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A hydrodynamic theory of the A-B phase boundary of 3He at finite temperatures is developed. 
It consists of the surface conservation laws and of the boundary conditions that relate the 
hydrodynamic flows with the disequilibrium of the thermodynamic quantities on the surface. 
The ensuing transport coefficients are estimated. The spectra of the natural oscillations of the 
A and B phase boundary are calculated and the problem of passage of a fourth-sound wave 
through this boundary is solved. The possibility of experimentally observing the considered 
phenomena is discussed. 

I. INTRODUCTION lem of passage of a fourth-sound wave through this bound- 

It became clear from practically the very start of the a ry  The question of experimental observation of the phe- 

research into superfluid 3He that the phase transition be- nomena considered will be dwelled upon briefly in the 

tween phases A and B is of first order, and therefore the 
phase diagram of 3He contains a curve on which the phases A 
and B can coexist. This stimulated papers on the properties II. BOUNDARY CONDITIONS 

of the interface between phases A and B.'-3 The authors of I .  Phenomenological derivation 
these papers were interested only in the static properties of 
the interface, such as the surface energy or the supercooling 
of phases A and B. The question at present is that of investi- 
gating the dynamics of the interface. Problems connected 
with dynamics can be arbitrarily divided into two categories. 
First is to obtain the general relations between the fluxes of 
the hydrodynamic quantities of phases A and B and to intro- 
duce phenomenological kinetic coefficients based on the 
general requirements of thermodynamics. The second is the 
calculation of phenomenological kinetic coefficients on the 
basis of a microscopic theory. A microscopic calculation of a 
number of kinetic coefficients was reported in the papers of 
Yip and Leggett,4 and also in Ref. 5. In the present paper we 
dwell mainly on a solution of the first class problems and 
discuss only estimates of the ensuing transport coefficients. 

The hydrodynamics of the A and B phase boundary was 
already investigated in Ref. 6 at T = 0, i.e., in the absence of 
dissipation. Introduction of the dissipative function and of 
the kinetic coefficient A of the boundary growth [see (21) 
below] leads to the fact that only one of the two modes pre- 
dicted in Ref. 6, only one is realized at T = 0, and the partic- 
ular mode is determined by the value of A.  Surface hydro- 
dynamics for the other boundaries of two phases was already 
considered for T f;O. The first to obtain a complete set of 
equations for the free surface of superfluid 4He at finite tem- 
perature were Andreev and Kompaneets.' Their approach 
was later generalized by Iordanskii, Korshunov, and Lar- 
kin8 as applied to the boundary between liquid and solid 4He. 

Using the method of Refs. 7 and 8, we derive in Sec. I1 
linearized surface-hydrodynamics equations for the A-B in- 
terface, starting from the conservation laws and the second 
law of thermodynamics as applied to this interface. The 
boundary conditions obtained are then simplified, bearing in 
mind solutions of specific hydrodynamic problems. We esti- 
mate next a number of transport coefficients predicted by 
the hydrodynamics, and compare them with available re- 
sults dy others. In Sec. I11 we investigate the spectrum of the 
natural oscillations of the A-B interface and solve the prob- 

- 

In the phenomenological derivations of the surface-hy- 
drodynamics equations we shall assume the interface be- 
tween the two phases to be infinitely thin and specify the 
interface equation in the form z = g ( x ,  , t) ,  a = 1,2. We as- 
sume that at equilibrium the boundary is planar and satisfies 
the equation z = 0. Phase A occupies the half-space z < 0, 
and phase B the half-space z > 0. To derive the boundary 
conditions on the interface we use the conservation laws and 
the second law of thermodynamics for the surface. To this 
end, we express some hydrodynamic conserved quantity 
(say, the energy E )  as a sum of a surface part E and the bulk 
parts EA ( A  phase) and EB ( B  phase) parts: 

where J ds denotes an integral over the surface. We differen- 
tiate next this expression with respect to time and use the law 
of bulk-energy conservation 

where Q is the bulk energy flux. The total energy of the 
system is conserved. Equating the time derivative to zero, 
using the Gauss equation, and assuming that at infinity 
(z+ & cu ) the energy flux is zero, we obtain the surface- 
energy conservation law in integral form: 

The law holds if the integrand is equal to some two-dimen- 
sional divergence, so that ( 1 ) can be rewritten in differential 
form: 

In exactly the same manner we obtain the conservation 
laws for the other hydrodynamic quantities. For the amount 
of matter we have 
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Equation (3) should contain the time derivative of the sur- 
face mass ps, since the tangential component of pS is not 
equal to zero. This derivative, however, is determined by the 
dynamics of the texture of the interface, is extremely small 
(see Chap. 111), and we neglect it. 

The conservation law for thez projection of the momen- 
tum of the tangential component of the momentum and the 
entropy take respectively the forms 

In the last equation it is taken into account that the entropy 
is not a conserved quantity, and therefore the entropy 
source-the dissipative function R-is added in the right- 
hand side of (6).  Here and elsewhere the superscripts A, B, 
and s will label respectively quantities pertaining to phases A 
and B and to interface. Greek subscripts run through values 
1 and 2 and are used to designate surface quantities, while 
Latin subscripts run through values 1,2, and 3 and are used 
for bulk quantities; j:, , ria, E, $, , S, fa are respectively the 
surface momentum, momentum flux density tensor, energy, 
energy flux, entropy, and entropy flux; p, ji , nu, E,Qi , S, Fi 
are respectively the bulk density, momentum, momentum- 
flux tensor, energy, energy flux, entropy, and entropy flux. 

