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A number of diffusion processes in which fluctuation effects are decisive is investigated. A new 
perturbation-theory variant is proposed for the problem of annihilation of a diffusing particle 
by immobile traps. This variant yields, in first order in the gas parameter (at low trap density), 
both the intermediate Smoluchowski asymptote and the asymptote at t-. CO. Corrections that 
determine the rate of the establishment of the asymptotic regimes are obtained. It is shown that 
in systems with multiplication and annihilation by immobile traps, the density increases 
exponentially over long times at arbitrarily low rate of multiplication and finite trap density. 
An asymptotically exact equation is obtained for the density evolution in a system with 
multiplication and annihilation in which the density of the quenching agent obeys the diffusion 
equation with Gaussian random initial distribution. It is shown that the previously obtained 
power-law asymptotes for reactions of the recombination times are asymptotically exact. 

Interest in the influence of fluctuations on the kinetics 
of diffusively controllable processes has increased substan- 
tially of late. The range of applications of the theory of dif- 
fusely controllable processes is quite large. It includes re- 
search into the kinetics of excitation damping and 
recombination of carriers or defects in solids, a large class of 
rapid reactions in solids, liquids, and glasses, a number of 
biological processes related to population survival, and of 
the aggregation and coagulation type. 

A two-particle description of the kinetics of a diffusely 
controllable reaction was first formulated by Smolu- 
chowski.' According to his theory, the rate of an irreversible 
bimolecular reaction A + B- C is determined by the law of 
effective masses 

in which the "observable reaction-rate constant" k, ( t )  is 
assumed equal to the flux @ of the density n (r,t) of the reac- 
tant B through a reaction sphere of radius a = RA + RE, 
where RA and RE are the radii of particles A and B, and 
n ( r , t )  obeys the diffusion equation 

an(r ,  t ) /d t=DAn(r ,  t ) ,  (1)  

where A is the d-dimensional Laplace operator, d is the di- 
mensionality of the reacting system, D = DA + DB , DA and 
DB are the diffusion coefficients of particles A and B, respec- 
tively. The boundary conditions for Eq. ( 1 ) are expressed in 
the form 

where k is the true rate constant of the reaction. At t%aZ/D, 
k ) 4naD and d = 3 we have 

Smoluchowski's theory was extended in Ref, 2 to include the 
case of reversible bimolecular reactions, and in Ref. 3 to in- 
clude trimolecular reactions. It was shown in Refs. 4-7 that 
Smoluchowski's solution describes in a number of important 

cases an intermediate asymptote of the problem, whereas the 
time dependence of the reagent concentration as t- a, is 
determined completely by the fluctuations of the density of 
the initial distribution (prior to the start of the reaction) of 
the reagents. 

In three-dimensional systems, at CA 4 CB = n, DB = 0, 
the transition from Smoluchowski's intermediate asymptote 
to the fluctuation regime occurs for T) a- 'I2, where 
T = 4naDnt, a = 47nad. For reactions of the recombination 
type for which CA ( t )  = CB ( t )  we have a = 4nCA (0)ad.  
Since the parameter a in liquid-phase systems is as a rule 
small, the fraction of reactants that vanish in accordance 
with the fluctuational asymptotic laws is also small and are 
therefore difficult to investigate in experiment. In Ref. 8 are 
pointed out polymer systems in which the bulk of the reac- 
tant vanishes in the fluctuation regime. 

Diagram expansions were used in Refs. 9-13 to obtain 
corrections to Smoluchowski's solution. Kinetics of pro- 
cesses of the multiplication type, A + B-kA + B,k > 1, 
were investigated in Ref. 14. 

We investigate here a number of situations in which the 
fluctuation effects are decisive and can be observed in experi- 
ment. Foremost are diffusion-controllable reactions such as 
quenching the excited state (annihilation in traps), which 
occurs in systems with homogeneous multiplication of the 
reactant (a process that can be used by the presence of chain 
processes, etc.). In the first section we formulate the prob- 
lem of evolution of the reactant density in such systems. In 
the second we develop a perturbation theory corresponding 
to fluctuation times ~4a- ' I2  for which the Smoluchowski 
theory is valid to first order in a. We discuss the connection 
with motion, in a random medium, of a particle having an 
energy close to the mobility t h r e~ho ld , ' ~ . ' ~  and with the per- 
colation problem." A nontrivial dependence of the rms dis- 
placement of the particles on the time is obtained. In the 
third section we develop a modified perturbation theory that 
yields both Smoluchowski's intermediate asymptote and the 
long-time fluctuation asymptote, and we determine the cor- 
rections on which the rate of convergence of the process to 
an asymptotic relation depends. Analysis of the diagram- 

908 Sov. Phys. JETP 65 (5), May 1987 0038-5646/87/050908-10$04.00 @ 1987 American Institute of Physics 908 



matic expansions for small a and for d = 3 provides a de- 
scription, in the entire time interval, of the reaction kinetics 
in systems with multiplication. We show that at an arbitrar- 
ily small average multiplication rate the average reactant 
density in a system with immobile traps increases exponen- 
tially as t- CC, and the induction transition corresponds to 
an explosive process and depends on a and d. 

The long-time asymptote in a system with immobile 
traps is determined by the Poisson fluctuations of the trap 
density. In the case of mobile particles B, their diffusion ' 

smoothens the Poisson fluctuations, and small Gaussian 
density fluctuations become decisive at t+  w .  The most 
clearly pronounced is the influence of Gaussian density fluc- 
tuations in the kinetics of a reaction of the recombination 
type. In Sec. 4 is analyzed the influence of the Gaussian fluc- 
tuations on the kinetics of a diffusely controllable reaction 
A + B + Product, and the fifth section deals with the static- 
recombination kinetics. It is shown that the relations ob- 
tained in Refs. 4-7 by various methods are asymptotically 
accurate. 

