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We consider nonstationary one-dimensional flows in dissipationless hydrodynamics with 
positive dispersion which is described by the nonlinear Schrodinger equation. We determine 
the conditions for the occurrence of dissipationless shock waves (DSW). We find analytical 
solutions describing the structure of the DSW. We point out the phenomenon of the 
overturning of DSW in a medium with positive dispersion, caused by cutoff of the flow due to 
the vanishing of the density near the trailing edge of the DSW. We obtain an asymptotically 
exact solution of the problem of the decay of an arbitrary initial discontinuity. 

$1. INTRODUCTION 

The studies of nonlinear nonstationary flows of disper- 
sive hydrodynamics are not only important for many prob- 
lems in the dynamics of a rarefied plasma, the hydrodyna- 
mics of waves on water, nonlinear waves in dielectrics, 
electro-acoustic waves, and so on, but are also of theoretical 
interest in their own right. Indeed, if we neglect the small 
dispersive terms, the flow is, as in ordinary hydrodynamics, 
described by the Euler equations. The most important fea- 
ture of nonlinear Euler dynamics is the overturning of a 
front leading to the appearance of a shock wave (Ref. 1, $ 
10 1 ) . The most important role in ordinary hydrodynamics is 
in this case played by dissipative processes which lead to the 
establishment of a shock-wave front which has a finite 
width. 

In dispersive hydrodynamics the motion following the 
onset of a singularity is, when there is no dissipation at all, of 
a nature which is different in principle. Here there appears a 
region which expands continuously with time and which is 
filled with undamped small-scale oscillations. This is a dissi- 
pationless shock wave (DSW).2 A consistent description of 
a DSW is rather complicated. It has only been possible to 
study small amplitude waves which are described by the 
Korteweg-de Vries (KdV) e q ~ a t i o n . ~  Moreover, a numeri- 
cal and analytical study of the decay of initial discontinuities 
in dispersive hydrodynamics made it possible to distinguish 
a DSW as an expanding region where the oscillations have a 
quasi-stationary nature and to find a relation which deter- 
mines the change in the mean values when one passes 
through a DSW, similar to the Rankine-Hugoniot adiabat in 
ordinary  hydrodynamic^.^ 

It is convenient to use for the description of an expand- 
ing region filled with quasi-stationary oscillations Whith- 
am's methodS which is based upon averaging the integrals of 
the initial equation over the oscillations. The resultant sys- 
tem of averaged hydrodynamic equations is rather compli- 
cated. These equations can be appreciably simplified if there 
exist Riemann invariants for them. Earlier, Riemann invar- 
iants have been found only for systems of averaged equations 
corresponding to an initial KdV e q ~ a t i o n . ~  Dubrovin and 
Novikov6 posed the general problem of a connection be- 
tween the existence of Riemann invariants of averaged equa- 
tions and the complete integrability of the initial equation 
(see also Ref. 7 and the comprehensive survey in Ref. 8). On 
the basis of these studies Pavlov9 recently determined Rie- 

mann invariants for a set of averaged equations correspond- 
ing to the nonlinear Schrodinger equation.'' 

We shall consider a nonlinear Schrodinger equation 
with repulsion (or defocusing), which describes dispersive 
hydrodynamics with an adiabatic index y = 2 and with posi- 
tive dispersion (see Ref. 1 1, $$ 15,16). The latter means that 
the wave velocity in the medium increases with increasing 
wave vector k. A study of the dynamics of nonlinear flows in 
such a medium is just the aim of the present paper. The use 
here of the Riemann invariants for the averaged equations 
simplifies their solution appreciably. We formulate in $ 2 the 
averaged Whitham equations in Riemannian form and con- 
sider their limiting transitions into a KdV system and into 
Eulerian hydrodynamics. We give in $ 3 the theory of DSW. 
We distinguish the concepts of quasi-simple and simple 
DSW. We obtain analytical solutions which completely de- 
scribe a simple DSW. We show that the structure of a DSW 
in a medium with positive dispersion is qualitatively differ- 
ent from the previously considered DSW for negative disper- 
sion: the wave starts, for instance, from very weak small- 
scale oscillations and not from solitons, and has on the fast 
leading edge a weak rather than a singular discontinuity (cf. 
Refs. 3,4). On the contrary, close to the trailing edge the 
density and the wave velocity undergo a very sudden change. 
The region occupied by the oscillations expands rapidly with 
time. 