When deriving the linearized surface-hydrodynamics 
equations it is necessary, as is done in the derivation of the 
equations of bulk hydrodynamics, to retain in the equations 
for the matter flux, momentum, and entropy, only the terms 
of first order in the deviation from equilibrium, and to take 
into account in the energy conservation law only the terms 
quadratic in these deviations. The expressions for the bulk 
fluxes are well known. In the B phase they take, in the corre- 
sponding approximation, the form9 

It is necessary to add in the equations for the A-phase 
fluxes terms that take into account the dynamics of the liq- 
uid-crystal anisotropy vector 1 (see, e.g., Ref. 10): 

Here p, p, T, and v, are the pressure, chemical potential, 
temperature, and velocity of the normal component, T=, , r, , 
and q, are the dissipative z-components of the momentum 
flux density tensor, of the entropy flux, and of the energy 
flux, 1 is the liquid-crystal-anisotropy vector of the A phase, 
and E, is the gradient energy connected with the texture of 
the vector 1. 

To obtain the equations of the surface hydrodynamics 
by starting from the interrelation of Eqs. (2)-(6), we must 
know the dependence of the surface energy E on the other 
quantities that describe the surface. We can write down right 

away the contribution'made to the surface energy by the 
quantities connected with surface tension [first term of 
(9)  1, with the surface mass [second term in (9)  1,  and with 
the surface energy of the liquid-crystal anisotropy [third 
term in (9)  1. In the quadratic approximation we have 

1 ac a t , Y  (iZAT p, = - aa0 -- --- 
2 ax, ax, apApB 2 i ' 

We have assumed in (9)  for definiteness that at equilibrium 
the vector 1 lies in the plane of the boundary; 8 - 6 A  is the 
orientational energy; v is the surface mass. 

Generalization to the case of an arbitrary equilibrium 
position of 1 relative to the normal to the boundary is not 
particularly difficult. Since 1 determines the chosen direc- 
tion on the interface, the surface tension aaa is anisotropic 
and is, generally speaking, a tensor quantity. We have also 
assumed that the surface kinetic energy [second term of 
(9)  ] is the internal energy of the boundary and should there- 
fore be defined in a coordinate frame that is immobile rela- 
tive to the boundary itself. 

Besides E,,  there should exist also terms that are con- 
nected with other independent thermodynamic properties of 
the surface, viz., the surface temperature and the velocity of 
the normal surface excitations. Under complete thermody- 
namic equilibrium the temperature and the tangential com- 
ponent of the velocity of the thermal excitations are equal 
respectively to the temperature and the tangential compo- 
nents of the velocities of phases A and B, and the normal 
velocity component of the bulk excitations is equal to the 
velocity of the interface. In the case of deviation from equi- 
librium, these quantities, generally speaking, need not neces- 
sarily equal one another. Each independent thermodynamic 
variable should correspond to its own thermodynamic con- 
jugate. It is convenient to transform to a coordinate frame 
moving with velocity 1/2(< + vv). In this frame, the differ- 
ential dcZ of that part of the surface energy which is connect- 
ed with the surface temperature and the velocity of the nor- 
mal excitations, can be represented in the form 

de2=T"s+[ Va-'/2(vsaA+usa") ] djoa9, 

j o a s = j r r - p h ( ~ , a B + ~ a a A )  12, (10) 

where V is the velocity of surface excitations, and&, is the 
momentum in the moving coordinate frame. We have taken 
it into account in (9)  and ( 10) that all the bulk quantities 
should be symmetric relative to the substitutions A-B. 
Strictly speaking, it would be necessary to take into account 
in the surface energy also the contribution from the term of 
type 4, - u;, but the thermodynamic conjugate of the lat- 
ter does not correspond to any observable physical quantity 
and will not be considered here. Taking the differential of 
(9) ,  we obtain after a Galilean transformation a final expres- 
sion for the surface-energy differential d~ = d ~ ,  + d ~ ,  in the 
lab: 

a t  d t  1 x) (jZAYZB 
de = a , ~  - 

ax, ax, pApB 2 5) 
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1 
+ 1 ' " d ~ + V , d j , ~ - ( j ~ ~ ~ ~ V , ) d ( v , , ~ + v , , ~ ) .  (11) 

2 
We differentiate next the surface energy ( 11 ) with re- 

spect to time and express the time derivatives of the thermo- 
dynamic quantities in terms of the spatial derivatives with 
the aid of the surface conservation laws. We need for this 
purpose: 

a )  linearized equations of motion of the superfluid com- 
ponents in the phases A and B: 

d ti 
-vSA + v [ pA + - (1 rot vnA) +hA ]= 0. 
d t 4m 

where hA and hB are the dissipative terms in the equations of 
the superfluids; 

b) the thermodynamic law for the surface quantities in 
the linear approximations: 

P ' A - d [p*+p~+ - ( I  rot vnA) ] =-s dp+dpa, 
2 4m 

in which we stipulate that the chemical potential ps of the 
surface be equal to the arithmetic mean of the chemical po- 
tentials of the phases A and B; 

c) an expression for the dissipative part of the bulk en- 
ergy flux, in terms of the dissipative terms in the entropy, 
momentum, and superfluid-motion fluxes; 

qr=Trr+h( jr-p~nz)+~riUni. 