An interesting situation occurs in a system with moving 
traps if the average rate of multiplication of particles A is 
equal to the rate of their annihilation in the traps. The two- 
particle approximation predicts in this case a slow decrease 
of the density ofA on account of the second (nonstationary) 
term in the expression for the effective rate constant of the 
reaction (3).  We show in Sec. 6 that Gaussian fluctuations 
of the density ofB lead in such a system to a slow growth of 
the density ofA, and the corresponding asymptotic relations 
are derived. 

1. ANNIHILATION IN IMMOBILE TRAPS IN A SYSTEM WITH 
MULTIPLICATION. FORMULATION OF THE PROBLEM 

Consider a system in which N immobile traps of radius 
a each are randomly (with a Poisson distribution) placed 
uniformly over a volume V. We designate the radius vector 
of thejth trap by Rj , withj = 1,2, ... , N. Let, in parallel with 
the diffusion and vanishing in the traps, the particles A also 
multiply via some arbitrary chain process. In this case the 
equation for the generating function F(r,t,B) of the density 
distribution of A at the point r is given by" 

By definition, F(r,t,B) = Z, P, Om, where P, = P, (r,t) is 
the probability of a particle initially at a point with a radius 
vector r becoming transformed after a time t into m particles, 
and f (6) is the generating function of the distribution of the 
number of descendants in a single branching act. If A has 
initially a uniform distribution, the boundary and initial 
conditions for Eq; (4) take the form 

The multiply connected surface B is a union of all the reac- 
tion surfaces J r  - R, ( = a, R, = 1 ,  2, ... N. The mathemat- 
ical expectation value of the density C,, ( r , t )  = (aF/ 
d6) 1, = , of the particles A obeys the equation 

with boundary and initial conditions 

, CA (r, t) 1 t=O=Co, C A ( ~ ,  t) Ir=z=O. 

Consequently 

cA = exp (kpt) 5 drp (r, t, r') , 

where p (r,t,rl) is the Green's function of a diffusion equa- 
tion of type (1)  with zero boundary conditions on 2: 
p , t , r l  1 = 0 and with the initial condition 
p(r,t,r ')It=o = S ( r -  r'). 

The optimal-fluctuation method2' was used in Ref. 19 
to obtain a lower bound of the function p. It was shown in 
Ref. 2 1 that this estimate yields an exact result as t- a,. 

The presence of an asymptotically exact result notwith- 
standing, we investigate in the next section the function 
p(r,t,rl) once more, to enable us to determine the variation 
ofp in the entire time interval for small values of the param- 
eter a. 

2. PERTURBATION THEORY FOR SHORT TIMES 

We write down an expression for the Laplace trans- 
form, with respect to time, of the function p (r,t,rl) : 

where 
m 

p (r, A, rr) = J 0 exp (-kt) p (r, t, r l )  at, 

Foo=G(x, r-r'), Foj==G(x, r-Rr), FiO=G(x, Rr-r'), 

Fu=Eu for, j, i>O, Edj=G(x, Rr-R,) for if], 

Eii=G(x, a), x2=Dlh, 

G(x,r) is the Cauchy function of the operator (x2 - A), 
(x2 - A)G(xr) = S(r ) .  The functionp(r,A,rr) satisfies the 
equation (x2 - A)p = 0, since it is a linear combination of 
its solutions. If Ir - Ri 1 = a, two columns in the matrix FU 
become nearly equal to within the small corrections in 
(R, - Rj (/a, i.e., in the case of small n det((6,)) is equal to 
zero for ~2 for an overwhelming majority of the { R ,  ) con- 
figurations. The fluctuating clusters of sinks add to operator 
introduced below corrections that are small in terms of a. 
These corrections make a contribution that is not singular at 
large t (small A), since the long-time asymptote of the prob- 
lem is determined by regions with increased rather than de- 
creased trap density. A solution obtained without this re- 
striction, for example by a path-integral expansion [see Eq. 
(42) below] or by the t-matrix method1' leads, after averag- 
ing over {R,}, to constants k,, c2 and po obtained in the 
present paper, which are accurate to small corrections in 
terms of the parameter a, do not change the analytic struc- 
ture of the perturbation-theory series, and do not affect the 
conclusions of the paper. 

Expanding the determinant det IIF 11  in terms of the ele- 
ments of the zeroth row and zeroth column, using the 
expression for the inverse matrix E - in terms of the minors 
of the determinant of the matrix E, and finally expanding in 
termsofE the matrix [G(x,a)I + EJ -' (in which I i s  a unit 
N x N matrix, zo = E,, at i+j and E!, = 0 at i = j), we get 

p (r, A, r') =G (x, r-rr) 
N _  N 
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where Summing, we obtain the series 
m 

Correspondingly, 

where 

P ( a )  = 5 P (r, h, r l )  dr' = .f (r ,  A, r') dr. 

