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Transport processes are considered in a single nonequilibrium gas-solid system in the case of 
propagation of a high-frequency (oOrp & 1, where w, is the frequency of sound and rP is the 
thermal phonon lifetime) surface acoustic wave in a solid. Absorption (creation) of single 
acoustic phonons by gas molecules when these molecules are scattered by the surface is the 
microscopic mechanism of interphase nonlocal transport effects (transport in one medium 
dependent on a nonequilibrium state of another medium) which occur under these conditions. 
A kinetic theory of a single nonequilibrium gas-solid system is developed and it is shown that, 
in particular, the dependence of the resultant energy flux in a gas on the mass of molecules and 
temperature is fundamentally different from the corresponding dependence obtained within 
the framework of the traditional mechanism of the interaction of gas molecules with a surface 
which is in a local equilibrium but vibrates under the action of the propagating sound. The 
theory has made it possible to explain for the first time the experimental data on the influence 
of a gas on the absorption of surface sound. A study has also been made of a new macroscopic 
motion of the gas along the surface, which is due to the drag of molecules by acoustic phonons. 
In the case of propagation of surface sound along a wall of a channel the velocity of flow of 
collisionless gas is proportional to w r ,  is independent of the mass of the molecules, and under 
typical experimental conditions can reach an easily measurable value of the order of tens of 
centimeters per second. 

1. INTRODUCTION 

It is shown in Ref. 1 that under nonisothermal condi- 
tions the transport of heat and mass at a gas-solid interface 
may be strongly nonlocal: the processes of transport in one 
medium may depend on a nonequilibrium state of the other 
medium. We shall develop a theory of interphase nonlocal 
transport phenomena in a gas-solid system which appear as a 
result of a different type of nonequilibrium representing 
propagation of a surface acoustic wave in a solid. The ab- 
sorption of sound by a gas represents an interphase transport 
effect if, as assumed below, it is associated with the absorp- 
tion of acoustic phonons by gas molecules when these mole- 
cules are scattered by the surface. This approach has made it 
possible to explain for the first time the available experimen- 
tal data on the influence of a gas on the absorption of surface 
sound and to predict macroscopic motion of a gas along a 
surface due to the drag of molecules by acoustic phonons. 

When sound propagates in a solid, its wavelength is 
considerably greater than the interatomic distances or than 
the radius of action of molecule-surface forces right up to 
frequencies w, - 10'' - 1012 Hz. It  would therefore seem 
that even at high frequencies a natural approach to the inter- 
action of molecules of sound would be to consider that inter- 
action as the scattering by a vibrating macroscopic element 
of the surface. However, the experimental data2 on the de- 
pendence of y, = y - y ,  (y  is the absorption coefficient of 
surface acoustic waves and y, is the value of y in the limit 
p - 0) on the frequency of sound w, and on the mass of gas 
molecules m can be described (see Sec. 4 below) by a kinetic 
theory of a gas bounded by a surface vibrating macroscopi- 
cally due to propagation of sound only at frequencies in the 
range (wo)/2n-) < lo9 Hz. The experimental results ob- 

tained at higher frequencies cannot be explained by this the- 
ory, which postulates a local equilibrium of a solid. On the 
other hand, at frequencies (w,/2a) 2 lo9 Hz and at room 
temperature the frequency of collisions of thermal phonons 
with one another (r,- I ) ,  typical of problems on the absorp- 
tion of sound in solids, is comparable with the frequency of 
sound.3 Therefore, the mechanism of the scattering of mole- 
cules by a macroscopically vibrating local-equilibrium ele- 
ment of the surface may become inapplicable: the scattering 
law may generally depend not only on temperature, but also 
on the (nonequilibrium) state of the solid. In this case it is 
necessary to consider the gas and solid as a single nonequilib- 
rium system. 

We shall consider the case when w,r, ) 1 and the ab- 
sorption of sound in a solid is regarded as the absorption of 
single acoustic phonons.4 We can assume5 that, in spite of 
the large acoustic wavelength, the scattering of molecules on 
the surface of a solid is also accompanied by creation and 
annihilation of acoustic phonons, as well as of phonons of 
higher frequencies. Within the framework of this mecha- 
nism the description of the absorption of sound by a gas 
clearly requires the development of a kinetic theory of a sin- 
gle nonequilibrium gas-solid system. Such a theory is devel- 
oped below and it provides a unified description of the at- 
tenuation of high-frequency surface sound and of the 
associated transport processes both in the gas and solid. Our 
theory will allow us, in particular, to explain the mass and 
frequency dependences of y, observed in the gigahertz range 
of frequencies,* which are known to be due to the competi- 
tion between the high-frequency mechanism of creation 
(annihilation) of acoustic phonons by gas molecules and the 
low-frequency mechanism of the scattering of molecules on 
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a vibrating surface which is in a local equilibrium. An impor- 
tant feature of the proposed high-frequency mechanism is 
the drag of molecules by a flux of acoustic phonons which 
results in macroscopic motion of the gas along the surface. 
As shown below, under typical experimental conditions the 
flow velocity may reach an easily measurable value of -0.1 
m/sec. We shall use our kinetic theory to predict the fre- 
quency and temperature dependences of the coefficient y, 
representing the absorption of surface acoustic waves in a 
solid. They agree with the available experimental data6 and 
with the theoretical dependences obtained earlier7 for a sim- 
ple model of a solid by calculating the dynamic matrix of a 
semi-infinite anharmonic crystal. 

In the next section we shall formulate for the distribu- 
tion functions of surface phonons, bulk phonons, and gas 
molecules the transport equations and the boundary condi- 
tions which allow us to describe the transport processes in a 
gas-solid system, including those during propagation of 
high-frequency sound. We shall next consider the attenu- 
ation of surface acoustic waves due to the absorption of 
acoustic phonons by thermal phonons (Sec. 3 )  and also due 
to the absorption of acoustic phonons by gas molecules (Sec. 
4).  In Sec. 5 we shall discuss the flow of a gas due to the drag 
of molecules by acoustic phonons. 