The operations indicated lead to terms under the two- 
dimensional divergence sign, which determine the expres- 
sions for the surface energy flux $a, and to terms not under 
the two-dimensional divergence sign, which lead to an 
expression for the dissipative function R. Setting the dissipa- 
tive function equal to zero yields an expression for the rever- 
sible parts of the surface fluxes. After rather lengthy but 
straightforward calculations we find that the surface fluxes 
are equal to 

where .r", and J, are the dissipative parts of the surface- 
impedance flux tensor and of the surface-entropy flux. In the 
limit as T-0 the expressions for the fluxes go over into the 
expressions given in Ref. 6. The dissipative function takes 
the form 
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Fl + pB+hB-pA-hA + - (1 rot v,"), 
4m 

For the dissipative function to be positive, we must have in 
the principal approximation a linear relation between Xi and 
Y,; this yields boundary conditions that relate the fluxes Xi 
on the interface with the deviations of the thermodynamic 
quantities Y, from their values at equilibrium: 

11 

The first five thermodynamic forces Y, ( i  = 1-5) are con- 
nected with the deviation from equilibrium in the bulks of 
phases A and B, while the next four Yi ( i  = 6-9) are due to 
deviations of the surface values from equilibrium, and the 
last two Yi (i = 10,ll)  are related to the dynamics of the 
liquid-crystal anisotropy vector. The coefficients yii must 
satisfy the conditions that the quadratic form yij Y, Y, be 
positive definite and be, in accordance with the Onsager 
principle, symmetric with respect to permutation of the in- 
dices. Thus, the most complete description of the interface 
calls for introduction of about fifty coefficients yii, which 
together with the conservation laws (2)-(6) constitute the 
complete set of boundary conditions. 

2. Kinetic coefficients 

Not all the kinetic coefficients, however, should be con- 
sidered on a par in the equations of motion. Purely surface 
quantities enter into the boundary conditions in derivative 
form, whereas the bulk fluxes enter into these boundary con- 
ditions directly. Therefore retention of the dissipative terms 
r', , eB in the expressions for the surface fluxes requires that 
account be taken in the bulk fluxes of terms of higher order 
of smallness in the mean free path than the ordinary viscos- 
ity and thermal-conductivity approximation, and consti- 
tutes in our approach an exaggeration of the accuracy. It can 
be justified, as noted in Ref. 7, only in the case of exceedingly 
low temperatures, under the condition that the surface exci- 
tations freeze out much more slowly than the bulk ones. In 
practice, therefore, where bulk hydrodynamics is applicable, 
it is possible to regard the surface fluxes f", and raB as non- 
dissipative and discard the eighth and ninth terms of (14). 

Furthermore, when solving a number of hydrodynamic 
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problems (see Sec. 111), we can neglect entirely, with good 
accuracy, the surface entropy s and the surface momentum 
j". This allows us to combine the second and third terms of 
(14), and also the sixth and seventh, into one; The surface 
temperature T s  and the surface-excitation velocity V drop 
in this case out of the expression for the dissipative function. 
For the diagonal terms in ( 15) we obtain in the former case 
the Kapitza relation between the heat flux through the sur- 
face and the effective temperature difference: 

(K is the Kapitza coefficient), and in the second case the 
connection between the momentum-flux component and the 
difference between the tangential velocities of the bulk exci- 
tations on the A-B boundary: 

v ~ ~ ~ - v ~ ~ ~ = B T ~ ~ .  (17) 

The Kapitza coefficient is proportional to the probabili- 
ty of passage of a 'He quasiparticle from one phase to the 
other. Owing to the exponential decrease of the density of 
the above-condensate particles with decrease of the tempera- 
ture in the B phase, and owing to the elastic reflection of 
quasiparticles with energy lower than A,, one can expect, in 
collisions with the boundary in the A phase, this probability 
to decrease exponentially with temperature like exp( - A, / 
T). We have therefore for the Kapitza coefficient the simple 
estimate 

K- (glx ) eAEfT, 

where 6 is the coherence length and x the bulk thermal con- 
ductivity of 3He. Our estimate implies that the quasiparticle 
manages to become thermalized over the width of the 
boundary, i.e., T < 6 /v,. The estimate goes over into the re- 
sult obtained by Yip4 for the ballistic region, when the effec- 
tive time T between the quasiparticle collisions becomes 
equal to 6 /vF . 

The coefficient B has heretofore not been considered in 
the literature. The tangential component of the momentum 
is preserved in collisions with the surface, both for Andreev 
reflection" and for an ordinary elastic process. These pro- 
cesses therefore do not contribute to the coefficient B. Tan- 
gential momentum is transferred only when quasiparticles 
pass from one phase to the other. The probability of this 
process, just as in energy transfer, has a barrier of order A,. 
This leads therefore to the estimate 

B- (Slq) eABIT, 

where is the bulk viscosity. 
The fourth and fifth terms of ( 14) yield the connection 

between the dissipative heat fluxes q, and the effective mo- 
mentum (T,, - ph ) on the boundary: 

q,=D(z,,-ph)ITS. (18) 
The fourth and fifth terms of ( 14) contain a product of two 
dissipative fluxes, and are thus quantities of second order in 
kl. They must be included, however, when account is taken 
of the temperature surface wave in a superfluid,I2 for in this 
case GTand v, are independent quantities in bulk hydrodyn- 
amics. 