The functionp(il) averaged over the random distribution of 
the vectors R, in 3 0  space can be written in the form (we 
neglect the intersection of the absorption spheres) 

where 

P k d =  I I C E [II ~ ( Y I !  -Y, ,) 11 ~(yrn-yrn-t) ] dym, 

The expression for pkd can be represented graphically by a 
diagram consisting of k points corresponding to k-fold inte- 
gration with respect to the variables y, that correspond to 
the radius vectors of the traps. Each point (except the first 
and last) is joined by a straight-line segment to the preceding 
and succeeding points. (The first point is joined only to the 
preceding one. A straight-line segment corresponds to a 
factor GQ, - y, - , ) (free propagator) in the integrand. 
On the obtained chain of k points it is necessary to place d 
braces, with the I th dashed-line brace, the I th brace corre- 
sponding to the factor 6 ( ~ , ~  - yll) in the integrand of (12), 
where I = 1,2, ... d. To calculatepkd it is necessary to sum all 
the diagrams with different placements of d braces on k 
points; the braces are assumed indistinguishable and each 
can join together any two points except neighboring ones. 
Figure 1 shows a typical diagram which contributes topkd at 
k = 2 1  andd=5 .  

It is easy to sum in explicit form over all the diagrams 
that differ from one another only in the number of points 
between the nearest (dashed) vertical lines on the diagram. 
For the diagram shown in Fig. 1 this corresponds to summa- 
tion over the number of points located between the first and 
second, fifth and eighth, eighth and tenth, tenth and ele- 
venth, eleventh and thirteenth, thirteenth and sixteenth, six- 
teenth and nineteenth, and nineteenth and twenth-fourth 
points. 

FIG. 1. Example of diagram that contributes topkd. 
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where p, is a sum of diagrams, each of which consists of a 
straight-line segment on which d braces-dashed lines-are 
placed. To each straight-line segment between nearest inter- 
sections of the straight line and a dashed brace or between 
the end of the straight-line segment and the adjacent inter- 
section with the dashed brace there corresponds a factor 
- xGq (Ay), Ay = y, - y, - , , if the given straight-line 

segment is not spanned by any brace or is spanned by a brace 
that intersects with other braces (at least one of them). The 
segment spanned by a brace that does not intersect with any 
other brace corresponds to a factor - x [Gq ( Ay ) - G(y ) 1, 
where Gq (y) is a renormalized propagator. In the k-repre- 
sentation we have Gq = (k + q2) - I ,  and in the r-represen- 
tation Gq ( r )  = e-qr/r at d = 3 and Gq ( r )  = K,(qr) at 
d = 2, where K,(y) is a modified Bessel function of imagi- 
nary argument and q2 = x + 1. Just as before, the mth point 
on the diagram corresponds to the mth-trap radius vectory, 
over the values of which the integration is carried out, while 
the brace is a S function of the appropriate arguments. Fig- 
ure 2 shows a typical renormalized diagram. 

Summing all the diagrams that break up, on cutting one 
of the straight-line segments, into a product of diagrams not 
connected by dashed lines, it can be shown9 that in systems 
of any dimensionality we have 

where x = 4naDneXa/A in 3D systems and x = 2nnD / 
AK,(xa) in planar systems, while the function g(A) is equal 
to the sum over the irreducible diagrams, which is calculated 
in accordance with the rules set forth above. 

In 3D systems, the summation corresponds to a change 
to a new variable A ' = il + s, wheres is a pole of the function 
p (A ) calculated in the Smoluchowski approximation. 

The functionsg(2) contains corrections, small together 
with the parameter a ,  to the Smoluchowski solution. The 
Appendix contains the first five irreducible diagrams that 
contribute tog(A). It can be seen that each succeeding cor- 
rection is small in terms of a and is at the same time more 
singular as A ' -. 0 compared with the preceding one. In first- 
order approximation in a we have at xa ( 1 

p ( h )  = {h+4naDn+4na2n[D(4naDn+h) 1'")-' (15a) 

and accordingly 

in 3D systems and 

in planar systems. Expressions ( 15) and ( 16) were obtained 
in Ref. 9. 

FIG. 2. Example of renormalized graph. 
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Analysis of the general structure of the perturbation- 
theory series leads thus to the conclusion that in 3D systems 
expression ( 15a), which was obtained in first-order in a, is 
meaningful at (A - s)/s)a.  The sum of the contributions 
from the simplest loop-free diagrams correspond to the Smo- 
luchowski theory, which is an an analog of a certain variant 
of the mean-field theory, and the first correction g to the 
"mass operator" is the sum of the single-loop diagrams. 

It must be noted that the singularities in the higher 
terms of the perturbation-theory series forg(A ) become sub- 
stantial at 1A - s ( / s z a ,  which corresponds to the time in- 
terval r > a- '. At d = 3 and (A - s )  /s) a the perturbation- 
theory series yields converging corrections to the rate 
constant calculated by Smoluchowski, the first of which is 
negative and has an absolute value 4n-aDna. 

The Green's function in first order in a is equal to 

p (k, h)=[k,+X+(aX)'"]-', (17) 

where 1 = (A - s)/s. Consequently, in this approximation 
the mean-squared displacement (r2 ( t )  ) is equal to 
( 3  ( t)  ) - t 'I2 as t + a. A similar dependence was obtained 
in Ref. 22 for the problem of the mean squared displacement 
of a particle that wanders over a lattice with blocked sites 
whose concentration is equal to the uncorrelated mobility 
threshold. In the approximation corresponding to ( 17), an 
infinite cluster at the critical point constitutes a linear chain 
that is randomly distributed in space. The number of un- 
blocked neighbors of an unblocked site is assumed to be iden- 
tically equal to unity-the average number of unblocked 
neighbors of an unblocked site, i.e., branchings are neglect- 
ed. The average mean squared displacement of a particle 
along such a chain is equal to (1 ') -t. The mean squared 
distance between the ith and jth sites is equal to 
((ri  - r, )') z Ji -jl = I. Accordingly, (?( t ) )  --I--t 'I2. 