2. SYSTEM OF TRANSPORT EQUATIONS AND BOUNDARY 
CONDITIONS FOR THE DISTRIBUTION FUNCTIONS OF 
MOLECULES AND PHONONS 

We shall consider a system formed by a gas and an insu- 
lating single crystal, which are separated by a cleaved sur- 
face of the'crystal coinciding with the z = 0 plane. We shall 
distinguish between the subsystems of gas molecules, vol- 
ume (bulk) phonons, and surface phonon~ .~  The subsystem 
of molecules, in which we shall include those outside the 
range of action of the surface forces, will be described by a 
distribution functioc f(v) ,  where v is the velocity of a mole- 
cule. In the subsystem of volume phonons we shall include 
those phonons which are localized outside the surface region 
where the vibrations of atoms of a semi-infinite crystal differ 
considerably from the vibrations of atoms in an ideal infinite 
crystal. We shall describe the subsystem of volume phonons 
by a distribution function n (k  j ) ,  which represents the aver- 
age occupation number of a vibrational mode of an infinite 
crystal characterized by a wave vector k and a polarization j. 
The distribution functions f and n satisfy the familiar trans- 
port equations4s9 : 

Here, I, and I, are the collision integrals of molecules and 
phonons, respectively; r = (x,y,z) is the spatial coordinate; t 
is time; c = dw (k  j ) / a  k, where w (kj) is the frequency of a 
vibrational mode (k, j). 

Near the boundary in a solid there is also the subsystem 
of surface phonons localized in surface vibrational 
r n o d e ~ ' ~ . ~ '  of a semiinfinite crystal. The interaction of sur- 
face phonons with one another and with volume phonons 
scattered on the surface is due to the anharmonicity of the 
atomic vibrations in a solid. It has been shown experimental- 

lyI2 that a magnitude of this anharmonicity near the surface 
is comparable with the anharmonicity of vibrations of atoms 
in the bulk. Consequently, the anharmonicity in the interac- 
tion of phonons near the surface can be regarded as a pertur- 
bation in the same sense as the anharmonicity in the bulk of a 
solid when calculations are made4p9 of the collision integral 
I, in Eq. (2.2). The interaction of the subsystem of surface 
phonons with gas molecules, due to the scattering of the lat- 
ter by the surface of a solid, may also be regarded as weak 
because the densities of a gas and a solid differ by many 
orders of magnitude. Then, the transport equation for the 
distribution function v of surface phonons, representing the 
average occupation number of each surface mode, can be 
written in the form 

Here, the collision integral I, allows for the interaction of 
surface phonons with one another and with volume phonons 
because of the anharmonicity of vibrations of atoms in a 
solid, and also the interaction of these phonons with gas mol- 
ecules; R = ( x , y )  is the vector in the t = 0 plane; 
cg = dw (Kg)/a K, where w ( K l )  is the frequency of a sur- 
face mode with a wave vector K tangential to the surface and 
a polarization l .  We shall assume that the range of variation 
of K coincides with the range of variation of that component 
of the wave vector of volume vibrations which is tangential 
to the surface, i.e., k = (K,k, ). This can be ensured by a 
suitable selection of a unit cell of the crystal lattice in the 
interior of the solid. The transport equation (2.3) applies to 
phonons, including high-frequency acoustic phonons, 
whose frequencies satisfy the inequality wrp 1. This is 
equivalent to L + I p ,  where L -c/w is the size of the region 
where the surface has a significant influence on the vibra- 
tions of atoms in a solid (c is the velocity of sound in the 
solid) and A, = crP is the mean free path of typical thermal 
phonons. This allows us to regard surface phonons as "two- 
dimensional" and localized in the z = 0 plane within the 
framework of the kinetic theory. 

We shall find I, of Eq. (2.3) by considering first the 
boundary between a solid and vacuum. In this case the 
change in the occupation numbers of vibrational modes of a 
semi-infinite crystal is due to the anharmonic part of the 
potential energy of the interaction of atoms in a solid. The 
first anharmonic (cubic) term in the expansion of the poten- 
tial energy is of the form 

Here, Us, are the displacement vectors of atoms in the lat- 
tice;p , P z ,  andP3 are the indices which assume the values 
X, y, and z; s, , s2, and s, are the numbers of atoms in a unit 
cell; the index n includes integers 1 ,  and I describing the 
position of a unit cell in the plane tangential to the surface, as 
well as an integer denoting the layer number 1,  ; the summa- 
tion is carried out over all values of n and all s. 

The displacement Us, is determined by a superposition 
of normal vibrations of a semiinfinite crystal. The set of these 
vibrations includes surface modes (K,l)  as well as volume 
modes, which are defined uniquely by specifying the asymp- 
totic behavior in the interior of a crystal. We shall select 

936 Sov. Phys. JETP 65 (5), May 1987 



them in such a way that each mode corresponds to a wave 
incident on the surface and characterized by a wave vector k, 
a polarization j, a frequency w (kj), a group velocity compo- 
nent c, (k  j) = dw ( k j)/dk, >O normal to the surface and a 
corresponding set of reflected waves. This definition of vol- 
ume modes corresponds to the representation of diverging 
waves.13 In such a representationJhe operator describing 
the displacement of a lattice atom Us, can be described by 

~ [ e  (13s; Kg) exp (iKrn) (iKE+e8 (13s; Kg) exp (-iKr,) d K ~ + ] .  

(2.5) 
The summation is carried out over all volume and surface 
modes; B+ and B are the phonon creation and annihilation 
operators; r, is the vector governing the equilibrium posi- 
tion of a unit cell n; M is the mass of this unit cell; Nand N, 
are the numbers of unit cells in the solid and in one layer, 
respectively; in the limit I, + w the vector e tends to zero for 
a surface mode and it represents a superposition of the polar- 
ization vectors of waves incident on and reflected from the 
surface in the case of a volume mode. 