It is easy to estimate the coefficient D. We note for this 
purpose that an A-phase quasiparticle incident on the inter- 
face and having an energy &, lower than the gap in the B 
phase, is reflected not by the usual but by the Andreev mech- 
anism," i.e., the quasiparticle has an overwhelming proba- 

bility of becoming a quasihole; the z-projection of the mo- 
mentum q, changes in this case by the small amount4: 

where vF is the Fermi velocity and if the angle between the 
vector q and the normal n to the surface. The first term leads 
simply to a redefinition of the equilibrium pressure. Of im- 
portance to us is the second term. At not too high tempera- 
tures, i.e., when T 4  A, all the excited quasiparticles have a 
wave vector q practically parallel to 1 and if 1 is not oriented 
too close to n/2, we get the estimate4 

BpzAmNA~pAqz-ElyA ( V ~ Z - ~ ) / U F  cos 6, (20) 

where NA is the total number of excitations and E is the 
energy of the A-phase excitations. On the other hand, the 
dissipative heat flux at T 4 A  (in this case K+ co ) is equal to 

qZA=TArzA=TSA(vnA-f) . 
We obtain thus a power-law dependence of D on tempera- 
ture: 

DA-vFNpT4/A2 

(r = (TS) ' /P  in the notation of Ref. 4). In the B phase, 
the number of quasiparticles is exponentially small, and this 
leads to the rough estimate 

DB-vFNFT2e-A/T, TKA. 

The quantity is finite because of the nonzero quantum- 
mechanical probability of reflection of the particle from the 
potential well. 

Consider now the first term in the expression for the 
dissipative function ( 14). We introduce for it the diagonal 
kinetic coefficient A. The expression for the current through 
the boundary takes then the form 

h + - (1 rot vn*)] . 
4m 

Relation (21 ) is in fact a generalization of the usual relation 
between the current through the interface and the difference 
of the chemical potentials. In our case of a nonzero surface 
mass, the first term in the right-hand side describes the accel- 
eration acquired by the 3He atoms as a result of the differ- 
ence between the chemical potential. The last term is due to 
the finite orbital momentum of the quasiparticles. It will be 
shown below (Sec. III),  one can neglect the dissipative 
terms hA and hB as well as (1 x curl ) in the discussion of 
the hydrodynamic motions of the boundary. 

The coefficient A is by itself dissipative, and motion of 
the boundary without dissipation is possible only in two 
cases: either a )  A becomes infinite, o rb)  A vanishes. To each 
of these possibilities there corresponds a definite undamped 
mode.6 It  was noted in Ref. 6, however, that on a given inter- 
face (given the temperature and frequency) the coefficient A 
can take on only one fixed value, so that only one mode can 
be realized. 

Since the phases A and B have a single wave function, it 
is reasonable to assume that at T = 0, in the linear approxi- 
mation, the usual superfluidity relation obtains between the 
current and the gradient of a phase with a certain effective 
surface mass: 
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This is precisely the relation obtained from (21 ) by integrat- 
ing over time, if A is allowed to tend to infinity, i.e., case a )  
occurs at T = 0. 

At nonzero temperature the coefficient A must become 
finite, in view of the dissipative flux of the normal compo- 
nent. The normal-component flux through the boundary is 
exponentially small at T g  A: 

and, as follows from the discussion of relation ( 19), the in- 
crement to the equilibrium pressure on account of the nor- 
mal component is SpA - E c .  Therefore 

Relation (21 ) can be rewritten at T( A in a form similar to 
the linearized resistive model of a Josephson junction [see 
(21a) below]. To this end, we divide (21) by A, integrate 
with respect to frequency, and use the fact that j, q:. We 
find thus that 

A-pA2pB2R/vZu2,  T<<L\. 

Note that the left-hand side of (21) contains the derivative 
of the total current, since we assume that the second term of 
Eq. (9) for the surface kinetic energy E ,  is determined by the 
total current through the boundary. If it is assumed that only 
the superfluid current contributes to the surface kinetic en- 
ergy, so that the second term of (9)  is equal to 
I(pA - pB )2/2, the boundary condition (21 ) is obtained 
directly in a form similar to the relation of the resistive mod- 
el (without allowance for the surface currents js and for the 
dynamics of 1) : 

where R is a kinetic coefficient analogous to the weak-cou- 
pling resistance. 

We discuss finally the value of the surface mass. Let 
T = 0. Then p: = p: = pA = pB = p. We define the surface 
mass in the hydrodynamic approximation as the comple- 
ment to what occurs ifp = p, = const over the entire width 
of the transition. This is precisely the surface mass that en- 
ters in the equation ( 10) for the surface momentumjs, : 

This equation is not quite rigorous, only an estimate, since 
hydrodynamics is known to be valid only when the size of the 
inhomogeneity is less than the correlation length 6. 

According to Refs. 13, the presence of inhomogeneities 
in theA-phase texture leads to anomalous terms in the super- 
fluid current and to the appearance of a normal component 
even at T = 0. If the normal component is immobilized 
(stopped by the walls), the surface mass ps is determined 
only by the superfluid density. For the superfluid density in 
the direction d, in which the gap vanishes, we have 

where a is a certain numerical factor of order unity. On going 

from phase A to phase B, those points on the Fermi surface at 
which the gap vanishes move in some special manner 
counter to one another and vanish in the B phase. This is 
accompanied by d gradients of the order of 6 - I .  We do not 
know the exact d(z) dependence for T = 0, but can estimate 
the order of magnitude ofps. We obtain from (23) 

where c(1) is a certain numerical coefficient that depends on 
the 1 orientation. 

Expression (9)  for the surface energy contains another 
surface mass Y. At finite temperature we have p:'f;p~+p, 
and the determination of Y depends on the concrete form of 
the motion. Thus, if we put 4 = uf = 5, then Y can be deter- 
mined in the hydrodynamic approximation by an expression 
that does not depend on the choice of the boundary <: 

The tenth and eleventh terms in ( 14) give the boundary 
conditions on the vector 1. The boundary conditions relate 
the angular-momentum flux (second terms in Y,, and Y,,) 
and the surface "restoring" force (first term of Y,,) to the 
dynamics of 1 (terms XI, and X, ,). The first term in Y,, 
describes the interaction of 1 with the normal motion of 3He- 
A. 