The problem of calculating p (A ) is very close to the 
problem of the spectrum of a particle in a random potential 
of repelling impurities.15 The perturbation theory set forth 
above describes well the continuous spectrum far from the 
boundary A = s. We modify below the perturbation theory 
so as to obtain a description ofp ( t )  at arbitrary t. The contri- 
bution of the states close to the boundary A = s, which in 
principle cannot be described by a theory of the perturba- 
tion-theory type, made to the expression forp(t)  in 3D sys- 
tems, turns out to be small for all t if a 4 1. 

3. MODIFIED PERTURBATION THEORY. ASYMPTOTE AS 
t+ a, 

We change the order of the averaging over the trap posi- 
tions Ri in expression ( 10) for p(il ) in the following man- 
ner. We fix the distance between the origin (the starting 
point of particle A )  and the nearest trap B, i.e., we fix 
IRk/ = R ,  where k is such that IRkI =minlRiI, i =  1, 2, 
... N. The distribution over R in a Poisson ensemble was in- 
vestigated in detail in Ref. 23. We denote the result of aver- 
aging the function p(A,r,[R, ] )  over all Ri such that 

I Ri I > R at a fixed value I Rk / = R - p (A,R ) . Retaining the 
zero-loop diagrams in the expansion ofp (A,R ) in terms of a, 
we get - 

where 

Q~=Po,  Q n t i  (Y, A) 

= - 4 n ~ a n  j dy Q, (Y, A) G (Y-x, A) q (x) ax, 
(19) 

G (y, A) = I y I exp (-A'"yD-'h), 

It is shown in Ref. 24 that the sum of the series (18) coin- 
cides with the solution of the equation 

po+DAp-[A+4nDanq (r) ]p=O. (20) 

Generally speaking, the potential in (20) should be supple- 
mented by a term S(  lr - R I - a ) ,  which corresponds to a 
selected trap B (closest to the origin). It is easy to show, 
however, that at r$a or, equivalently, t)a2/D, the poten- 
tial of the separated particles has practically no effect on 

Equation (20) is similar to the Schrodinger equation 
for an electron in a potential well. At d = 3 its spectrum has 
at least one discrete level if 16r-InaR '> 1. The correspond- 
ing well width R, = a (  16.rr-'na3) - I J 2  exceeds substantially 
the average distance between the traps 

With logarithmic accuracy, the density of the fluctuation 
wells of this distance is equal to y = exp( - The 
inverse Laplace transform of the solution of Eq. (20) is 

where 

I, ( t )  = 4n 3 W (R) L-'[p (A, R) ] Rd-' dl?; 
0 

here W(R ) is the distribution function of the distance to the 
nearest neighbor in the Poisson ensemble, the summation is 
over the discrete spectrum of the eigenvalues A, of the equa- 
tion conjugate to (20), $i are the corresponding eigenfunc- 
tions, and L -'[...I is the inverse Laplace transform. At 
~ 4 a - '  and a 4 1 the function 12(t)  coincides with the Smo- 
luchowski solution. The corresponding corrections to the 
mass operator g(A) are small, since the corresponding re- 
gion of A is determined by the inequality (A - s)/s$a. At 
t$a-  ' an important role is assumed by the nonanalytic so- 
lutionp(A,R ) near the poleil = s. However, the presence of 
the factor e - "' in the expression for I, ( t ) causes I, (t  ) to 
decrease at large t much more slowly than I, ( t ), while I, ( t)  
becomes leading in the sum (22) at r > a-'I2, i.e., at times 
much shorter than those at which the non-analytic character 
ofp (A,R ) becomes substantial. 

The smallest eigenvalue Amin in (22) is equal to the 
solution of the equationz5 

sin[ (LID) 'I'R] =* (4nnaS) -"Y(hlD) '"a. (23) 

At 4r$1, the main contribution to I, ( t )  is made by the term 
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with Amin.  At R ) R, we have 

In this limit the integral with respect to R in the expression 
for I, ( t )  can be calculated by the saddle-point method. Rec- 
ognizing that In W(R) = - 4/3anR 3, we get 

The value of R that maximizes the integrand, viz., 

is the region of localization of the particle A. 
The first term of (25), which is the leading one for long 

times, is the known asymptotic expression lnp( t )zn2 '  
( d  + ') fd'(d + ') , first obtained in Refs. 19 and 5. The second is 
a correction for the finite depth of the well. Similar correc- 
tions were obtained by the replica method in Refs. 26 and 27. 

The density of the reactant A in a three-dimensional 
system, in which uniform multiplication ofA takes place at a 
rate constant k, , in parallel with a vanishing in the traps, of 
the immobile particles B, varies with time in the following 
fashion (see Fig. 3 ) . If k, > 4aanD, an increase of the den- 
sity is observed, viz., CA ( t )  = Co exp [ (k, - 4aRDn) t]. In 
the opposite case 4aanD > k, , the density of A increases 
during the initial stage in accordance with the relation 

where C, is the initial density of the reactant, y is a small 
quantity, In y = - 7 ~ ~ / 2 k - ' / ~ .  Complete fading CA ( t )  =: y 
is observed in the system in a wide time interval 
1 4 ~ 4 a - ' / ~ .  (At small a ,  the quantity y can as a rule not be 
recorded in experiment; see Ref. 28, however. ) At arbitrar- 
ily small k, but sufficiently long time, an exponential in- 
crease of the density of A is observed in the system: CA ( t )  
= y exp(k, t) .  