In $ 3 we also introduce the phenomenon of the over- 
turning of a DSW with positive dispersion. It comes about 
because the density in the negative solitons near the trailing 
edge of the DSW vanishes, so that a singularity connected 
with the cutoff of the flow appears. The limiting value of the 
jump in the density at the DSW for which overturning oc- 
curs is (p, /p, ) , ,  = 4. We consider in 5 4 the decay of initial 
discontinuities. We give a complete classification and obtain 
analytical solutions describing the decay process for any ini- 
tial discontinuity in dispersive hydrodynamics with positive 
dispersion. 

An important application of the theory considered here 
refers to nonlinear optics and the nonlinear theory of the 
propagation of radiowaves in a plasma (in particular, in the 
ionosphere). The Euler equations correspond then to the 
geometric-optics approximation: the density corresponds to 
the wave intensity, and the velocity to the direction of their 
propagation in a plane at right angles to the beam axis. It is 
well known that nonlinear geometric optics is valid only up 
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to the moment when singularities appear on the profile of the 
beam intensity (see, e.g., Ref. 11, 5 13). Nonlinear oscilla- 
tions develop beyond the singular point and diffraction ef- 
fects become important. The method used in the present pa- 
per allows us to describe the structure of the beam both in the 
smooth and in the oscillatory region. The DSW demon- 
strates, for instance, how the oscillatory structure develops 
after the overturning of the profile of the beam intensity. 

92. WHITHAM'S EQUATIONS AND RIEMANN INVARIANTS 

The nonlinear Schrodinger equation with repulsion, 
which describes the wave propagation in a nonlinear defo- 
cusing medium, has the form'' 

The subscripts t and x here and henceforth indicate deriva- 
tives with respect to t and x. A change of variables 
u = plt2ei+', p, = v reduces Eq. ( 1 ) to hydrodynamic form 
(Ref. 11, 5 12): 

This set of equations describes one-dimensional hydrody- 
namic flows when there is no dissipation and when the dis- 
persion is positive. Indeed, the dispersion equation for the 
set (2) has the form 

whence it follows that there is no dissipation and that the 
dispersion is positive, since the phase and the group veloc- 
ities in the medium increase with increasing wave vector k. 
We emphasize that we use in (2)  dimensionless functions 
and variables: the densityp is normalized by some character- 
istic density valuepl, the velocity v by the sound velocity c, 
(at p = p, ) , the coordinate x by a characteristic length D of 
the oscillations which is determined by the small dispersion 
parameter 6, and the time t by a characteristic time of the 
oscillations D /c, (see Ref. 1 1 ) . The dispersion parameter in 
(2) is therefore of order unity, and the characteristic length 
and time of the oscillations are of the same order. If we ne- 
glect the last (dispersive) term in Eq. (2b), which is justified 
for sufficiently smooth large-scale motions, 

Eqs. (2) go over into the equations of ideal Eulerian hydro- 
dynamics with adiabatic index y = 2 (i.e., with pressure 
p =p2/2). 

Equations (2)  have stationary solutions in the form of a 
periodic traveling wave f (x - Ut) : 

Here U and bi are arbitrary constants (6, > b2 > b, ); dn (is a 
Jacobi elliptic function. The parameters of the elliptic func- 
tion dn ( are connected with the b, through the usual rela- 
t i o n ~ : ~ ~ ' ~  

The wave vector k of the oscillations is then given by the 
formula 

(K(s) and E(s)  are complete elliptic integrals of the first 
and second kind. ) 

The values ofthe hydrodynamic quantitiesp and v aver- 
aged over the period of the stationary wave (5)  can be ex- 
pressed in terms of the parameters U and b, through the 
formulae (see Ref. 13 ) 

p=bi-(bt-bs)E(s)/K(s), - 
iT=LJ-(b2bs/bl)" 

( 8 )  

Here F(q,s )  and E(p,s) are incomplete elliptic integrals of 
the first and second kind, 

rp=arcsin[ (b,-b3)'"/b1'"], s12=l-sZ. 

One can look for quasi-stationary solutions of the set 
(2)  in the same form (5) assuming that the parameters b, 
and U are not constant, but vary slowly as functions ofx and 
t. Their evolution is described by Whitham's equations, 
which in the case considered here can be written in Rieman- 
nian form. The Riemann invariants ri are connected with the 
parameters bi, U of the stationary wave through the follow- 
ing relations: 

U='/, (rl+r2+r3+rk) , 

b~=~/~~(r~+r~-r~-r~)'='/~~(A~~-A~,)~. 