The conservation laws for the hydrodynamic quantities 
(2)-(6) must be supplemented by the law ofconservation of 
the spin currents on the A-B phase boundary. This law can be 
obtained by adding to the energies EA and EB a term 
pBSA.BH connected with the magnetic energy, and by add- 
ing to the expression for the energy flux a term (ti2pt.B/ 
2m2) Bv, 0 tSB, where 0 is the order parameter of 3He. The 
spin and orbit dynamics separate, and we obtain the spin 
conservation law in the form of two boundary conditions 
[see Eq. (4)  of Ref. 61. The left-hand side contains the spin 
current of the A or B phase, and the right hand side the 
surface source of the spin current (the derivative of the sur- 
face part of the spin energy with respect to the components of 
the order parameter). In the general case of nonzero tem- 
perature, the difference between the right-hand and left- 
hand sides of Eq. (4) of Ref. 6 should give the thermody- 
namic force, which will equal (with a certain kinetic 
coefficient) the derivative 8, of the order parameter on the 
boundary with respect to time. 

We set aside the discussion of the off-diagonal kinetic 
coefficients. The results obtained in the present section will 
be used below in the discussion of the surface motion at finite 
temperatures. 

Ill. HYDRODYNAMIC MOTIONS OF THE A - 8  PHASE 
BOUNDARY 

1. Natural oscillations of the surface 

The surface-hydrodynamics equations set described in 
the preceding section permits an investigation of the dynam- 
ic modes existing on theA-B phase boundary. To this end we 
must supplement the surface equations (2)-(6), (16)- 
( 18 ), and (2 1 ) by the equations of motion of the liquid in the 
bulk. It will follow from the solution that the velocities of the 
sought modes will in all cases be lower than that of sound. 
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This permits the use of the bulk equations of an incompress- 
ible liquid. The hydrodynamics of ,He-B in the linear ap- 
proximation agrees fully with the hydrodynamics of super- 
fluid 4He (Refs. 9 and 14). The equations of motion break up 
into independent equations of motion of the normal and su- 
perfluid components; the variable part of the pressure SpB at 
a given point is the sum of pressures 6pf + Spaof the normal 
and superfluid  motion^.'^ The superfluid velocity vf, the 
pressure ap;, and the chemical potential Sp: are given by 
derivatives of the potential pB : 

u,?=8cpB/dxi, Gp,B=-p,BipB , 6pSB=-$I", (24) 

and the potential itself satisfies the Laplace equation 

ilrpB=o. (25) 

The superfluid and normal densities in ,He-A are tensor 
quantities, so that in the general case it is possible to separate 
the normal and superfluid parts of the equation. In an appro- 
priate approximation, however, such a separation is possi- 
ble. Let, for the sake of argument, the vector 1 be oriented 
either perpendicular to the interface or be directed along the 
x axis in the plane of the boundary. The tensors p2j, piv then 
become diagonal. From the entropy-conservation law we ob- 
tain, as before in the incompressible liquid approximation, 
div < = 0. Using this to express d~:~/dz in terms of dviz/dx 
and substituting in the matter-conservation law, we get 

A A 
pijA aZcpA/dxi ax,= (pnZr-prim) 8unxA/t3x. (26) 

We shall show below that the ratio of the tangential 
velocity of the normal velocity to the superfluid one is small. 
We can therefore neglect the right-hand side of (26). We 
obtain thus the equation of motion of the 3He superfluid 
component: 

pijAd2cpA/dx,dxj=0. (27) 

We have also used here the fact that the contribution made 
by the dynamics of 1 to the superfluid current is small com- 
pared with the contribution from the term with the phase 
gradient. In fact, the former current is of the order of (fi/ 
m)pk ' 5  and becomes equal to the phase current only 
when (fi/m )p ( v a -  'I2k - 1. (The estimate was obtained us- 
ing the dispersion law (39).) This takes place, however at 
too large k-< - ', at which our theory is no longer valid. The 
solutions of Eqs. (25) and (27) are of the form 

cpB=rpoB exp(iot-ikx-kz), 

rpA=cpOA exp [iot-ikxf (p,lp2)"'kz] (28) 

The linearized equations of the hydrodynamics of the 4He 
normal component were written out and solved in Ref. 16. 
For ,He-B they are 

iop,v,+qAv,- Vp,=0 div v,=O. (29) 

We have taken a Fourier transform with respect to time. For 
,He-A one can substitute (27) in the momentum conserva- 
tion law and exclude thereby the superfluid component. In 
this case, however, the "pressure" tensor of the normal com- 
ponent is no longer described by one scalar quantity as in the 
B-phase. We obtain thus a system of differential equation 
with respect to vi , in which p:, T ~ ,  p: in (29) are tensor 
quantities. We make next some simplifications. First, it can 
be shown that the first term of (29) is small compared with 
the remaining ones in both the A and B phases for wave- 

lengths at which the wave vector k satisfies the condition 

k>ko=A/eF(uFr). 