Substitution of the displacement operators U of Eq. 
(2.52 into Eq. (2.4) gives,in place of the vectors U, an opera- 
tor H'3' which contains ci and B + in various combinations 
of three at a time. The annihilation of a surface phonon is 
assumed to occur in seven possible processes: decay of a sur- 
face phonon into two surface phonons, two volume phonons, 
or one surface and one volume phonon; coalescence of a sur- 
face phonon with another surface phonon to form a volume 
or a surface phonon; coalescence of a surface phonon with a 
volume phonon to form a surface or a volume phonon. Cre- 
ation of a surface phonon occurs in procpses which are op- 
posite to those just listed. If we regard H'3) as a perturba- 
tion, then by analogy withI, ofEq. (2.2) (Refs. 4and 9) we 
can readily find the part of the collision integral of surface 
phonons which is associated with the anharmonicity and is 
described by 

The summation is carried out over all seven collision pro- 
cesses described above and each term I$; represents the dif- 
ference in the average number of phonons created and anni- 
hilated in a mode (K,l)  as a result of a collision of this type. 
We shall give the explicit form of the term I $) describing the 
process of coalescence of a surface phonon with a volume 
phonon producing a volume phonon and the reverse process: 

1 
Qj,j,t (K, kt; k2) = - .~;:;;:~,.,~~e~.. (13s; KE) 

MN' (n ,s>  

In writing down Eq. (2.7) we have to allow for the fact 
that the average occupation numbers of volume modes in the 
adopted representation of diverging waves represent the dis- 
tribution function n + of volume phonons incident on the 
surface and deduced from the transport equation (2.2). It 
should be pointed out that because of periodicity of a crystal 
in the direction tangential to the surface the value of Cl of Eq. 
(2.9) differs from zero only if K + K, - K, = b, where b is 
the reciprocal lattice vector which is tangential to the sur- 
face. The other terms on the right-hand side of Eq. (2.6) are 
similar to Eqs. (2.7)-(2.9). 

The influence of gas molecules and the distribution 
function Y of surface phonons is due to the possibility of 
creation (annihilation) of single phonons by molecules. We 
shall assume that the average time t ,  which a molecule 
spends in the region where the surface forces are acting (the 
size of the region being ro - 10- cm) is much less than the 
characteristic time tp of decay of the vibrational state of a 
solid. In particular, when molecules are scattered without 
being captured by the surface, we have t ,  -r0(2T/ 
m)-'I2- 10-I, sec, and the role of tp is played by the life- 
time of thermal phonons r, - lo-'' - lo-" sec. Then, we 
can ignore the phonon-phonon interaction and the process 
of scattering of molecules on the surface. It follows that the 
change in the number of phonons in the surface mode be- 
cause of the phonon-phonon interaction and the interaction 
with gas molecules occur independently and, consequently, 
the corresponding processes can make additive contribu- 
tions to I, : 

Here, I,, is the average change in the number of phonons in 
a surface mode (K,l)  per unit time due to the scattering of 
molecules on the surface. We can determine I,, by noting 
that if t ,  < t p ,  then collisions of molecules with the surface 
can be discussed in terms of the scattering theory and the 
probability W, of a transition in a semiinfinite crystal from 
a state p' [the state p' { N  L,){N kc) is characterized by a 
set of initial occupation numbers of volume (Nw ) ) and sur- 
face ( N  ;. vibrational modes of a semi-infinite crystal] to a 
state p as a result of a transition of a molecule from a state 
with a velocity v' (Refs. 13 and 14) : 

2x 
Wo (v'p' -+ vp) = - h ,  v*, , (;ih -- ) = I (vpl F Iv1p1) lz6(&-&1). 

(2.11) 
A 

Here, T is the operator of the transition governed by the 
potential of the molecule-surface interaction; r' and r repre- 
sent the total energy of the system before and after a colli- 
sion. Using Eq. (2.1 1 ) and calculating the average change in 
the number of phonons in a fixed surface mode (K,O , we 
can represent the expression for I,, as follows: 

IS2 (Kt) = S J dv dv' 1 u,' 1 j- (v')  [ (v+l) l+ (vl-v; Kg) 
TZ>O v2 '<9  

-v W- (v' + V; Kg) 1. (2.12) 

Here, f - is the distribution function of molecules incident on 
the surface, deduced by solving the transport equation (2.1 ), Here, 
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S is the surface area, and W* are the probabilities of cre- 
ation and annihilation of a phonon (K,l)  when molecules 
are scattered by the surface. In general, when an arbitrary 
number of other phonons is interchanged between a mole- 
cule and a solid, the probabilities W' depend on the average 
occupation numbers of the corresponding vibrational 
modes. It should be stressed that the dependence of I,, and Y 

on f [see Eq. (2.3) 1 follows from Eq. (2.12). 
The system of transport Eqs. (2.1 )-(2.3) is closed as a 

result of formulation of the boundary conditions for f and n 
on thez = 0 surface. In general, the distribution functions of 
gas molecules incident f - on and reflected f + from the sur- 
face are related by4 

luzlfi(v)= dvllu,'~f-(v')W(vl-v). (2.13) 
c,' <o 

Here, the kernel W represents the probability density of a 
transition of a molecule from a state with a velocity v' to a 
state with a velocity v when the molecule is scattered by the 
surface and it can be expressed in a familiar manner in terms 
of the probability W, of Eq. (2.11 ) by averaging it over the 
initial states and summing over the final states of a sol- 
id.I5,l6,' Then, the value of W (see Ref. 1 ) depends on the 
distribution functions n + and Y satisfying Eqs. (2.2) and 
(2.3). 

The boundary condition relating the distribution func- 
tions of phonons incident n + and reflected n - by the sur- 
face can be formulated if we allow for surface modes and for 
the phonon-phonon interaction near the surface in the 
boundary condition obtained in Ref. 1. This gives 

I c z  I - n- (kj) = r, [x a+ (h i i )  + 1~~~ (klil) 
Lz k , j , l c z > > P )  Lz 

+ Np(kiil) ] Vp(k,ji - kj; a ) .  (2.14) 

Here, Vp is the probability of a transition of a phonon #h 
from a state (k , ,  j, ) to a state ( k j )  when the phonon is 
scattered by the surface; L, is the thickness of the solid; the 
quantities NM and 6 represent the average change in the 
number of phonons in a mode (k, , j, ) per unit time, which is 
due to the scattering of molecules on the surface and due to 
collisions of phonons in the surface region. The quantity NM 
is given by an expression of the (2.12) type where the distri- 
bution function Y is replaced with the distribution function 
n,f . The quantity & is obtained from the same consider- 
ations as I,, and it has seven terms corresponding to differ- 
ent types of phonon-phonon collisions which are not given 
here because they are too cumbersome. 