Here 

Whitham's equations which describe the evolution of the 
invariants ri have the form (Ref. 9 ) " 

where 

Vk(r)=U(r)+Wk(r), 

Wi=Atz [2(~-Azr,E(s)/Ai*K(s) )I-', 

Here 

The inverse formulae expressing the Riemann invariants in 
terms of the parameters of the quasi-stationary wave have 
the form 

The expressions for the R, depend here on the sign of (A3,- 
AI2). If (A,,-A,,) > 0, we have 

945 Sov. Phys. JETP 65 (5), May 1987 A. V. Gurevich and A. L. Krylov 945 



If, however, (A3,-A,,) < 0, we have 
RI=blii2+b21h+b3%, R 2 = ~ I ' ~ ~ ~ z ' ~ ~ b 3 ' ~ r  R3  
- - - b , ' ~ ~ + b , ' ~ ~ - b , ' I ~ ,  R 4 --b,'"-b,'/~+ - b3'l? 

We consider limiting cases. We assume that the invar- 
iants r,, r,, r, are close in magnitude and differ considerably 
from r,: 

It then follows from ( 1 1 ) that 

Neglecting the change in the invariant r,, i.e., putting 
r, = r,, we rewrite Eqs. ( 1 la)  in the form 

We replace now the r, by new values r,* = {r, + ir,, and go 
over to the equations for the r,* which are exactly the same as 
the Whitham equations for KdV.5,3 We have thus made the 
transition to the KdV system ( 14) by assuming the invariant 
r, to be constant: r, = r,, (the last of Eqs. (1 la)  is then 
identically satisfied) and to differ appreciably from the in- 
variants r,, r,, r, which lie close to one another [Eq. ( 13) ]. 

We now consider the singular points where the invar- 
iants intersect (or merge). Let, for instance, r ,  = r, = r,. 
Then 

and, hence, 

In this case 

so that the characteristics of the invariants r, and r, are 
joined together. We then get for the invariants r3 and r, 

and Eqs. ( 11 ) take the form 

(16) 
One checks easily that these equations are identically the 
same as the Riemannian form of the hydrodynamical Eqs. 
(2) in the Euler limit, i.e., when one neglects the dispersion 
terms. Indeed, the Euler equations 

are reduced to the Riemannian form using the invariants 
(Ref. 1, $ 104) 

One easily sees that the equations for the Riemann invariants 
r+ and r- are exactly the same as ( 16). From the continuity 
condition for the hydrodynamic quantities p and v we find 
that also the values of the invariants r, and r, in that case are 
the same as r+  and r-: 

Therefore, when r, and r, merge the invariants r, and r, 
in fact become invariants of the Euler Eqs. ( 17). Therefore, 
as should be the case, when r, = r, we have by virtue of ( 15) 
b, = 6,  and the amplitude of the oscillations in (5) vanishes. 
Hence, the oscillations vanish and Whitham's Eqs. ( 1 1 ) 
must then be identical with the Euler Eqs. ( 17). 

The same transition also occurs when r, = r,. In this 
case 

and hence 

so that now the invariants r, and r, turn out to be identical 
with the invariants of the Euler equations: 

The oscillations vanish in this case as follows: they turn into 
separate negative solitons (see ( 5 ) and the distance be- 
tween them tends to infinity, as k-0, when r,-r, [Eq. 
(20) I .  

53. DISSIPATIONLESS SHOCK WAVE 

Broad discontinuity 

In Euler hydrodynamics the evolution of a finite-ampli- 
tude perturbation in a compression wave always leads to the 
appearance of a singular point on the wave front (Ref. 1, §§ 
101, 103). Beyond the singular point in dissipationless dis- 
persive hydrodynamics there appears and gradually expands 
in time a region filled with small-scale oscillations (Fig. 1 ) . 
This is the DSW region. 

The hydrodynamic flow and the oscillations in the 
DSW region are, when the conditions (4) for the average 
quantitiesp and ii of (8) are satisfied, described by Whith- 
am's equations. Outside the DSW there are in the same limit 
as t- co no oscillations, and the flow has here a purely hy- 
drodynamical character and is described by the Euler equa- 
tions. 