It should be noted that the survival time of a given parti- 
cleA, equal toaF/ae I,= , [see Eq. (4) 1, varies at ~ 4 a - l ~ ~  
in analogy with the function CA ( t )  with C, = 1, but does not 
increase at r > and tends instead to a constant value y. 
Consequently, the fluctuation effects cited in the present pa- 
per can be observed only in sufficiently large systems for 
which CoVSexp a-ll2,  where V is the total volume of the 
reaction system. A transition to the thermodynamic limit in 
the derivation of the fluctuation asymptotes is valid only for 
such systems. 

FIG. 3. Density evolution in a system with average multiplication rate k, 
smaller than the average rate 4maD of annihilation by immobile traps: 
1--exp[ - (4rDan - k, ) t ] ,  2-y exp(k, t ) .  

We note also that the point R = Amin (R ), where R de- 
pends parametrically on the time in accordance with (26), is 
not "dangerous" from the standpoint of the diagrammatic 
expansion. The propagator of the localized particle de- 
creases exponentially over distances larger than R, and the 
corrections to the zero-loop diagrams are not singular. 

It will be shown below that the singularities of the kinet- 
ics in a system with multiplying particles A, which react with 
mobile traps B, are determined by the Gaussian fluctuations 
of the density of B if the average rates of multiplication and 
annihilation are equal. The influence of the fluctuations on 
the reaction kinetics manifest themselves in reactions such 
as recombination of particles of two types. 

4. DIFFUSION-CONTROLLED REACTION A + B+ PRODUCT 
AT EQUAL AVERAGE CONCENTRATIONS OF A and B 

The concentrations of the reactants A and B (CA and 
C, , respectively), satisfy in the system considered the equa- 
tions 

acA (r, t)/dt=-kCA(r, t)CB(r, t )  +DAACA(~, t), (27a) 

At DA = DB = Do/2, following Refs. 4-6, we subtract 
(27b) from (27a). We obtain for the difference 
Z(r , t )  = CA (r,t) - CB (r,t) 

aZ(r, t)/dt=DoAZ(r, t). (28) 

The initial distributions CA (r,O), C, (r,O) and accordingly 
Z(r,O) are random functions whose properties are deter- 
mined by the method of preparing the reacting system. In the 
case of instantaneous generation of the reactants, the distri- 
bution can be approximated for a largenumber of systems by 
a Gaussian-correlated one. The case of generation by a sta- 
tionary Poisson source was investigated theoretically in Ref. 
29. The average density CA ( t )  = (CA (r,t))  = (C,  (r, t))  
= C, ( t )  as t- w was calculated in Ref. 5 to be 

In Ref. 7, by breaking the chain of linked diffusion-kinetic 
equations for the central moments of fourth order of the 
distributions CA (r,t) and C, (r,t), a similar result was ob- 
tained, which duplicates the intermediate Smoluchowski as- 
ymptote 

CA (t) =Co (I+kCot)-', 

and yields as t- w 

We shall show that Eq. (29) gives the lower bound of C(t),  
and Eq. (30) gives the corresponding upper bound, i.e., 
C ( t )>C(t)>C1(t) .  Since the ratio (IZ I ) / ( Z ~ ) ' ~ ~  for a 
Gaussian distribution is the constant (7r/2) 'I2, the results of 
Refs. 5,7, and 29 yield the exact relation C, ( t )  -t -d '4  for 
instantaneous generation and C, ( t )  - t - ' I4 at d = 3 for 
generation by a stationary source. 

The lower bound is obtained right away. Obviously, 

Consequently 
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To obtain the upper bound we substitute the definition 
Z(r,t) in Eq. (27a): 

aCA(r, t)ldt=DACa(r, t)-k[CA2(r, t)-Cn(r, t)Z(r, t)] .  

(31) 
Averaging both sides of ( 3 1 ) over r, we get 

dC/dt=-kS[CA(r, t), Z(r, t)  1, (32) 

where 

The operator DA A does not alter the average density in a 
closed system (at zero fluxes through the boundary), but 
does - affect the correlators (CA (r,t)Z(r,t)) and [CA (r,t) 
- C(t) ] 2, influencing thereby the reaction kinetics. 

Obviously, CA ( t )  &C" ( t )  if CA (0) = C; (0)  and 
dCu/dt = - kSu[C"], with S" [C(t) ] (S[C, (r,t), 
Z(r , t ) ]  for any distribution CA (r,t) that meets the condi- 
tion 

The functional S" [C(t) ] is equal to the rate of the reaction 
in a system in which the total number of particles A, equal to 
C(t),  is so distributed that the reaction rate is a minimum at 
a given distribution Z(r,t) . Minimizing the functional (33) 
with the additional condition (34), taking the identity 
$Z(r,t)dr = 0 into account, we get 

CA (r, t) =C(t)+Z/2, (35) 

and consequently 

d ~ " / d t =  - kC[C" (t)12-~"r,  t)/4). (36) 

Since I Z / d t  I<k( 22)3'2 as t+  ca for the systems con- 
sidered in Refs. 5,7, and 29, the asymptotic solution of (36) 
is determined by the function 

C' ( t )  =[ZZ(r, t)]Ih/2. (37) 