We have used here the dispersion law (39); T is the effective 
time between quasiparticle collisions. An estimate for r - lop7 s yields ko- 1 cm-'. It will be shown below that the 
dispersion law (39) is valid in practice at even higher values 
of k. In the case of the law (38), the estimated ko tends to be 
even smaller, ko- cm-'. We can thus always neglect 
the tensor structures of vA and p: in 3He-A and regard these 
quantities as scalars. In this case, vA must be taken equal to 
the shear viscosity in a direction perpendicular to 1 if the 
liquid moves in a plane perpendicular to 1, and equal to the 
corresponding "parallel" component of the shear viscosity 
for motions in a plane containing 1.17 

The solutions of the system (29) take the form1% 

where vt$ is the value of the z-projection of the normal ve- 
locity at z = 0; the upper sign in all the equations pertains to 
the A phase, and the lower to the B phase; Po is an unknown 
quantity to be determined from the boundary condition. We 
satisfy the boundary condition by putting v:, (z = 0) 
= vf, (Z = 0)  = 0, for in this case, as follows from the solu- 
tion (3),  the quantity T,, (z = 0)  also vanishes. By the same 
token, we express Po in terms of the z-projection of the nor- 
mal velocity: 

It is necessary next to connect v:$, using the boundary 
condition ( 16), with the surface velocity. To this end we 
express the temperature increment at a given point of the 
liquid in terms of the increments of the pressures of the nor- 
mal and superfluid motions (Ref. 15) at z = 0: 

sA,B~TAsB=6pA."+pA.BdrpA~B/dt. (32) 

Substituting (31) in (32) and next in (16), we get 

=KTBSB~(U,~B-~). (33) 
If K - a, the condition ( 33 ) is simplified and yields simply 
vfz = uiz = at z = 0. We shall use (33) later [see (35)l.  

In the equation of motion of the vector 1, the term con- 
nected with the internal orbital momentum is small like (A/ 
E~ ) 2  (Ref. 18). We omit also the terms that describe the 
interaction of 1 with the gradients of the normal velocity, and 
retain only the dissipative term and the texture term: 

pLl+6~~/61-0, (34) 
where E, can be expressed in the form (Ref. 18) 

Ev=y,(divl)2+y,[lrot 1]2+y,(lrot l)', 

and the coefficients y,, y,, and y, are equal, in the weakbind- 
ing approximation, to (fi/m )2p. The orbital viscosity coeffi- 
cient p, that enters in (34) can be estimated atI7 p, - NF~A2.  TO determine those values of the wave vector k at 
which the gradient term or the term with orbital viscosity is 
the more significant, we obtain the ratio of the first term in 
(34) to the second. The order of magnitude of this ratio is 
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Taking the dispersion law (37) into account, we note 
that the ratio becomes of the order of unity at large k - fir/ 
m12- lo5 cm-'. At lower values of k the ratio is always 
larger than unity. Thus, at k < lo5 cm-' the viscous term is 
always larger than the gradient term. This means in fact that 
the oscillations of the vector 1 propagate over a length - k ; ' - lop5 cm, which is comparable with the wall thick- 
ness. Such distances are infinitely small for hydrodynamics 
and are not considered. 

Using the relations obtained, we can rewrite the conser- 
vation laws (3)  for matter, (4)  for the z component of the 
momentum flux, and the gradient condition (21 ) on the mo- 
mentum flux through the interface by expressing them in 
terms of the superfluid components p:, p:, the surface ten- 
sion tensor aij , the viscosities qA and qB , the transport coef- 
ficient A, and the surface mass Y. We assume that the Ka- 
pitza coefficient is large enough, so that the boundary 
condition (33) can be written in the form & = vfz = (see 
below for estimates of K and for allowance for its finite val- 
ue). We obtain then a system of three linear equations for the 
three unknowns cpB, 5: 

where we have put p!' = ( p i  PA, 1 'I2, pt2 = p i  and used 
Fourier transforms with respect to the time and the coordi- 
nates. The first term in ( 35b) describes the contribution of 
the superfluid component and the excess pressure, the sec- 
ond term in (35b) describes the contribution of the normal 
component, and the third the surface tension. We have re- 
tained in (35c) the surface transport coefficient A. The left- 
hand side of (3%) is the flux through the boundary, and the 
right is a relation similar to the linearized Josephson rela- 
tion. It is easily understood that if the normal density is ne- 
glected in (29) the normal component of 3He contributes 
only to the damping of the surface waves. The system of 
linear equations (35) can be solved in general form, and this 
leads to the dispersion equation 

As should be the case, expression (36) is symmetric 
with respect to the interchangeptctp,B (in this case we must 
putpi  = p i  ). The imaginary terms in the dispersion law, as 
can be easily seen from (36), will result from terms contain- 
ing the kinetic coefficient A and the viscosity q. An investi- 
gation of (36) is in the general case quite cumbersome, and 
we shall consider only particular cases. We let A tend to 
infinity [this corresponds to the low-temperature limit, as 
can be seen from the discussion of (2 1 ) ] ; then 

(37) 
This equation is similar in many respects to the expression 
proposed for the neutral oscillations of the interface between 

solid and liquid 4He (Ref. 19), with allowance for the finite 
surface mass (in Ref. 19 was considered the case of zero 
temperature, and the dispersion law contains therefore no 
imaginary term). The second term in the square brackets, at 
all values of k <l -', is smaller than the first and can be 
neglected. The form of the dispersion law (37) is greatly 
changed on going though a certain value of the wave vector 

which is determined by the equality of the two terms in the 
denominator of ( 37). At small k < k,, the first term in the 
denominator is smaller than the second, and the dispersion 
law takes the form 

p.tA+psB (Re 0) '  = aijkikjk, 
(paB-p81A) (pdB-p.ZA) 

Such a dispersion law should be obtained also as Y + 0 for all 
wave vectors, i.e., when there are no effects whatever con- 
nected with the surface mass. Oscillations set in only under 
the condition that p:#pt. Note that the relation (38) con- 
tains a dependence of the frequency on the wave vector, simi- 
lar to the dispersion of capillary waves on the interface of 
two immiscible l iq~ids , '~  but the physical processes, and 
hence the coefficients of a k  are different in (38) and in Ref. 
20. 