We formulate the conditions for the matching of the 
Whitham and Euler equations at the boundaries of the 
DSW. To do this it is convenient to use the Riemann invar- 
iants. In the DSW region there are the four invariants 
(r,,r2,r,,r4) of ( 10) and in the Euler region the two (r+,r- ) 
of ( 18). Their matching is accomplished in the general case 
in the way shown in Fig. 1. The boundaries of the DSW are 
defined as the lines where the invariants reclose (or merge) : 
on the one boundary r, merges with r, (i.e., s = 0)  and on the 
other one r2 merges with r, (i.e., s = 1 ) . In that case on the 
first boundary according to ( 19) r, (i.e., s = 1 ) . In that case 
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on the first boundary according to ( 19) r3 links up with r+  
and r4 with r-; on the second boundary according to (21 ) rl 
links up with r+ and r4 again with r-. Thus 

The indexes 1 '  indicate here the leading boundary of the 
DSW and the index l 2  the trailing one. It is clear from (22) 
that in the positive-dispersion case considered here always at 
the leading edge of the DSW, small amplitude oscillations 
(s2 -+ 0, a - 0)  arise which qualitatively distinguishes it from 
the negative-dispersion DSW that starts with a steep soliton 
front (see Refs. 3, 4). 

We show that the boundary conditions (22) are suffi- 
cient for an unambiguous determination of the solution. The 
Euler invariants r+  and r- ahead of the DSW are deter- 
mined at any point by Eqs. ( 17) and ( 18 ) and also by the 
initial and boundary conditions of the problem, and we must 
therefore consider them in (22) as being given. The four 
conditions [the first two from (22a) and the first two from 
(22b) ] constitute a complete set of boundary conditions for 
the parameters r, . Equations ( 11) determine them next in 
the whole DSW region. The last two conditions in (22a) and 
(22b) serve as boundary conditions for the invariants r+ and 
r- in the Euler region beyond the DSW. 

We emphasize that the DSW boundaries s = 0 and 
s = 1 are not the location of a singularity for the external, 
Euler part of the solution. At the same time they are singular 
lines where the characteristics for the interior Whitham re- 
gion merge. For an effective use of the boundary conditions 
(22) in that region it is necessary to elucidate the form of the 
solution of Eqs. ( 11) near the singular points. An analysis 
similar to the one given in Ref. 3 leads to the following re- 
sults. Near the leading edge of the wave (s2 = 0)  we have, 
when r: ( t )  = r: ( t )  = r1 ( t ) ,  

(xi (t) -s) 1 2r'-r3'--r4' 1 [3  (r3'-rL1)' I "  

FIG. 1. Occurrence of a dissipationless shock wave. a: intersection of the 
characteristics of the Euler equations in the x, t plane (occurrence of a 
singularity). The dashed lines are the boundaries of the DSW region 
(leading edge for the largerx). b: Riemann invariants as functions of x for 
t = to. 

where according to (22a) r: = r'+ (t) ,  r i  = rl- ( t ) .  Here 
x1 ( t )  is a point on the leading edge. It is clear from (23) that 
the amplitudea of the oscillations which is proportional tos2 
increases near the leading edge x l ( t )  as (x l ( t )  - x )  'I2. 

Similarly, near the trailing edge of the wave (s = 1 ) we 
have, when 6 = 4 = ?(t) ,  

16 (r12-r42) drZ 
s : ( lnq++)= - - (x-x2 ( t )  ) . (24) 

si (ri2-r2) (r2-rk2)2 dt 

Here, according to (22b) 

rlZ=r+2(t), rb2=r-2(t), 

where rf = r, 12. It is clear that near the trailing edge x2(t)  
the wave vector k vanishes in proportion to 
[ln(x -x2( t ) ) ] - l .  It follows from (24) and (8) that as 
x +x2 ( t )  the average values p and ij also tend to their limit- 
ing values according to the law [ln(x - x2( t )  ] -'. On the 
trailing edge p and iS have therefore in the general case a 
singularity with an infinite derivative. 

Conditions (22)-(24) show that a DSW occupying a 
spatial region which is finite and continuously expanding 
with time can be inserted in the solution of the Euler equa- 
tions. In that sense one can say that the Euler equations 
allow strong discontinuities which expand with time and the 
DSW is such a discontinuity. Following Ref. 4 one may call 
this discontinuity an expanding or even a broad discontin- 
uity, since one cannot make it infinitesimally narrow 
through any choice of variables whatever. Such discontinui- 
ties arise only in dispersive hydrodynamics. 

We now dwell on a few particular cases. 