The transport Eqs. (2.1 )-(2.3) and the boundary con- 
ditions (2.13) and (2.14) represent the required system of 
equations for the description of the transport processes in 
the nonequilibrium gas-solid system including the processes 
occurring in the case of propagation of high-frequency 
sound in a solid. (In the latter case in addition to the condi- 
tion warp$ 1 we must clearly satisfy also the condition 
mOrM $1, where TG ' is the frequency of intermolecular colli- 
sions in the gas. This condition ensures the absence of an 
acoustic wave in the gas and for wo- 101° Hz it is satisfied 
right up to gas pressures of tens of atmospheres. ) In particu- 
lar, the energy fluxes in the solid (Q, ) and in the gas (Q, ) 
due to the attenuation of surface acoustic waves can be deter- 

mined by two equivalent methods. In the first we calculate 
the distribution functions f and n ,  which after suitable inte- 
gration give the expressions for Qg and Q,. In the second 
case used below (see Secs. 3 and 4) we shall consider each of 
the terms in I, of Eq. (2.10) and these are clearly related to 
Q, and Qg by the factor #ho . It is then convenient to analyze 
the quantities which are usually determined experimentally 
and which are related linearly to the macroscopic energy 
fluxes Q, and Qg: these are the terms y, and y, of the 
absorption coefficient of surface acoustic waves 
( y  = y, + y2), due to the interaction of acoustic phonons 
with thermal phonons (y, = Q,/R, where R is the acoustic 
energy density) and with gas molecules (y, = Qg/R). 

3. ABSORPTION OF SURFACE SOUND BY VOLUME 
PHONONS 

We shall consider the propagation of a high-frequency 
surface acoustic wave along the boundary of a solid coincid- 
ing with the z = 0 plane in the absence of a gas above the 
surface. Using the transport Eq. (2.3), we shall determine 
the dependence of y2 on w, and T. We shall assume that the 
phonon frequencies are linear functions of the wave vectors. 
We can then easily show that the laws of conservation of 
energy and the quasimomentum tangential to the surface 
can be satisfied simultaneously in three-phonon processes 
involving an acoustic phonon only in collisions of an acous- 
tic phonon with a volume phonon producing a volume 
phonon, as described by Eqs. (2.7)-(2.9). We shall assume 
that apart from acoustic phonons, the other phonons partici- 
pating in such collisions have an equilibrium distribution: 
n: = n,, and n,t = n,,, where n,  is the Bose-Einstein dis- 
tribution. (A  change in the temperature of a solid near the 
surface associated with the attenuation of sound is small and 
for values of the acoustic energy density R - 10 erg/cm2 at 
w, - 10" Hz and T-300 K it does not exceed 0.1 K if 
y, -lo6 sec-'-see Ref. 17.) Then, using Eqs. (2.7)-(2.9) 
and retaining only the terms of the first order in #h,/T, we 
obtain the following expression for y, if #h,/T$ 1: 

Here, Y, = vO(KO{,) $1 is the average occupation number 
of an acoustic mode (K,R,) and K, = K, + KO. 

We shall calculate the frequency dependence of y, by 
determining the dependence of w on K O .  If we consider an 
acoustic wave in terms of the theory of elasticity," when 
le( l,s; K&,) I a K (Ref. 18), and apply Eqs. (2.7) and 
(2.8) to the usual procedures employed in the derivation of 
the frequency dependence of the absorption coefficient of 
high-frequency sound in the bulk of a solid,499 we can show 
that w is independent of KO, but depends only on its direc- 
tion. [It should be pointed out that if long-wavelength vol- 
ume phonons participate in the three-phonon process of Eq. 
(3.1 ), we can similarly obtain the dependence w a k,k2.] 
Therefore, the absorption coefficient of high-frequency sur- 
face acoustic waves is found to be proportional tow, for any 
value of T, exactly as in the absorption of sound in the bulk of 
a solid,4 and this is due to the interaction of acoustic phon- 
ons with thermal phonons in accordance with Eq. (3.1 ) . 

The temperature dependence of y, observed at low tem- 
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peratures when T g  8 (8 is the Debye temperature) can be 
explained by noting that the main contribution to Eq. (3.1 ) 
comes from phonons with the wave vectors k ,  , k, - = T /  
c,+i<a-I, where a is the characteristic size of a unit cell in 
the investigated solid. Then, all the three phonons partici- 
pating in a collision can be regarded as long-wavelength 
phonous and we can use the linear dependence of w on k , 
and k,, Summing in Eq. (3.1) with respect to k,, , we obtain 

Here, the value of A depends only on the orientation of the 
vectors KO and k, . Extending formally integration with re- 
spect to k , to infinity, we obtain 

Such a dependence has been observed experimentally6 at 
w, = l0l9 Hz and T- 60 K. The frequency and temperature 
dependences of the type given by Eq. (3.3) were obtained 
earlier7 using a simple model of the lattice and the dynamic 
matrix of a semi-infinite anharmonic signal. 