5. STATIC RECOMBINATION 

An interesting particular case of the influence of fluctu- 
ations on the reaction kinetics is that of the kinetics of the 
static recombination of unlike particles. This problem is of 
importance in many applications, particularly for the inves- 
tigation of the kinetics of annealing of point defects in solids. 
The process of static recombination is defined as follows. Let 
N particles A be initially located at the points R,, and N 
particles B at the points Rj ,i, j = 1,2, ... N. After a short time 
interval t<t '<t + dt each particleA (B) that has not reacted 
by the instant of time can react with a probability, with a 
particle B (A) that has not yet entered into a reaction, pro- 
vided the distance between these particles is in the interval 
l g l l< l  + dl. The reacting particles are removed from the 
system. We define ri (7, ) as equal to unity if the particle A 
(B) initially located at the point Ri ( R j  ) had not reacted by 
the instant of time t, and as equal to zero if it did react. The 
probability that 7, > 0 (7, > O), which is the mean value of r, 
(r, ) over the realizations of the random process of annihila- 
tion at fixed Ri and R,, is equal to 

rj ( t )  = exp (- J dfr C ri (tf ) o [ R ~ - R ~ I ~ ~ ' ) .  (38b) 
0 <-1 

In problems dealing with static annihilation at a suffi- 
ciently rapidly decreasing function a(l) [for example, in the 
most prevalent case of the exponential decrease 
a(l) = uoe - "" ] an effective approximation is the so-called 
black-sphere In the framework of this 
approximation, two particles A and B that have not entered 
into a reaction by the instant t and have respective centers at 
the points R, and R, , will react with each other within a time 
interval t(t '<t + dt with unity probability if IRi - R, I (Ri , 
and will not react in the opposite case. The effective radius 
R, of the black sphere is determined &om the relation 
ta(R, ) = 1. 

An approximation of the mean-field type is equivalent 
for this problem to the assumption that the distribution of 
the reagent particles remains of the Poisson type during the 
reaction, (i.e., the correlations are neglected). In this ap- 
proximation, the average density of the reagent obeys the 
equation 

where CA (0) is the initial concentration. At large R,, such 
that CA (0) R f $  1, we have in this approximation, with loga- 
rithmic accuracy, 

i.e., one reactant particle remains on the average in a volume 
with a linear dimension R, . For an exponential decrease of 
a(l) we have 

It can be shown that expression (39) describes correct- 
ly the asymptotic behavior of the annihilation of particles of 
like type, A + A -Product, whereas allowance for the fluc- 
tuations of the density in the case of a reaction between the 
particles A and B leads to a slower dependence. The random 
excess of one of the reactants in a d-dimensional sphere of 
radius R, is proportional to [ VdR f x CA (0) ] 'I2, where Vd 
is the volume of the unit d-dimensional sphere. Reasoning 
similar to that presented above yields 

in the limit Co[a ln(oot) I d  $1. 

6. REACTION OF THE A-MULTIPLICATION TYPE, 
OCCURRING IN A SYSTEM WITH DIFFUSING TRAPS 

It is customarily assumed that in a system with a small 
parameter a the reaction of the particles A with mobile sinks 
B, for which (DB /DA ) )all2, are correctly described in the 
Smoluchowski two-particle approximation. In this approxi- 
mation, the density A in a system with multiplication and 
annihilation is given by 
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accurate to terms small compared with Dt /a2 in the argu- 
ment of the exponential. 

If the average multiplication rate k exceeds the average 
rate of annihilation in the traps, multiplication and an expo- 
nential growth ofA take place in the system. Conversely, if 
the average annihilation rate is larger, the average density of 
A decreases exponentially. A nontrivial situation arises 
when the average annihilation rate is exactly equal to the 
average multiplication rate: k, = 4.rrDan. Expression (4 1 ) 
predicts in this situation a slower than the exponential, 
p ( t )  =po  exp[ - (ar) '12]  particle vanishing. By analogy 
with the preceding sections, one should expect allowance for 
the fluctuations of the density of B to lead to an effective 
increase of the survival probability. It must be noted that 
fluctuations of the multiplication rate cannot compensate 
for the influence of the fluctuations of the annihilation rate, 
since they act op the asymptote p ( t )  in one and the same 
direction. The probability of observing an A particle is high- 
er in those sections of the system where the fluctuations lead 
to local increase of the multiplication rate and to local de- 
crease of the annihilation rate. 

In a system with mobile traps B, their diffusion causes 
the fluctuations of the density ofB to become smeared out in 
a volume with linear dimension I- (D, t)'I2. The effective 
excess of the rate constant is therefore 4n-aDn (Sn/n), where 
6(n )/n is the characteristic relative fluctuation of the den- 
sity of B, equal on the average to S(n)/n- (nld )-'" and 
having a Gaussian distribution. One can accordingly expect 
the effective annihilation rate constant to vary like 
4n-aDn [ 1 - (a/r)112], and this will lead to a situation that 
is the converse of that predicted by (41 ), viz., a slow growth 
of the density ofA is expected in a system with equal rates of 
multiplication and annihilation. We report below a more rig- 
orous investigation of this situation. 

A formally exact expression for the average density A in 
a system with mobile traps B (without multiplication) can 
be expressed in the form 

N t 

where E i  CF) is an integral of the functional F[x( t ) ] ,  in a 
Wiener measure, of the trajectories of the particle A, with a 
diffusion coefficient DA . The trajectories begin at the origin 
x(0)  = 0, E 2 is an integral over the trajectories x, ( t )  of the 
jth B trap and start out from the point Rj, x, (0)  = Rj, and 
the angle brackets denote averaging over the Poisson distri- 
bution of the initial positions R, of the traps, a distribution 
characterized by an average density n,p, is the initial density 
ofA, V(r) =Oat Irl >a,  and V(r) = w at Irl <a.  