Quasi-simple wave 

We consider a simple Riemann wave in Euler hydro- 
dynamics (Ref. 1, §§ 101, 104). This a particular solution of 
the Euler Eqs. ( 17) or ( 16), for which one of the invariants, 
for instance, r-, is constant: 

r-=const=ro. (25) 

It follows from ( 16) that the evolution of the invariant r+  is 
then described by the equation of a simple wave: 

d~ -+ /d t+ (~ /~ r+ f  i/4ro)dr+/dx=0. 

The hydrodynamic velocity v and the density p are in the 
simple wave connected through the relation ( 18), (25): 

v-2pZ"=ro. (26) 

After the overturning of the simple wave a DSW is 
formed in dispersive hydrodynamics. The equation ( 11) for 
the invariant r4 with the boundary conditions (22), (25) is 
then identically satisfied if we put 

It is thus natural to call the DSW quasi-simple. It arises 
from a simple Riemann wave and its evolution is completely 
described by the change in only three invariants: r,, r,, r3 
according to Eqs. ( 1 1 ) with the boundary conditions (22). 
The fourth invariant then stays constant: r, = r- = r,,. We 
show in Fig. 2 the behavior of the invariants in a quasi-sim- 
ple wave. 

The quasi-simple waves are a broad class of DSW. They 
are, in particular, all DSW described by the KdV equation- 

947 Sov. Phys. JETP 65 (5), May 1987 A. V. Gurevich and A. L. Krylov 947 



FIG. 2. Riemann invariants for a quasi-simple DSW. 

the quasi-simple waves go over into them as ro-+ - co . It is 
also important that quasi-simple waves appear when a sim- 
ple wave overturns in any Eulerian hydrodynamics. More- 
over, a quasi-simple wave always describes the process of the 
appearance of a DSW. Indeed, a DSW emerges after singu- 
larities arise in Eulerian hydrodynamics. It is clear from Fig. 
1 (see Ref. 1,§ 103 ) that the singular point then corresponds 
to the intersection of characteristics only of one of the invar- 
iants-we call it r,. The change in the second invariant, r-, 
in the region where the DSW arises can then always be ne- 
glected, i.e., we may assume it to be constant. And this 
means that the DSW in the region where it arises is a quasi- 
simple wave. Moreover, in the vicinity of the point of over- 
turning one can split off the main, non-changing part also of 
the second invariant: r+ = r,, + Ar+, IAr, I <r+,. Equa- 
tions ( l l ) then reduce to the equations for the Riemann 
invariants for the KdV system (14) and we are led to an 
already solved problem of the appearance of DSW in the 
KdV ~ys t em.~  

The boundary condition (22) for quasi-simple waves 
can be formulated in a compact form not only in terms of 
Riemann invariants but also as a condition on the hydrody- 
namic variables. Indeed, using (22), (25), (26), (27), and 
eliminating the invariant r, we find 

vz-vl=2 (p2'"-p,"). (28) 

Here v,, p ,  and v,, p, are the values of the hydrodynamic 
velocity and the density, respectively, at the leading and 
trailing edges of the DSW. The jump in the velocity when 
one passes through a quasi-simple DSW is thus uniquely 
connected with the jump in the den~ity.~ '  The condition (28) 

X 

FIG. 3. Riemann invariants for a simple DSW. 

in the actual case y = 2 considered here is exactly the same 
as the general condition for passing through a DSW formu- 
lated in Ref. 4. This condition replaces the Rankine-Hugon- 
iot adiabat in ordinary hydrodynamics. 

We emphasize that condition (28) is valid only for qua- 
si-simple DSW. In the general case conditions (22) hold. 

Simple DSW 

We now consider the case of uniform flow in Euler hy- 
drodynamics when not only the invariant r- but also the 
invariant r+ is constant; only the constant is different at the 
left and the right boundaries of the DSW: 

It is clear from (18) that in this case the hydrodynamic 
quantities, the density p and the velocity v, undergo a con- 
stant jump on passing through the DSW. This corresponds 
to the classical statement of the shock wave problem in ordi- 
nary hydrodynamics. 

The solution of Eqs. ( 1 1 ) with the boundary conditions 
(22), (29) is clearly: 

where r,, r,,, rO2 are given constants and the velocity V2 is 
given by Eq. ( 1 lb).  It is clear that in the DSW considered 
only one Riemann invariant, r,, varies. It is thus a simple 
Riemann wave in dispersive hydrodynamics. It is natural 
therefore to call it a simple DSW. 