If 8 g T, then Eq. (3.1 ) is dominated by the values of k , 
and k ,  a 8/cjfi a a-  '. It then follows from Eqs. (2.8) and 
(2.9) that the value of w, like the corresponding probability 
of the phonon-phonon interaction in the interior of a solid,9 
can be regarded as independent of the wave vectors of ther- 
mal phonons. Ignoring the contribution of optical phonons 
to y, and integrating Eq. (3.1 ) , we obtain 

yiaooT. (3.4) 

The dependences (3.3) and (3.4) are similar to the corre- 
sponding dependences of the absorption coefficient of trans- 
verse sound in the bulk of a solid.4s9 

4. ABSORPTION OF SURFACE SOUND BY GAS MOLECULES 

We shall calculate the term y, in the absorption coeffi- 
cient of surface acoustic waves by using the one-phonon ap- 
proximation developed in Ref. 19 for the calculation of the 
transition probability W, of Eq. (2.11 ), which is used to 
allow for direct transitions from the initial state of the mole- 
cule-solid system to the final state, as well as for transitions 
accompanied by the creation and annihilation of a virtual 
phonon on condition that the total energy of the system is 
conserved. In contrast to the simpler first Born approxima- 
tion in the method of distorted waves,I3 which allows only 
for direct transitions in the system, this approximation 
makes it possible to obtain the probability W, for molecules 
of arbitrary  mas^'^,'^ normalized to unity and suitable, for 
example, in the analysis of the dependence of y, on the mass 
of molecules m in a wide range of masses." In this approxi- 
mation the probabilities of creation W + and annihilation 
W - of an acoustic phonon [see Eq. (2.12) ] can be obtained 
in the form 

2n 
P+ (v' -+ v; I i o E 0 )  = ---- 

ft l v,' I 

Here, P + , P- , and P, are, respectively, the probabilities of 

inelastic scattering of &olecules accompanied by creation 
and annihilation of an acoustic phonon (accurate to within a 
factor v, ) and the total probability of nonspecular reflection 
in the first Born approximation of the method of distorted 
 wave^.'^^'^ The unperturbed potential V ,  is selected to be 
that part of the potential of the interaction of a molecule with 
a frozen lattice which depends only on the distance of the 
molecule from the surface and the perturbation V, is asso- 
ciated with thermal vibrations of the lattice. We can then 
show' that the operator h - is given by h - = e x p ( i ~ , r ) F  
and that h + = h -* (here, r is the coordinate of the molecule 
and depends only on the distance between the molecule 
and the surface), and the wave function A )  determines the 
state of the molecule in the potential V, and is a solution of 
the corresponding Schrodinger equation. The probability 
P, can be calculated by summing the probabilities of an in- 
elastic interaction of a molecule with each mode of a solid; 
the structure of these probabilities is similar to that de- 
scribed by Eq. (4.2). 

We shall now discuss the model of a solid in the form of 
a quasicontinuum with a free boundary" and we shall quan- 
tize the vibrational spectrum in the same way as in Ref. 18. 
Assuming that the equilibrium position of the boundary of 
the continuum coincides with thez = 0 plane, we shall select 
the potential V in the form 

Here, D and q are, respectively, the characteristic energy and 
the radius of action of the prface forces; x, y, and z are the 
coordinates of a molecule; U, is thez component of the oper- 
ator representing the displacement of an element of the sur- 
face of the continuum with the equilibrium coordinatesA(x, 
y,  0 )  as a resrllt of thermal vibrations. The nature of U is 
given by Eq. (2.5) where the vectors r, and e should be 
regarded as continuous functions of the spatial coordinates. 

Equations (2.12) and (4.1 )-(4.3) allow us to calculate 
y, if we know the distribution functions n + , v, andf. Ignor- 
ing small changes in the temperature of a solid associated 
with the absorption of sound (see Sec. 3 ) ,  we shall assume 
that n +  = n, and Y = vB for all the modes except the 
acoustic one. We shall also bear in mind that in the range of 
linear absorption of sound by a gas, which we are consider- 
ing here, the average change in the energy of a molecule due 
to nonequilibrium occupancy of an acoustic mode does not 
exceed h, and is much smaller than its thermal energy. 
Consequently, the difference between the distribution func- 
tion f and its equilibrium form f, (f, is the Maxwellian 
distribution with an equilibrium density of the gas molecules 
h, and a temperature T) is small and in the determination 
of y, we can substitute f - = f, in Eq. (2.12). Then, for an 
infinitely high potential barrier [q-0, see Eq. (4.3)] we 
obtain the following expression for y, : 
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mT" { I ddc &[u(u-8) ]"["B(E)+ 11 
0 

- 2-2' I-' (l-q2y)'11 

Here, u is the dimensionless energy of the motion of a mole- 
cule in the direction normal to the surface; E is the dimen- 
sionless energy of a phonon created or annihilated by the 
scattering of a molecule; T(U ) = min{~/T,u); co is the ve- 
locity of surface acoustic waves;p, is the density of the inves- 
tigated solid; q = c, /c,; 6 = c d c ,  ; c, and c, are the veloc- 
ities of transverse and longitudinal sound in the bulk of the 
solid; the quantity F depends only on q and it is described by 
Eq. (2.12) of Ref. 18. 

It follows from Eq. (4.4) that y2 depends linearly on 
the gas density and on the frequency of surface acoustic 
waves. This is in qualitative agreement with the results ob- 
tained both within the framework of the theory of propaga- 
tion of waves at the boundary of two continuous media" and 
from the description of a gas bounded by a local-equilibrium 
vibrating surface based on the kinetic theory [see Eq. (4.7) 
below]. In an analysis of the mass and temperature depen- 
dences of y2 we note, as is easily demonstrated on the basis of 
Eq. (4.5), that in the limit of low values of m and Twe have 
P, 4 1. We then obtain y2 a ( m ~ ) " ~ .  As m or T increases, 
the dependence of y, on the mass of molecules and tempera- 
ture becomes weaker and disappears in the case of large val- 
ues of m or T (Fig. 1) This is a basic feature of the mecha- 
nism of the absorption of acoustic phonons by molecules 
since in the interaction of two continuous media when mole- 
cules are scattered by a local-equilibrium vibrating surface 
we have y2 a (mT)I1' for any value of m and T [see Ref. 17 
and Eq. (4.7) 1. 