For large k > k,, expression ( 37) yields a linear disper- 
sion law 

p6ZA psiA+psB aijkikj (Re 0)' = - 
psIA pszAf psB v ' 

Waves described by (38) exist as weakly damped if Im w /  
Re w < 1, and this requires that the wave vector satisfy the 
condition k <pa/q2. At T- A the damping is weak only at 
small k- l cm- '. Waves in the regions where (39) is valid 
are never weakly damped at these temperatures, inasmuch 
as they satisfy in the hydrodynamic regime the condition 

At kuFr > 1, however, a ballistic regime sets in. Clearly, 
the expressions for the real parts (37)-(39) of the spectrum 
remain exactly the same as before (since they do not contain 
any dissipative coefficients whatever), and the imaginary 
parts will be of the correct order of magnitude (with a cer- 
tain redefinition of the shear-viscosity coefficient). Indeed, 
q -p, uFI, where p, decreases exponentially as T+ 0, and I 
(the mean free path) increases exponentially. In the ballistic 
regime, the quantity 1 in the estimate of the shear viscosity 
should be replaced by some temperature-independent char- 
acteristic dimension k -' (k  is the reciprocal of the wave- 
length). The effective viscosity in this region is thus qef 
up,  -exp( - A/T) .  At a temperature lower by an order of 
magnitude, the imaginary parts of (38) and (39) is de- 
creased by five orders and we go over to the weak-damping 
region. 

As T+ 0 we have p: +p: +pa, therefore k, - 0 and in 
the entire range of wave vectors we have the linear dispersion 
law (39), as predicted in Ref. 6. Assuming that p: 
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-p(T/A)' (for a perpendicular orientation plane of the 
vector 1) and v-pf we find that the transition from the 3/2 
law to the linear law takes place at k - 10 cm- ' if T -  0.1 Tc . 

If the coefficient A is allowed to tend formally to zero, 
this leads to the usual dispersion law for the interface of two 
immiscible liquids," which was obtained by us for T = 0 
[see Eq. (7)  of Ref. 61. 

We return now to a discussion of the boundary condi- 
tion (33). The approach used by us calls for satisfaction of 
the inequality (v, - <)/<( 1. An estimate of the values of K 
at which this relation holds, when T yields for the reciprocal 
wavelength k the following expressions: 

where k,  is the Boltzmann constant and a is the interatomic 
distance. 

It follows, however, from the discussion of the bound- 
ary condition ( 16) that the Kapitza coefficient increases ex- 
ponentially with decrease of temperature, in such a way that 
at T = 0.1 Tc it is lo5 times larger than its value at T = Tc . 
Therefore in the temperature region in which one can expect 
only weakly damped natural modes, we get the ratio (v, 
- p)/fg 1 if k < lo5 cm- ', i.e., actually for all wave vec- 

tors. 
The energy dissipation rate k on account of the surface 

transport coefficient K, as follows from (14) and (16), is 
equal to 

Using the ratio of E to the total wave energy Empv2/k and 
the boundary condition (33), we estimate the ratio of the 
imaginary and real parts of the spectrum: 

at T-0.1 Tc . In this region, the equations for all the damping 
mechanisms ( 14) should have an exponential temperature 
dependence. 

The spin degrees of freedom do not alter the dispersion 
law. As an estimate of the influence of the spin motion on the 
damping, we note that E - D, ( xR/y%, ) 8 ', where D, is the 
spin-diffusion coefficient, x the susceptibility, R the dipole 
frequency, and c, the spin-wave velocity (Wc, is the reci- 
procal spin-oscillation penetration length). Recognizing 
that 0- kc in order of magnitude, and that the spin-diffusion 
coefficient is estimated for T- Tc at D, - V ~ T ,  we obtain for 
the energy dissipation per period [for the dispersion law 
(39) 1 

which is small compared with the damping due to viscosity 
and thermal conductivity at all values of k. 

2. Passage of sound through the =He A-6 phase boundary 

Since the bulk densities and velocities of the first sound 
are equal in the A and B phases of superfluid 3He [accurate 
to the small quantity (A/&, )'I, the first-sound wave passes 
almost completely through the boundary without reflection 
at not too low temperatures. It suffices for this purpose, for 
example, for the growth coefficient A to have the upper 
bound 

where u, is the first-sound velocity. The second sound is 
reflected and converted into first sound. Of greatest interest 
to us is the passage of fourth-sound wave, which it lends 
itself to experimental investigation." Let the interface be 
located inside a channel in which the conditions for fourth- 
sound propagation are met, and let its coordinate be x = 0. 
The volume is occupied by the A phase on the left (x < 0) and 
by the B phase on the right (x > 0). We assume that the 
liquid-crystal vector 1 is fixed by the walls and does not par- 
ticipate in the sound motion. Clearly, all the equations will 
contain the superfluid-density tensor component parallel to 
the channel axis. Let a fourth-sound wave be incident on the 
boundary from theA-phase side. We have then for the phases 
p, of the incident, p ; of the reflected, and p2 of the transmit- 
ted waves 

rpl=mi exp{io(- t+x/~,~)) ,  

rpl '=(DIIf  exp{io(-t-x/uLA)), (41 

rp2=02 exp {io(-t+z/ukB)). 

