 
arbitrarily small misorientation of even two identical crys- 
tals leads to incoherence. There are therefore no dimensional 
corrections proportional to exp( - H /g,, ) . 

We estimate now the amplitude (22) of the oscillations 
of the film energy as a function of the thickness. Note that 
(4) can be formally obtained from (10) by putting 
V = *- Tfs, since the operator that is the invfrse of 1 - i. is 
h 

G = 1 + h [see (3 1, where the unit operator 1 is S(rl ,rz) in 
the direct-space interaction. In the case of a short-range c, at 
thicknesses so large that the c, action zones do not overlap, 
the film can be satisfactorily described by Eq. ( 10) with 

x-g,,gz 

Then 

X"I?,.B, 

(24) 
Substituting ( 17) and (20) in (24) we get 

Af=Aft=-4TnoG(kl)El Re [ e x ~ ( i k ~ H ) c ~ ~ , c ~ ~ ~  I exp(-HIE,). 

(25) 
From this and from ( 19) we get an estimate for E in (22) at 
n0-a-3: 

The estimates made for In, ]/no yield E z (2 - 3) T. 
Free-energy oscillations were observed on films of the 

large quasispherical molecule liquids CCI,, cyclohexane, 
and OMCTS (octamethylcyclotetrasiloxane) at T=.20° 
C.2,26. Within the limits of experimental error, they are de- 
scribed by (22) with k, z 2?r/a, where a is estimated from 
independent (say, crystallographic) data, g,k, z ( 1. l- 
1.4).2?rand~z(0.5-2.O)T(sinceAf, ccexp( - H/{,),the 
value of E is strongly influenced by errors in the measure- 
ment of the absolute value of H ) .  Simulation of a Lennard- 
Jones liquid with no = 0.59 and T = 1.1 (in Lennard-Jones 
units) between HW with strong attraction27 also yields 
Af, (H), which is well described by Eq. (22) with the param- 
eters k, = 6.45 and 6, = 0.72 obtained by analysis of 
G(k,no, T) (Ref. 20) and E zztheor /2, where E,,,,, is given by 
(26) with n, estimated from the solitary-boundary profile 
reported in Ref. 27. Thus the Af, (H)  dependence (22) 
agrees with experiment within the limits of experimental er- 
ror. The linear model ( lo) ,  (25) of the film overestimates E 

by approximately a factor of 2. An alternate model, which 
permits a determination of E,  was developed in Ref. 28. 

5. INFLUENCE OF LONG-RANGE FORCES 

The influence of van der Waals forces v v w  (r) cc r-6 can 
be taken into account by perturbation theory, l7  by substitut- 
ing in ( 10) 

V = J vVw (r-r') An(') ( r l )  d3rr (27) 

where An'O'(rl) is obtained by minimizing ( 10) at v,, = 0. 
For large z this field can be represented by the series 

where the coefficient u, is proportional to the difference 
between the polarizabilities of the liquid and the boundary 
phase, 

(the harmonics u, exp[i(g,x + g,y)] of the field that var- 
ies along the crystal surface attenuate like exp( - IgJz)). 
The leading term of (27) produces a monotonic compres- 
sion (rarefaction) : 

Since G(0) - lov2, the amplitude An, ,Ano at z 5; 10a. On 
the other hand, the interaction of the field V, produced by 
one surface with the matter of the opposite boundary phase 
produces a classical size-effect 

where the Hamaker constant is A =: + 10-l3 erg for a liquid 
on a foreign substrate and can be an order of magnitude 
smaller for liquid-gas phases in the crystal-melt critical re- 
gion. 

6. PHASE EQUILIBRIUM OF A WETTING HEAVY-LIQUID 
FILM 

Consider the boundary S of a crystal (c)  with its own 
vapor (or vacuum) or of an arbitrary wall with gas (g).  It is 
known that a thin film of the liquid-like state (1) can exist on 
the surface, i.e., surface melting of the crystal3 or adsorption 
of liquid from the gas., The question is: will the film remain 
finite when the vapor pressure approaches the equilibrium 
value over the bulk liquid (the difference of the chemical 
potentials of the liquid and of the gas Ap =,u, -,u, -0 
above), or will it grow to form a macroscopic layer that wets 
the surface completely. This question was investigated in 
detail for a liquid-gas system near the critical 
temperature, i.e., for slow monotonic functions n(z) (Sec. 
3.1 ). It was shown that when the temperature is raised along 
the equilibrium line ( Ap = 0) and a certain point Tw < T, is 
reached, a phase transition from incomplete to complete 
wetting takes place and can be ei the~ jumplike (of first or- 
der), i.e., H( T = T, - 0, Ap = + 0) < co , or continuous. 
The influence of oscillatory effects, which determine the 
structure of a liquid at high densities, on the wetting was 
hardly discussed. 