Although Eq. (4.4) was derived using a number of sim- 

FIG. 1 .  Dependence of y, on the mass of gas molecules m. The continuous 
curve represents the dependence of Eq. (4.4) and the dashed curve repre- 
sents Eq. (4.7). The chain line corresponds to the theory" of the propaga- 
tion of sound at the boundary between two continuous media. The experi- 
mental points are taken from Ref. 2: A )  oo/2n = 0.54X lo9 Hz; 0)  
1.42X lo9 Hz; 0 )  2.43 X lo9 Hz. 

ple models, the qualitative conclusions relating to the depen- 
dences of y, on w,, m, and Tare clearly of general validity. 
In fact, returning to the general formula (2.12) we note that 
in the region of linear absorption of sound by a gas the 
expression in the square brackets on the right-hand side re- 
duces to a difference between the total probability of the 
scattering of molecules accompanied by the absorption of an 
acoustic phonon and its creation (for given values of v1 and v 
and exchange of an arbitrary number of other phonons). 
Integrating Eq. (2.12) with respect to the velocities and ex- 
panding the probabilities in powers of a small quantity h d  
T, we find that zeroth terms of this expansion are equal be- 
cause creation or annihilation of a phonon with zero energy 
cannot alter the probability of the scattering of a molecule. 
When an allowance is made for first-order nonvanishing 
terms, we can obtain y2 COW,. In an analysis of the mass de- 
pendence of y2 we shall use the familiar result14 that in the 
case of light molecules the probability of inelastic scattering 
and, consequently, W* in Eq. (2.12) is proportional to 
m/M,, where M, is the mass of atoms in the solid. Bearing in 
mind that the flux of molecules incident on a surface is pro- 
portional to m - we obtain y, a m'I2. However, since the 
probability of inelastic scattering W, is normalized, its lin- 
ear dependence on m cannot be conserved for any value of m. 
Consequently, we can expect an increase in m to make the 
dependence of y2 on m weaker than y, a m'I2. Similar rea- 
soning can be applied also to the temperature dependence of 
Y2. 

To the best of our knowledge, experimental data on the 
influence of a gas on the absorption of surface sound are 
available only for frequencies not exceeding several giga- 
hertz2," when oOrp - 1. Therefore, in an analysis of the ex- 
perimental dependences of y2 on m, o,, and ii, (Ref. 2), we 
find that in addition to the results of Eqs. (4.4)-(4.6), ob- 
tained in the limiting case of high frequencies w,~, % 1, it is 
necessary to know the analogous dependences in the limiting 
case of low frequencies warp 4 1. In the latter case we can 
assume that the molecules are scattered by a local-equilibri- 
um element of the surface experiencing macroscopic vibra- 
tions during propagation of sound (see also Ref. 20). In the 
case of full accommodation of molecules on the surface the 
energy flux Q, which appears in the gas is clearly propor- 
tional to the flux of the particles incident on the surface 
ii, (2T/m ) 'I2 and to the energy mu2 /2 absorbed by a mole- 
cule scattered by an element of the surface vibrating at an 
average velocity u. Relating u and w, to the formulas of the 
theory of elasticity'' and going over from Q, to y2, we ob- 
tain y2~ii,oom"2. Omitting cumbersome intermediate 
steps, we shall simply say that a rigorous kinetic calculation 
of y, carried out by us for the diffuse scattering of molecules 
on an element of the surface gives 

Figures 1 and 2 show the theoretical dependences of y2 
on m and o, calculated for the two limiting cases corre- 
sponding to the experimental conditions. The continuous 
curves represent Eq. (4.4) for the high-frequency mecha- 
nism of the absorption of acoustic phonons by molecules. 
The dashed curves represent the dependence (4.7). It is 
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FIG. 2. Dependence of y, on the frequency of sound o, . The notation is 
the same as in Fig. 1 .  

clear from Fig. 1 that the low-frequency mechanism can de- 
scribe the mass dependence of y2 in the case of the smallest 
of the frequencies investigated in Ref. 2. However, devia- 
tions from the dependence y, cc m"2 observed both at low 
and high values of m on increase in 0, cannot be described 
by the mechanism of the scattering of molecules on a local- 
equilibrium vibrating surface element.2' On the other hand, 
the dependence of y2 on m deduced on the basis of the mech- 
anism of the absorption of acoustic phonons by gas mole- 
cules is in satisfactory qualitative agreement with a depen- 
dence obtained at low or high masses at the maximum 
frequency. The observed frequency dependence y2 (Fig. 2) 
is not linear, whereas for both limiting cases w,r, ) 1 and 
wOrp 1, we find that y2 a w,. However, the mass and the 
nonlinear frequency dependence can be described if we as- 
sume that under experimental conditions there is a competi- 
tion between the low-frequency mechanism of the interac- 
tion of molecules with a vibrating solid in a local equilibrium 
and the high-frequency mechanism of absorption of acoustic 
phonons by molecules. Clearly, it follows from these figures 
that an increase in w, shifts the experimental points away 
from the dashed to the continuous curves. Therefore, the 
deviations from the dependence y, cc observed at 
high frequencies support the high-frequency mechanism of 
the absorption of acoustic phonons by molecules. 

5. FLOW OF A GAS DURING PROPAGATION OF A HIGH- 
FREQUENCY SURFACE ACOUSTIC WAVE 

When molecules are scattered on a periodic surface, the 
change in the tangential component of the momentum is giv- 
en (to within that component of the reciprocal lattice vector 
which is tangential to the surface) by the difference between 
the tangential momenta of annihilated and created phonons. 
We can therefore assume that the predomonant absorption 
of acoustic phonons by molecules in the course of their scat- 
tering on the surface along which a surface acoustic wave is 
propagating will result in the flow of a gas along the surface. 

We shall consider a gas between the surfaces z = 0 and 
z = d of two solids and we shall assume that a high-frequen- 
cy surface acoustic wave is propagating along the z = 0 sur- 
face in the positive direction of the x axis. We consider only 
the case of a collisionless gas ( K ,  = A, /d) 1, where A, is 
the mean free path of molecules in the case of intermolecular 
collisions), when the transport processes are governed en- 

tirely by the interaction of molecules with the surface and 
the interphase effects would obviously be strongest. Then, in 
Eq. (2.1) we shall assume (unless otherwise stated) that 
I, = 0. As before, we shall ignore the difference between the 
average occupation numbers n and v of all the vibrational 
modes of the investigated solid (with the exception of the 
acoustic mode) from the equilibrium values n, and v, , re- 
spectively. Therefore, under steady-state conditions the sys- 
tem of transport Eqs. (2.1 )-(2.3) reduces, subject to Eq. 
(3.1 ) to the following equations for the molecules of a gas 
and for acoustic phonons: 

The boundary condition for the transport Eq. (5.1) on the 
z = 0 surface can be written down using Eq. (2.13) and the 
results of Ref. 1, which gives 

Here, W ,  is the probability of the scattering of a molecule on 
the equilibrium surface (see Refs. 15, 16, and 1 ) and A W is 
the part of the scattering probability associated with a non- 
equilibrium state of a solid during propagation of a high- 
frequency surface acoustic wave. Reflection of molecules 
from the z = d surface will, for the sake of simplicity, be 
regarded as diffuse and the boundary conditions will be writ- 
ten in the form 

Here, f; is a local-equilibrium distribution for molecules 
with a velocity u, < 0 and with a coordinate-dependent den- 
sity n, . 