Here a,, @; , @, are the amplitudes of the corresponding 
waves, u: and uf are the velocities of the fourth-sound waves 
in phases A and B. We write for the interface motion 
f = <,, exp( - iwt). The velocity of the superfluid compo- 
nent and the chemical potential are expressed in the usual 
manner in terms of the phase (24). We recognize that in the 
fourth-sound wave the increments of the chemical potential 
and of the pressure are connected by the relation 

6p= ( ~ l ~ / ~ , ~ ) p , 6 p .  (42) 
To calculate the amplitude reflection coefficient Z 

= @; /@, we must use the conservation laws for the materi- 
al (3)  and the momentum1' (4) ,  and also the boundary con- 
dition ( 2  1 ), which is equivalent to the energy conservation 
law. Differentiating (24) and (42) and substituting in (3), 
(4),  and (21), we get 

Since, as noted above, PA =# ,  the variable go is eli- 
minated from (43a) and (43b) and these two relations suf- 
fice to calculate the coefficient 2. Expression (43c) deter- 
mines next the amplitude of the interface. Simple 
calculations yield 

Z= (44) 

We can simplify (44) even more. We recognize also for this 
purpose that uf = u:, and that the fourth-sound velocities 
are expressed in terms of the velocities u, and u, of the first 
and second sounds by the relation 

u,'= ( p,!p) u12+lp,lp)u,2. 

We have u, <u, in the entire temperature interval. There- 
fore, with good accuracy, u, = ( p, /p) 1'2ul. Equation (44) 
takes then the form 

z=[ (p,A)'ir-(p.B)"'] 1 [(paA)'i2S (pBB)'"]. (45) 

969 Sov. Phys. JETP 65 (5), May 1987 A. V. Markelov 969 



In this approximation, the boundary moves in such a way 
that the normal and superfluid components flow through the 
boundary independently, and the total flow through the 
boundary is zero. The amplitude of the boundary oscilla- 
tions is f, = ( p;/p) (a2/u4) [from Eq. (43c) 1. The result 
is independent of the surface mass and of the coefficient A. 
The sound-wave intensity reflection coefficient is equal to 
Z '. Since there are no energy losses on the boundary in the 
considered approximation, the sum of the squares of the re- 
flection and transmission coefficients is equal to unity. 

In fact, the periodic motion of the normal component 
through the interface is accompanied by periodic emission 
and absorption of heat on the boundary itself. In addition, 
owing to the boundary condition (33), a finite temperature 
jump should take place on the A-B boundary. This leads to 
energy dissipation, first on account of the onset of a damped 
temperature wave in the volumes of the phases A and B, and 
second on account of the surface dissipation coefficient K. 
The dissipation Q A!: due to bulk absorption the penetration 
depth q, of the temperature wave, and the amplitude 6T of 
the temperature oscillations, are estimated as follows: 

where Q,- T(SA - SB )f is the heat released on the surface 
and C, is the heat capacity of 3He. For the ratio of the dissi- 
pation Q to the incident energy flux Q- u, p, uf we have 

at T- A. This ratio is small at all reasonable values of w. 
An estimate of the dissipation QAT,' due to the finite 

Kapitza jump yields Q if,' -KTSB2f '. The ratio of the dissi- 
pation to the incident energy flux Q is then 

at T-A, which is negligibly small. The energy dissipation 
for the latter mechanism increases exponentially with K at 
low temperatures and can reach values of the order of unity 
at very low temperatures. Apparently, however, in this re- 
gion it is meaningless to speak of hydrodynamic fourth- 
sound waves. 

IV. CONCLUSION 

The boundary conditions on the A-B phase boundary of 
superfluid 3He were obtained on the basis of conservation 
laws and the second law of thermodynamics. The resultant 
transport coefficients can be arbitrarily divided into two 
classes, viz., "internal" surface coefficients that determine 
the connection between the surface generalized forces and 
the surface flows, and "external" coefficients that determine 
the connection between the bulk generalized forces and the 
flows through the surface. Off-diagonal cross kinetic coeffi- 
cients are also possible. As explained in the text, the quanti- 
ties of the first class should be neglected in the region where 
bulk hydrodynamics holds. With decrease of temperature, 
however, the bulk normal excitations fade away, since the 
density of the surface normal component remains finite even 
at zero temperature.I3 The surface hydrodynamics should 

include in this region the eighth and ninth transport coeffi- 
cients from ( 14). 

We have calculated the spectrum of the oscillations of 
the A-B phase boundary and the passage of fourth sound 
through this boundary. The natural oscillations of the 
boundary can apparently excited by thermal pulses. At 
T- T,, unfortunately, these oscillations are strongly 
damped. On going through the ballistic region, however, the 
imaginary part of the spectrum should decrease exponential- 
ly with decrease of temperature. Estimates give grounds for 
hoping to observe weakly damped oscillations at T-0.1 T, . 
(This temperature can be reached for the A-B phase bound- 
ary of 3He if a magnetic field - lo4 G is applied.) Surface 
absorption of fourth sound, on the contrary, is small at 
T- T, .  An investigation of the fourth-found reflection and 
transmission coefficients in this region is therefore an inter- 
esting experimental problem. 

In conclusion, I take pleasure in deeply thanking A. F. 
Andreev, M. Yu. Kagan, S. E. Korshunov, and Yu. A. Kose- 
vich for numerous helpful discussions of the results of the 
work. I am also greatly indebted to A. Leggett and S. Yip for 
their preprint. 

"Strictly speaking, account should be taken in the momentum-flux con- 
servation law, of the viscous terms in the momentum-flux tensor. They 
are, however, small. In fact, the off-diagonal component rY, - yv., /a(a 
is the channel thickness), v,, -(a/q2)2v,,q2-y/p~ is the viscous- 
wave penetration depth, and Sp-pSp-p(o/k)v,,. Therefore .n,/ 
Sp- ka is less than unity for the fourth-sound wave. 
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