In the absence of surface fluctuations, the equilibrium 
thickness of the film H as Ap - + 0 is determined by the 
minimum of the free energy Af(H) = Af, (HI + Af, (HI 
(Fig. 4), where the oscillatory component Af, contains (22) 
and also, for liquid metals, a term connected with the Friedel 
oscillations of the electron density.29 The monotonic compo- 
nent Af, is made up of a structural ( cc exp ( - 2H /g, ) ), a 
vander Waals (30), andaphonon ( - 0.024 T / H  ', Ref. 30) 
terms. The latter is connected with the correlations of the 
wave motion of the liquid. Our estimates ofs in (22), experi- 
ment,2.26 and simulationz7 show that at H 5; 5a the amplitude 
Af, exceeds I Af, I (Fig. 4).  The minimum value of Af in a 
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FIG. 4. Free energy of thin film of simple liquid: solid envelope 
a exp( - H / l , ) ;  dashed curve-= exp( - 2 H / 5 , ) ;  dash-dot curve- 
a H  -'. 

dense liquid is consequently negative and is reached at 
H = HI -a  (Fig. 4). A film with H = HI wets a surface bet- 
ter than a bulk liquid (H = a ), i.e., the wetting is incom- 
plete. Under arbitrary (nonequilibrium) conditions the sys- 
tem is in one of the local minima of Af at the points H = H, 
(Fig. 4).  The film should therefore become thicker (thin- 
ner) via first-order transitions Hj++Hj+, and by overcom- 
ing appreciable barriers. Such transitions (layering), typical 
of growth of epitaxial films24 by the Stransky-Krastanov 
mechanism, were observed in adsorption of ethylene by 
graphite. 

The picture drawn above can change substantially if 
account is taken of the fluctuations of the film thickness 
H(x,  y ) ,  which are qualitatively described by the Hamilto- 
nian32 

F (  {HI) = .I [ q ( V B !  '+A1 (H) ]dz  d y ,  (31) 

where a = a,, in the case of adsorption (a,, is the surface 
energy of the liquid-gas interface). At T<aa2 in a uniform 
periodic potential Af = 2 5 ,  cos(k,H) the surface is in an 
atomically smooth state33: the order parameter is 

q = [ lim <[H(O, 0)-H(x, y)]2)]-L>0. 
x,ll-+- 

At T = TR = aa2$(yo) ($- 1,$(0) > 0) , a second-order 
transition into a rough state takes place: as T- TR - 0 the 
parameter q -0, and as T- TR + 0 the correlation length in 
the surface plane c - co (6 has the meaning of the dimen- 
sion of the regions with constant HzH, 1. Clearly, in a real 
potential relief Af = Afi + Af, the lines of the H,ttH,+, 
transitions terminate at the critical points T,,. (cf. Ref. 34), 
defined implicitly by an equation such as 

At T S  TR, -aa2 the length g ) 1 and it is possible to con- 
sider independently capillary waves that do not take the 
sourface out of the jth potential well. These waves raise the 
free energy of thejth state: in the quasiharmonic approxima- 
tion we have 

(in this case, the boundary is pinned not by gravitation but 
by the considerably stronger field Ah). At T(aa2 the 
smearing A 4 a  and the fluctuations are negligible. A rising 

temperature, however increases A and at Af, > 0 there ex- 
ists a temperature T ,  such that all Af(H, ) >O, i.e., a thick 
film (H+ co as Ap - + 0)  is favored. A first-order phase 
transition (cf. Ref. 4) takes place thus into a total-wetting 
state. This reasoning is valid, however, only if Tw 4 T, ; if, on 
the other hand, T- T,, we have Afi -0 by virtue of the de- 
crease of {, and G(kl) ,  and the degree of wetting is con- 
trolled by monotonic condensation or rarefaction of the fluid 
near the walls, and by the van der Waals4 and ~ h o n o n ~ '  com- 
ponents of the free energy. 