We shall consider the case when d<Ao and 
A, = c,(y, + y,)-' is the attenuation (absorption) length 
of an acoustic wave in a solid, which is of the order of 1 cm 
for w, - 10'' Hz at T- 300 K (Ref. 17). Then, in the first 
approximation in respect of the small parameter d /A, we 
can assume that in each transverse cross section of the chan- 
nel there is a local distribution of molecules with macroscop- 
ic parameters which vary slowly along thex axis. This makes 
it possible to solve the transport Eq. (5.1 ) together with the 
boundary conditions ( 5.3 ) and ( 5.4) for a fixed value of v, 
and then seek the dependences of the macroscopic param- 
eters of the gas on x using the transport Eq. (5.2) and the 
condition of conservation of the total gas flux along a chan- 
nel under steady-state conditions. 

We shall initially assume that this channel connects two 
large volumes of a gas at a temperature T and a density ii,, 
and that the channel length L, satisfies the condition 
d ( L ,  (A,. Then, we can ignore the attenuation of sound 
along the channel and the problem reduces to the solution of 
the system of equations (5. l ) ,  (5.3), and (5.4), where vo 
has a constant value governed by the power of the source of 
sound. We shall also bear in mind that the change in the 
tangential component of the momentum of a molecule due to 
the absorption of an acoustic phonon does not exceed the 
quasimomentum of that phonon -fiw,,/c,, which is much 
less than the average momentum of a molecule - (mT)'". 
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Then, the distribution function f can be sought in the follow- 
ing form: 

f'(v, z )  =jot (u) [ If q* (v, 2) I ,  Icp'l xi. (5.5) 

Ifin the solution of Eqs. (5.1), (5.3), and (5.4) we confine 
ourselves to the approximation linear in q, and calculate the 
total flux J, of molecules per unit width of the channel, we 
obtain 

In the determination of A W we shall use in Eq. (5.6), as 
in Sec. 4, the one-phonon approximation for W, (Refs. 19 
and 14). Then, employing Eqs. (4.1 ) and (4.2), we can 
write down the nonequilibrium part A Wof the kernel of the 
boundary condition given by Eqs. (2.13) and (5.3) in the 
form (see also Ref. 1 ) : 

= [I+P2 (v') 141-'[P+ (v'+v; KoEo) +P- (v'+v; KoEo) 1 .  

(5.7) 

Here, fid = ii /&,, where is the density of the acoustic 
energy near the source of surface acoustic waves. If we fol- 
low the previous procedure and calculate P* and P, using 
the model of a continuum with a free boundary of a solid and 
the molecule-surface interaction potential given by Eq. 
(4.3) and ifwe substitute Eq. (5.7) into Eq. (5.6), we readi- 
ly find that in the first approximation with respect to a small 
parameter h o / T  the expression for the average velocity 
(v ,  ) of the flow of a gas in such a channel is 

For the values of i? - 10 erg/cm2 (Ref. 17) and T- 300 K 
typical of o, - 10'' Hz the value of ( v ,  ) given by Eq. (5.8) 
amounts to tens of centimeters per second. 

It should be pointed out that the frequency dependence 
of the gas flow velocity (v, cc wo'/2 differs from the frequen- 
cy dependence of the energy flux Q, coo (see Sec. 4) gov- 
erned by the same microscopic mechanism. This difference 
is due to the fact that the gas is set in motion because of a 
correlation between the motion of molecules in the course of 
scattering along directions normal and tangential to the sur- 
face. The tangential motion is due to the simultaneous con- 
servation of the total energy and the tangential momentum 
(quasimomentum) in the molecule-phonons system and it is 
responsible for the inequivalence of the various directions of 
the velocity vectors of molecules reflected in the plane of the 
surface. On the other hand, such a correlation is unimpor- 
tant in the determination of the energy flux Q, normal to the 
surface, when obviously it is sufficient to consider the total 
change in the energy of a molecule and not its redistribution 
between the various degrees of freedom. 

We can also show that Eq. (5.8) is identical with the 
result obtained in a similar manner by calculation of W, of 
Eq. (2.11 ) in the first Born approximation using the method 
of distorted waves. This is due to the fact that the integral of 
Eq. (5.6) is dominated by the contribution of molecules with 
sufficiently low normal components of the velocity Iv; 1 
a (fioo/m) 'I2 and the scattering of these simply annihilates 

acoustic phonons, whereas creation of phonons is forbidden 
by the laws of conservation of energy and of the tangential 
momentum. The special role of the "grazing" molecules, i.e., 
those incident on the surface at low angles in the drag of the 
gas by sound is analogous to the corresponding role of graz- 
ing electrons22 in the processes of surface transport in met- 
als. It follows from Eq. (4.5) that in the case of these mole- 
cules we have P, a (&,/T)'/'& 1 and the above 
one-phonon approximation is identical with the first Born 
approximation in the method of distorted waves [see Eqs. 
(4.1) and (5.7) and also Ref. 141. We can now understand 
why thevelocity ( v ,  ) of Eq. (5.8) is independent of the mass 
of the molecules m. In fact, the velocity acquired by a mole- 
cule on absorption of an acoustic phonon is proportional to 
&,/mc, and the probability of such a process considered in 
the first Born approximation used in the method of distorted 
waves, is proportional to m. 