It is well known (Ref. 1, 8 101) that one can write the 
general solution of Eq. (30) in the following form:r, depends 
on only one parameter, r ,  and this dependence is given impli- 
citly by the relation 

while the connection between r and x and t is given by the 
equation 

x=zt+ P ( T )  . (32) 

Here P(T) is an arbitrary function. We show the behavior of 
the invariants in a simple DSW in Fig. 3. 

We analyze in detail the solution obtained. Let the den- 
sity and the velocity behind the DSW bep =p, and v = v,,, 
and in front of itp = p,  and v = u, .  Without losing generality 
we may assume that p ,  = 1 (we measure p in units p ,  ), 
v, = 0 (we go over to the appropriate system of coordinates) 
andp, > 1 (the DSW is a compression wave). The velocity v, 
is then determined from Eq. (28 ) : 

and, thus, the density jump po is the only parameter in the 
problem. Hence, the dissipationless shock wave is complete- 
ly determined by specifying the density jump p,. 

Using (30), (29), (18) we find the values of the con- 
stant invariants: 

Moreover, it is convenient to express all quantities in terms 
of s2. We have 

[2p01"-1+ (pol/'-I) Zs2]Z 
bl = 

( I  + (po'"- I )  s2) " 
[ I  + (pa-I) sZI2 [I -(p;12-l)2s:]2 

b, = b3 = 
[ I  + (po"--l)s2]2 ' [I + ( p " ' ~ - 1 ) ~ ~ ] ~  
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Equation (3 1 ) then takes the form 

Equations (35), (36),  (32), are the final ones. They allow us 
to find both all average values (7 )  and (8)  in which we are 
interested and the oscillatory structure of the DSW at any 
point x and t for any density jumppo. 

It follows from (33), in particular, that the point 
r = 7.' determined by the position of the leading edge of the 
wave is 

and the point r- corresponding to the trailing edge 

Hence it is clear that the width of the DSW increases rapidly 
with increasing density jump: 

We show in Fig. 4 the behavior of the parameter s2, the 
wave vector k, the amplitude a of the oscillations, the aver- 
age densityp, and the average velocity is in the DSW as func- 
tions of r for various values of the density jumppo. It is clear 
that both on the leading and on the trailing edge of the wave 
the average values of the hydrodynamic quantities p and i7 
undergo a weak discontinuity. However, on the trailing edge 
this discontinuity is singular: the derivatives dp /dr and diJ/ 
dr  tend to infinity (cf. Ref. 3 ) .  The velocity of the motion of 
the trailing edge (29) then turns out to be equal to the sound 
velocity as k+O, (3) ,  i.e., the nonlinearity does practically 
not affect the motion of the solitons. This also distinguishes 
substantially the wave considered from the negative-disper- 
sion case where the soliton velocity is always determined by 
the n ~ n l i n e a r i t ~ . ' ~  

We study the behavior of the wave in the vicinity of the 
leading and the trailing edges. Expanding all quantities in 
powers of s2 we find near the leading edge r + :  

FIG.  4. Average quantities as functions o f  T = x / t  
in a DSW: a:p,  = 2.25; b:p ,  = 4.0; c: as function o f  
s2, po = 2.25. 
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FIG. 5. Oscillatory structure of a DSW for p, = 2.25: a: 
t = 10; b: t = 1000 (trailing edge). 

where 

s~=(T+-T) (2po'h-l) {3po'"(po"-I) [ (2p0'"-1)2+1/21)-1~ 

(41 

It is clear that when the distance from the leading edge of the 
wave x+ - x increases the amplitude of the oscillations in- 
creases linearly according to (40) and (41), and the average 
density and velocity increase only quadratically. This case 
differs thus from the usual picture for the increase of a per- 
turbation near the leading edge, (23), of a DSW. 

Close to the trailing edge we find by expanding in sf 
= 1 - s 2  

r2=2+si2.4 (p,'"-l)/po'i', a=2 (p0"'-1) - ~ , ~ ( 2 ~ ~ ' " - 1 )  /PO, 

k=4n (po"'-l)'hA-l, A=ln(16/si2), p=pO-8 (poi'-I) k', 

where 

It is clear that near the trailing edge the wavelength tends 
logarithmically to infinity while the averagesp and ij have a 
singularity. 