Analysis of the surface melting is made complicated by 
the nonequivalence of the different positions of the crystal- 
melt surface; this can be taken into a c c o ~ n t ~ ~ ' ~ ~  by adding to 
(3  1 ) with a = a,, (one can neglect the fluctuations of the 
melt-gas surface in the analysis of surface melting of tight- 
binding substances, by virtue of a,, ) T / a 2 )  a periodic po- 
tential of the type U(zo) = Uo cos (2?zzdd), where d is the 
corresponding distance between the planes. Application of 
U leads to a greater variety of phase diagrams. It is clear 
nonetheless that at large a,,a2/T the fluctuations are sup- 
pressed by the steepness of the potential wells, and surface 
melting reduces to formation of a monoatomic quasiliquid 
film with atomically smooth surfaces. According to simula- 
tion data35 this situation obtains on the ( 1 1 1 ) face of Si, in 
agreement with the observed incomplete wetting of the 
( 11 1) faces of Si and Ge by bulky-melt droplets.36 It is possi- 
ble to interpret within the framework of this "incomplete" 
surface melting also the data on the disordering of singular 
surfaces of a number of metals (see Ref. 37). If, however, a,, 
a2/Tis small, the advanced roughness fluctuations decrease 
both Afi and U. As a result, the dimensional correction to 
the free energy of the film becomes a monotonically decreas- 
ing function of its thickness, and infinite thickening of the 
film becomes favored. The observation of such a "complete" 
surface melting on the ( 1 10) face of Pb (Ref. 38) agrees with 
our analysis of a fcc crystal-melt ( 110) face. Thus, complete 
surface melting of simple substances is closely connected 
with roughness fluctuations of the crystal-melt surface, al- 
though it is a phenomenon quite different from roughness. 
This circumstance imposes particular requirements on the 
equilibrium of the simulation of surface melting. We empha- 
size that the foregoing conclusion pertains only to simple 
surfaces: complete surface melting (connected apparently 
with effects of liquid-crystal character) was observed on the 
basal face of d i ~ h e n y l ~ ~  that remained atomically smooth in 
contact with the melt. 

A special case is that of surface melting on an interface 
with vacuum (cf. Ref. 38) or with a foreign substrate when 
the crystal-melt surface is atomically smooth. In this case 
the film thickness takes on only discrete values correspond- 
ing to an integer number of molten planes of the crystal. At 
close values of d and 2?z/kl [fcc ( 11 1 ) ] all these values can 
land in the region Af > 0 (Fig. 4) and the surface melting can 
be complete. 

Note also that the existence of a smectic I structure on a 
liquid-gas surface (Sec. 3.2) is confirmed by observation of 
wetting of interfaces of an isotropic liquid with a gas and of a 
nematic with a gas by a smectic-phase layer.40 

7. CONCLUSION 

Equations of the Ornstein-Zernike type and a quadratic 
functional of the free energy permit an accurate description 
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of the asymptotic structure of a liquid near a crystal (and, in 
general, a potential-relief) surface. The use of the solutions 
for a hard-sphere liquid near a smooth wall yields also esti- 
mates of the amplitudes of density waves exponentially 
damped in the interior of a liquid. Altogether, three types of 
wave turn out to be possible in dense liquids: longitudinal 
(smectic layers parallel to the wall), mixed (layers at angles 
to the wall), and transverse. The type of wave is determined 
by the reciprocal-lattice vector of the wall. Longitudinal 
waves are excited also by a structureless smooth surface. The 
characteristic depth of penetration of the wave into the liq- 
uid depends on the type of wave and on the length of the 
liquid's long-range order, which determines the liquid's 
structure factor measured in diffraction experiments. 

The wave penetration depth depends strongly also on 
the fluctuations of the boundary: it is considerably smaller 
near atomically rough surfaces than near smooth ones. Simi- 
larly, capillary waves on a liquid-gas interface smooth out 
the inevitable density waves that oscillate together with this 
interface. 

The described crystal-like ordering of the boundary lay- 
ers of a simple liquid is responsible for the periodic depen- 
dence of the free energy of thin films on their thickness and 
for the oscillations of the wedging-out pressure. Finally, the 
discrete character of the same ordering determines the fea- 
tures of wetting of solid surfaces by liquids. 

All the phenomena considered can, naturally, be great- 
ly altered by electrostatic effects in electrolytes and by geo- 
metric effects in liquids made up of nonspherical molecules. 

In conclusion, the authors thank L. P. Pitaevskii for a 
helpful discussion. 

APPENDIX 

In the interior of the film, the density perturbation con- 
stitutes an aggregate of four I waves: 

with amplitudes n(B,v), where the indices /3 and v deter- 
mine the directions of the propagation and damping of the 
wave, respectively. The contribution of the jth ( j  = 1,2) 
near-surface zone to the free energy4 can be represented as 
the function 

where the nj are defined in the jth reference frame (i.e., are 
reckoned from the jth surface). The quantities n, and n, are 
connected by the transformation 

On a solitary surface j there are excited only damped waves, 
therefore the free surface energy aj is determined by mini- 
mizing6 at nj (B, + ) = 0: 

where njO' is the equilibrium value of the amplitude. At 
small exp( - H /c,) the coefficients nj (p, + ) and the de- 
viations a n j  (B, - ) = nj  (B, - ) - njO'(p, - ) are small 
and proportional to exp ( - H /{, ) . The energy 4 contains 

only corrections quadratic in Snj, since (B, - ) = 0 
at nj(P, - ) = njo'. On the other hand the derivative 
df,/dnj (a, + ) = wj (B) #O determines in the general case 
the surface field wj (B) that is conjugate to nj  (B, + ), and 
the interaction of the latter with the field leads to a correc- 
tion linear in exp( - H /{, ) : 

which is transformed into (22). 
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