Averaging over the Poisson distribution for Rj yields 

A very simple estimate with the aid of a Peierls-type 
inequality leads to the following inequality for p(t):  

p ( t )  2 po exp [ - ~ E . ' { E , '  { j [ exp( - d l r  I.. (x, ( L O  
U 

It can be shown with the aid of the Feynman-Kac formula 
that 

t 

where G(0,R; r,t) is the Green's function of Eq. ( 1 ) with 
corresponding boundary conditions and with the initial con- 
dition p(r,t) 1, =, = S ( r  - R ) .  It follows from the Gauss 
theorem and Eq. (45) that 

E,O{E.O { J [exp [- J at1 V ( X ,  ( t f )  
0 

where k ( t  ') is the reaction rate constant calculated in accor- 
dance with the Smoluchowski procedure. Thus, the obtained 
Smoluchowski (mean-field) solution gives the lower bound 
ofp(t).  It is of interest to note that in the limit as DA -0 the 
path integral EA {F[x, ( t )  1) tends to f [x(O) ] and the in- 
equality (46) turns into an equality, i.e., in this limit the 
Smoluchowski solution yields the exact answer. In this limit, 
the fluctuations become equalized within a time t in a vol- 
ume having a linear dimension I- (D, t)  'I2, which is exactly 
equal to the linear dimension over which, according to Smo- 
luchowski, an equilibrium effective depletion of the particles 
of one reactant takes place near a particle of the second reac- 
tant. At DA # O  there appears a second characteristic linear 
dimension, equal to (DA t). In the limit DA /DB - w the 
fluctuations of the density of B alter substantially thep( t )  
asymptote as t + w . In the intermediate situation 1 > DB / 
DA ,a'/' large-scale small (Gaussian) fluctuations with 
characteristic dimension (D, t )  'I2 become substantial. 

The reaction rate in a system with traps whose density 
varies on account of diffusion processes is determined by the 
following system of equations: 

where n,(r) is a Gaussian &correlated field with mean value 
n. Equation (47a) with a static Gaussian potential CB ( r )  
and a Gaussian potential that evolves in accordance with 
laws that differ from (47b) was recently investigated in 
Refs. 32 and 33. 

The solution of the set (47) can be expressed with the 
aid of the following integral over the paths of the particle A: 
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where 

G ( t )  = e - r Z / 4 D ~ t  
B r ,  [2  ( J c D ~ ~ ) " ~ ]  -'. 

The simplest lower-bound estimate for C ( t )  is obtained with 
the aid of an inequality of the Peierls type: 

t 11 

c ( t )  2 exp{k.'nEA" J dti J dtz G2 (xA(t1) -xA(tz) ,  f l + t 2 ) ] } ,  
0 0 

and consequently, at k, = 45-a ( D ,  + D, ) we have 

2an (DA+DB)  
In C  ( t )  Z 

1 1 

DB-DA 

The estimate (49 is quite crude, but it does indicate the range 
of parameters in which the system ( 4 7 )  with constant reac- 
tion-rate constants describes satisfactorily the kinetics of the 
investigated reaction. The nonstationary term in the right- 
hand side of ( 4 9 )  exceeds the stationary term in the Smolu- 
chowski expression ( 3 )  for the rate constant at D, > D,, 
i.e., one should expect the sytem ( 4 7 )  to be correct if the 
diffusion coefficient of the particles A is not less than the 
diffusion coefficient of the traps. 

An exact lower bound for C ( t )  can be obtained with the 
aid of the variational inequality 

C(t)2EAo{exp(-Ht[xA(t)l))exp(-(AH)), ( 5 0 )  
t 1 ,  

< A I I ) = E , { ~ X P  ( - H , [ x ,  ( t )  1) [ k h j  d t ,  I dt2 GB(xA( t l )  
0 0 

Choosing the trial Hamiltonian in the form 

H, = o t - .  j xA2 ( t ' )  dt' ,  
0 

where u, has a parametrically monotonic dependence on the 
time, such that 

DBt (S t? 
lim --, = m, lim - (Ic,tj '=w for any E>O, 
t+w ot r+m DAt 

we obtain 

and consequently 

where z=4n (DA+D,)  ant.  ( 5 1 )  

The upper-bound estimate is obtained directly. Obviously, 

and consequently 
1, 

C ( t )  < exp[  k,'n J d t .  j d t ,  ~ ~ ( 0 ,  t i + t 2 ) ]  
0 0 

[ 2';I (DAiBDB )" (F j "1 
= exp 2----- - 

The estimates ( 5 1 )  and ( 5 2 )  coincide; consequently the 
function 

is an asymptotically exact solution of the system ( 4 7 ) ,  a so- 
lution of independent interest regardless of the problem con- 
sidered here. If the average rates of multiplication and anni- 
hilation by the traps are equal, k ,  t  = r ,  the average density 
of the particles A in the system is determined by the second 
term in the argument of the exponential of Eq. ( 5 3 ) .  

CONCLUSION 

In the first three sections of this paper we constructed a 
perturbation theory that describes the survival probability of 
a particle diffusing in a system with immobile traps. The 
Smoluchowski intermediate asymptotic corresponds to free 
diffusion of particles with mean-squared displacement 
R 2-DA tor  else to a continuous spectrum in the language of 
the problem of an electron in a random medium with repel- 
ling impurities. The long-time asymptotic is determined by 
localized states with R - ( D ,  t)2"d + 2, [see Eq. (26) 1. 
These states correspond to a particle A that did not leave 
even once a spherical region having a size R and containing 
not even one trap. The perturbation theory developed in the 
paper for small a converges both in the region of deep local 
levels and in a continuous spectrum far from its boundary. 
The region in which the perturbation theory diverges is a 
narrow interval near the boundary of the continuum-the 
mobility threshold. The states close to the threshold at small 
a make a small contribution to the survival probability in the 
entire time interval. The rate of establishment of the asymp- 
totic regime is given by the expression 

The region of Gaussian fluctuations on the boundary of 
the continuous and discrete spectra is important not for the 
problem of survival in a medium with traps, but for the local- 
ization problem. In terms of the latter, the perturbation the- 
ory developed in the first section predicts a nontrivial time 
dependence of the mean squared displacement of a particle 
having an energy equal to the mobility threshold, 
R 2 -  ( D ,  t )  ' I 2 .  This dependence is not an exact answer, but 
points to the existence of a scaling region and has a lucid 
physical meaning. 