We show in Fig. 5 the behavior of the oscillations p (x)  
and u(x) in the DSW, constructed according to (5),  (35), 
(36) (the function P(T) is here taken to be zero, which cor- 
responds to a self-similar motion T = x/t). The minimum of 
the first soliton is fixed at the point of the leading edge x-/ 
t = p i  (for a more rigorous determination of the phase of the 
oscillations see Ref. 14). From this figure it is clear that the 

region occupied by oscillations shifts to the right when t in- 
creases and expands rapidly. Near the trailing edge there are 
then split off negative solitons and the distance between 
them increases logarithmically, (42), (43). This is clear 
from Fig. 5b where we show the region near the trailing edge 
for the large value t = 1000 (the whole wave in that case 
contains already more than 800 oscillations). Attention is 
called to the steep increase of the magnitude of the velocity 
near the peaks of the negative solitons. This increase is the 
consequence of the appreciable lowering of the density: in 
the peak the densityp, = 0.25, i.e., almost an order of mag- 
nitude less than the average (p ~ 2 . 2 )  which leads through 
the conservation of flux to a steep increase in the magnitude 
of the velocity. 

We assumed above that p ,  = 1, v,  = 0, p, > 0. We now 
turn to a jump with arbitrary values ofp,, p ,, and u , .  To do 
this we put p, =p,/p,, and for the reference solution con- 
structed abovep ,;) and fi The solutionp, u can 
then be expressed for all values ofp,, p,, v l  in terms of the 
reference solutionp,6 through the following formulae: 

where 

Turning over of the DSW 

We determine the value of the density p at the peak of 
the first soliton. It follows from (35) and (5)  that 
pm = b3Is = , i.e., 

Hence it is clear that with increasing po (when p, < 4) the 
density decreases. The flow velocity at the same point is 
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Lowering the density in the soliton peaks is the cause of the 
appearance of singularities. Indeed, it is clear from (46) and 
(47) that as p,-4 the density p, -0, and the velocity 
v, - - a. Condition (6)  is then violated (b,--0). 

The appearance of singularities is connected with the 
cutoff (or blocking) of the flow in the solitons near the trail- 
ing edge. It is interesting that a singularity arises then when 
the velocity of the outflow of gas from the trailing edge of the 
DSW vanishes: u- = r -  - v,. Indeed, it is clear from (38) 
and ( 3 3 )  that 

Whenp, > 4 there is no singularity in the region of the first 
solitons, but in compensation it shifts into the interior of the 
wave: p and b, tend to zero and v to infinity when s = s, , 
wheresi = (pb - I)-'. 

The singularity considered here is similar to the singu- 
larity arising due to the overturning of solitons in DSW with 
negative dispersion.294 It is therefore natural to call it the 
overturning of DSW in media with positive dispersion. 

$4. DECAY OF INITIAL DISCONTINUITIES 

The general solution of the problem of the decay of an 
initial discontinuity in dispersive hydrodynamics was con- 
structed in Ref. 4. However, it did not allow one to deter- 
mine the location and structure of the dissipationless shock 
waves which arose. We shall obtain here a complete asymp- 
totically exact solution of this problem. 

Let at the initial time t = 0 the densityp and the velocity 
v undergo a discontinuity: in the left-hand half-spacep = p,, 
u = v,, and in the right-hand onep = p,, v = v,. Without loss 
of generality we can (by measuring the density in units ofp, 
in a system moving with velocity v , )  put p,, v ,  = 0, p, > 1. 
Thus, for t = 0 

According to Ref. 4 (cf. Ref. 1, § 100) on decay of an 
initial discontinuity either a DSW or a rarefaction wave 
moves on both sides of it. Between these waves there appears 
a plateau region: p = const = p,, u = const = v, using Eqs. 

(28), (33) when passing through the DSW or through the 
rarefaction wave (see footnote 2).  Bearing in mind that the 
waves move in opposite directions, we have 

whence 

p"=11,(p2'"-l-2+i12v,)2, vo=p,'"-l+'l,v2. (49) 

We have assumed here that the velocity v has a positive sign 
in the direction of the gradient ofp, i.e., in the direction of 
the x-axis. One arrives easily at the same result by using the 
conservation of the invariants r+ and r- of ( 18) when pass- 
ing through the DSW or the rarefaction wave. 