In the case of a closed channel of arbitrary length (but 
such that d&L,  ) a macroscopic manifestation of the drag of 
the gas is the establishment of a certain gas density profile 
n, (x)  along the channel. Then, the flux of molecules J, (x)  
governed by Eq. (5.6) with the coordinate-dependent value 
Y, (x)  is compensated in each section of the channel by an 
equal and opposite flux J, (x )  due to the gas density gradient 
Vn, (x)  . The values of J, (x)  and Vn, (x)  are related by the 
transport coefficient L, which is found by solving the system 
of equations (5.1), (5.3), and (5.4) subject to AW= 0 al- 
lowing for molecular collisions. Using the familiar methods 
of the kinetic theory of gases,2321 we obtain 

Here, a , ,  a, ,  and a, are constants of the order of unity and 
the values of a, and a, depend on the intermolecular inter- 
action law; the value of a, is governed by the probability 
W,. Equating J, (x)  ofEq. (5.8) to J, (x)  ofEq. (5.9), we 
obtain 

When Eq. (5.10) is solved together with the transport equa- 
tion ( 5 . 2 ) ,  we can determine the dependence of n, and R on 
the coordinate x along the channel. Substituting in Eq. 
(5.10) the values w, - 10" Hz, v, = R /&,- 1018, 
n, - lOI9 cm - 3 ,  and d - lo-' cm (under these conditions 
we have d <A, - 1 cm), we can estimate the upper limit to 
the order of magnitude of the relative change in the density 
of a gas along a channel (Vn,/n, )A,- lo-'. Then, the 
solution of the system of equations (5.2) and (5.10) can be 
obtained by the method of successive approximations in re- 
spect of a small deviation of the gas density from the equilib- 
rium value A,. In the zeroth approximation we can ignore 
the change in the gas density in Eq. (5.2); the result is 

(It  is assumed that the source of surface acoustic waves is 
located near the end of the channel at a point x = 0.) Substi- 
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tuting Eq. (5.11 ) into Eq. (5. lo),  we find in particular that 
in the case of a long (Ao(L, channel the zeroth approxima- 
tion in respect of the parameterAo/L, 4 1 gives the following 
solution 

X(a,LnKn+a,+ a3)-l enp [--5(y~+12)]} . (5.12) 
Co 

It follows from Eq. (5.12) that the pressure drop at the ends 
of the channel is independent of its length and for the above 
parameters of the system it reaches Ap/p- lo-' - lov3  
which is easy to determine experimentally. 

It should be stressed that the appearance of flow of a gas 
in a channel under the influence of surface acoustic waves is 
a fundamental feature of the investigated mechanism of the 
absorption of surface acoustic phonons by molecules. We 
can readily show that this effect is absent if we consider the 
mechanism of the interaction of a molecule with a local- 
equilibrium macroscopically vibrating surface when surface 
acoustic waves are propagating. We can therefore predict 
the temperature dependence of the gas flow velocity ( v ,  ) in 
the gigahertz frequency range. When the value of Tis low so 
that the condition warp ) 1 is satisfied, the velocity (v ,  ) in- 
creases in accordance with the law ( v ,  ) oc T 'I2  deduced from 
Eq. (5.8) at sufficiently high values of T, when warp 4 1, and 
the velocity is < v, > = 0. In the case of intermediate fre- 
quencies the velocity < v,  > is a decreasing function of tem- 
perature (Fig. 3 ) .  The experimental confirmation of this de- 
pendence would represent an additional (see Sec. 4) 
confirmation of the phonon mechanism of the absorption of 
sound by a gas. 

We shall conclude by noting that, as demonstrated 
above, the transport of the mass (drag effect) and energy in 
the course of absorption of acoustic phonons by molecules is 
due to a nonequilibrium state of the surface related to the 
excess population of an acoustic vibrational mode of a solid. 
Then, the transport of mass and energy in a gas and the flow 
of energy (acoustic phonons) in a solid are correlated. 
Therefore, the transport phenomena discussed above belong 
to the class of interphase nonlocal transport effects.' How- 
ever, in respect of the nature of an external perturbation 
acting on a system (which is the excitation of sound) they 
differ fundamentally from the phenomena in a thermal non- 
equilibrium system24 which are discussed in Ref. 1. For ex- 
ample, in the case of propagation of high-frequency sound 
the interphase nonlocal transport effects appear in systems 
of normal geometric scale. For comparison, we must men- 
tion that in the case of the thermal interaction in a gassolid 
system the interphase effects are important only in the case 
of very thin ( - 100 A in diameter) channels.' A specific 

FIG. 3. 

feature of the interphase phenomena in the course of propa- 
gation of surface acoustic waves is the fact that an external 
perturbation disturbs from equilibrium only the quasitwo- 
dimensional subsystem of surface phonons. The macroscop- 
ic flow of a gas which is then generated is entirely due to the 
interphase interaction between the two-dimensional (sur- 
face phonons) and three-dimensional (gas) subsystems. On 
the other hand, in the case of the thermal interaction with a 
system the transport processes in a gas are governed' by a 
superposition of interphase effects which are due to a non- 
equilibrium of the subsystems of surface and volume phon- 
ons, and also due to the single-phase effect associated with 
the nonequilibrium of the gas itself. 

The authors are grateful to L. A. Maksimov and B. I. 
Nikolaev for valuable discussions of the results. 

" It is known14 that the first Born approximation in the method of distort- 
ed waves gives rise to a nonnormalized probability W, and gives a 
reasonable result only for molecules of small masses (for example He), 
when the total probability of nonspecular reflection is considerably less 
than unity. '' In the case of an arbitrary law governing the reflection of molecules 
from the surface, we can show that Eq. (4.7) contains an additional 
factor representing accommodation of the energy and (tangential) mo- 
mentum of a molecule on the surface and generally dependent on m. The 
accommodation coefficients usually rise on increase & m ( Refs. 14 and 
21 ). Therefore, an allowance for the deviation of the law of reflection of 
molecules from the diffuse mechanism only results in a deterioration of 
the agreement with the experimental results at the lowest of the investi- 
gated2 frequencies (see Fig. 1) and cannot account for the deviation 
which increases on increase in w,, from the dependence y2 cc o,ml''. 
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