For the problem of diffusion with multiplication and 
annihilation by immobile traps, the diagram technique de- 
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veloped in this paper makes it possible to express in explicit 
form the time dependence of the reagent density accurate in 
first order in a .  If the average multiplication rate is less than 
the average rate of annihilation in traps, k, < 4rDA an, this 
dependence is not monotonic. During the initial stage, the 
density decreases to a small value y = exp( - ~ ~ / 2 4 a ' / ~  1 
that obeys the formally kinetic law 

After long times, a "burst" takes place in the system, an 
exponential increase of the density in the form 
C(t)  = y exp(k, t )  , and the corresponding li induction time 
TI is long in systems with small a :  TI = (4vaDA nail2) -'. 

The possibility of a nontrivial change of the reaction 
kinetics with temperature must also be pointed out. If the 
activation energy of the diffusion coefficient of particles A is 
much lower than the activation coefficient of the diffusion of 
particles B, it may turn out that DA /D, < a - ' I 2  at high tem- 
peratures and D, /DB %a- ' I2  at low ones. ~ f k ,  < 4 v a ~ ,  n, 
the trap diffusion at high temperatures will smooth out the 
fluctuation effects, and only an exponential decrease of the 
density of the particles'~ will be observed in the system. At 
low temperatures, when the particles B can be regarded as 
immobile, a "burst" at long times should be observed in the 
system at the same ratio of the average multiplication energy 
and average annihilation rate. Note that at DA )DB the 
quantity DB does not enter at all in the formal-kinetics equa- 
tions. 

In contrast to the reaction in a system with immobile 
traps, for which an important role is played at long times by 
the Poisson character of the distribution of one of the reac- 
tants, in a system with diffusing traps DA /DB < a - ' I 2  the 
decisive role is played by Gaussian density functions. Reac- 
tions of the recombination type do not alter the local concen- 
tration difference Z(r,t) ofA and B (Refs. 4 and 5 ) , and this 
difference evolves only as a result of diffusion processes. For 
a number of cases of practical i m p o r t a n ~ e , ~ - ' , ~ ~ , ~ ~  the mo- 
ments of the distribution Z(r,t)  can be accurately calculated 
in explicit form. In Sec. 4 of this paper we have shown that if 
the derivative 

-- 
IdZ2(r, t)/dt(<[Z2(r, t) 1'- and JZ(r,  t)/[ZZ(r, t )  ] '"I  =const 

as t + cc , the function C(t)  z [ Z  2(r,t) 1 '12/2 describes as- 
ymptotically correctly the kinetics of the reaction. For the 
problems investigated in Refs. 4-7,29, and 34, this condition 
is met. For instantaneous independent generation ofA and B 
we have C(t) - t - d'4 (Refs. 4-7), and in the case of genera- 
tion by a stationary source29 we have C(t)  -t - I t 4  at d = 3. 
The analysis, presented in Sec. 5, of the asymptote of the 
reaction of static recombination, with an exponential distri- 
bution of the reaction probability over the distances, yields 
C(t)  - (ln t )  -d'2. 

In the sixth section, the average density p ( t )  of a reac- 
tant diffusing in a system with mobile traps is formally exact- 
ly expressed in terms of a path integral. It is shown that the 
two-particle Smoluchowski approximation yields the lower 
bound ofp ( t ) .  An asymptotically exact expression was ob- 
tained for the survival probability of a particle that diffuses 
in an absorbing medium in which the absorption probability 
obeys the diffusion equation and has initially a Gaussian 6- 
correlated distribution. In systems in which the average 

+gL + 5b + ces. 

FIG. 4. Graphs corresponding to first corrections to the mass operator. 

rates of multiplication and annihilation on mobile traps are 
equal, and in which k, = 4ra  (D, + B, )n and DA > DB , 
the solution obtained predicts a slow growth of the average 
density in accordance with the relation 

whereas the Smoluchowski two-particle approximation pre- 
dicts a decrease like lnp( t )  = - 2(ar/v)'12. For systems 
with moving traps, the induction period needed to reach the 
fluctuation regime is equal to T2 = [4ra  (DA + D, ) na  ] - I.  

APPENDIX 

Figure 4 shows several irreducible graphs that make a 
contribution g(A) to the mass operator in Eq. ( 14). The 
contribution of the first graph is 

g,=Z- (ah')'", 

where 

The second term in the expression for g, is cancelled by the 
corresponding term that appears when ex" is expanded in the 
expression for x;  this lead to Eq. ( 15a) for the first approxi- 
mation in p (A ) . 

The contribution of the second irreducible diagram di- 
verges logarithmically for small r. Allowance for effects of 
the excluded-volume type, in which the particle A was ini- 
tially unable to be present in a volume occupied by traps, as 
well as in the fact that the traps do not overlap in space, lead 
to cutoff at small r, which yields 

where Ei is the integral exponential function. 
With the excluded volume taken into account we have 

+ a exp [ (ah') '"1 [exp (-42) +Z Ei (2) 1. 

The leading terms of g4 as Z- 0 are equal to 

g,=const Z-'(a exp[ (ah') ] 13. 
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