First of all, starting from the overturning condition 
p, = 4 (see (46), (47) ), we determine from (49) the range 
of values of the parameters for which the solution of the 
initial problem (48) exists without the appearance of the 
overturning singularity: p2<9( 1 - + v , ) ~ .  Moreover, de- 
pending on the relation between p, and v, or p, and p, the 
following four cases are possible (see Figs. 6, 7 ) .  

l.p,>p,,i.e., v2>2(pl  - 1). 
In that case (Fig. 6a) compression waves (DSW) prop- 

agate on both sides of the initial discontinuity (cf. Ref. 4). 
Since the density and the velocity in the DSW change, then 
from the constant values p,, v, on the plateau to other con- 
stantvaluesp,andv,asx+ - ~ , o r p ,  = l ,ul =Oasx-CO, 
these are in both cases simple DSW. Using for them the for- 
mulae given in the preceding section, we can construct the 
following solution: 

p=pz if t< (Zf  +v2)  p,'", 

p=p?p (poz,  151) if ( ~ + + v ~ ) p , ' " < t <  ( ? - + ~ , ) p , ' ~ ,  

p=po if pz" (?-+vz) < z<z-, 

p=p (po, 7 )  if t-< t=Z t+, 

p=I if t>7+,  (50) 

FIG.  6. Decay o f  initial discontinuities: a: po>p,; b: 
p2>po>1;c:  l>po>O;d:po=O.  

I 
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FIG. 7. Classification of the decay of initial discontinuities in the plane of 
the adiabatic invariants r, ,  r - :  1 :  po>p,; 2: p, >po> 1; 3: 1 >po> 0; 4: 
po = 0; 5p, > &region of overturning of the DSW. 

We have given here the asymptotic solution of the Euler- 
Whitham equations, averaged over the oscillations, with the 
boundary conditions (48 ). The functions (p , ,~ )  , i7 ( p , , ~ )  
are given by Eqs. (35), (36). Herep,, =p,/p,. The points 
T- and T+ are the given functions (37), (38), and the points - - 
T , ?+ are the same functions ofp,, but taken with the oppo- 
site sign (?- < 0, ?+ < 0). Moreover, Eqs. (44), (45) have 
been used. We give in Eqs. (50) only the averaged quantities. 

The oscillations are, generally speaking, excited both in 
the plateau region pi (?- + u2)  <T<T- and in the regions of 
the dissipationless shock waves pi (?+ + u,)(T 

Q I  (?- + u,),T-<T<T+. However, the amplitude of the 
oscillations on the plateau decreases with time according to a 
power law a a t  -'I2 (see Ref. 4) .  In the solution which is 
asymptotic in t  only the quasi-stationary oscillations which 
are excited in the DSW regions are important. Their struc- 
ture is completely described by Eqs. (35), (36), and (5), 
taking (44), (45 ), and (50) into account. We thus obtain an 
asymptotically exact solution of the initial problem (48), 
which gives both the average quantities and the behavior of 
the oscillations. One determines easily in the case considered 
also the change in all the adiabatic invariants; it is shown 
schematically in Fig. 6a. 

2. 1 <po<p2, i.e., 2(1 --pi) <u2<2(p i  - 1).  
In this case (see Fig. 6b) there propagates to the left of 

the initial discontinuity a rarefaction wave (p, >po), and to 
the right a compression wave, DSW (po > 1 ) . The asympto- 
tic solution then has the form 

The rarefaction wave is determined by the solution of the 
Euler Eqs. ( 17) and ( 16). In the vicinity of weak discontin- 
uities there arise, when the rarefaction wave is matched to 

the plateau region, oscillations with an amplitude which de- 
creases with time a  t  -'I3 (see Ref. 4).  In the DSW region 
the structure of the oscillations is given by Eqs. (35), (36), 
(5).  The variation of the adiabatic invariants is shown in 
Fig. 6b. 

3.0<po<1,i.e. ,  -2(pf  + l ) < u 2 < 2 ( 1  - p i ) .  
In this casep, < 1 (Fig. 6c) so that on both sides of the 

initial discontinuity rarefaction waves propagate. In that 
case no quasi-stationary oscillations arise in the flow and the 
asymptotic solution has the simple form 

The behavior of the adiabatic invariants is shown in Fig. 6c. 
4 . ~ 2 <  -2(pi  + 1). 
In this case (Fig. 6d) the density p, on the plateau van- 

ishes, the medium breaks up and there appear a vacuum re- 
gion and two rarefaction waves in the vacuum. In the Euler 
approximation the solution is given by Eqs. (52), but p,- 0 
and the critical points where the density vanishes are, re- 
spectively, 

The width of the vacuum region is AT = - 2(pi + 1 ) - u,. 
In the vicinity of the singular points T,,, and T,,, one needs a 
special study of the solution of the set of Eqs. (2)  describing 
the transition to the vacuum (see Ref. 10, Ch. IV) . 
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