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We consider the nonlinear stability of Korteweg-de Vries solitons in the long-wavelength 
approximation. We show that the well known Kadomtsev-Petviashvili equation when applied 
to this problem reduces to the equations of a perfect and, moreover, a monatomic (!) gas and 
after that to a simple Laplace equation describing the self-focusing of solitons in the nonlinear 
stage. 

1. The aim of the present paper is the study of non-linear 
perturbations of Korteweg-de Vries (KdV) solitons. The 
KdV equation 

where s  = f 1 is the sign of the dispersion, c, the sound 
speed, and I the dispersion length, has an exact solution in 
the form of a KdV soliton: 

s = + 1 ) soliton ( 11, from which the above-described chain 
splits off, so that the nonlinear perturbations of the solitons 
( 1 ) can have very diverse shapes each of which must be con- 
sidered separately if we are interested in the details of their 
behavior in the region of the maximum growth rate. This 
example shows the impossibility of a general description of 
nonlinear perturbations with arbitrary k,. An attempt at 
such a general consideration on the basis of a variational 
principle with a Lagrangian was made in Refs. 10 and 1 1, but 
it was shown in Ref. 12 that the method used in Refs. 10 and 
11 does not allow one correctly to describe the maximum 
growth rate region. 

and it is well known that perturbations of these solitons are Only far from that region, when k, 4 k ,""", does it turn 
described by the Kadomtsev-Petviashvili (KP)  equation out that a general nonlinear consideration is nonetheless 

in the derivation of which one assumes that the inequality 
k,, 4 k, is satisfied. We note that this equation is useful not 
only for the analysis of the stability of the solitons ( 1 ) but is 
also of great interest in its own right as it is completely inte- 
grable in the two-dimensional case (see Ref. 1 ) by the in- 
verse scattering (IS) method for all initial conditions. 

The linear stability theory of the solitons, based on a 
linearization of the type u = u, + Su, was considered in 
Refs. 2-5. In Refs. 2 4  the "linear long-wavelength approxi- 
mation" ( k , ,  -0) was obtained, while in Ref. 2 a two-di- 
mensional medium was studied, in Ref. 3 a three-dimension- 
al medium, and in Ref. 4 the case of a three-dimensional 
anisotropic medium. 

In particular, in Ref. 2 a dispersion law was found for 
small perturbations 

showing the instability of the soliton ( 1 ) in a medium with 
positive dispersion, s  = + 1. Zakharov5 used the IS method 
to solve the linearized KP Eq. (2) exactly; this enabled him 
to find the exact dispersion law 

0'5.- 1 I (1-kyA'/8"11) 

(for s = + 1) which for a sufficiently small soliton ampli- 
tude (u,(c,) describes among other things also the region 
of maximum growth rate for small perturbations. 

The aim of the present paper is, however, a study of 
large, i.e., nonlinear, perturbations. We note in this connec- 
tion that the "chains" of two-dimensional solitons discov- 
ered in Refs. 6-8 and whose linear stability theory was con- 
sidered in Ref. 9 can also be particular solutions of Eq. ( 2 ). 
On the basis of the general formulae of Ref. 5 one can, in 
particular, consider the example of an unstable (for 

possible, as we shall show in what follows. In fact, we shall 
show on the basis of Whitham's method,I3 which was also 
used in Refs. 10 and 11, that in the "long-wavelength nonlin- 
ear wave approximation" perturbations of the KdV solitons 
( 1 ) behave as clusters of a perfect and, moreover, monato- 
mic (!) gas with an adiabatic index y = 5/3, with an effective 
pressure which is positive in the stable case (s = - 1) and 
negative in the unstable case ( s  = + 1 1. In the unstable case 
s  = + 1 these gas equations reduce simply to the Laplace 
equation which can easily be solved (we indicate the sim- 
plest two spontaneous solutions). It  is curious that although 
the problem of the stability of KdV solitons may be assumed 
to have been well studied by now, nonetheless this useful and 
obvious gas analogy had not been noted before in other stud- 
ies. 

We note also that it is shown in Ref. 14, which is essen- 
tially a continuation of the present paper, that a similar gas 
approximation is applicable also to other kinds of solitons 
(e.g., two-dimensional KP solitons, cnoidal KdV waves, 
nonlinear Schrodinger equation (NSE) solitons, and sine- 
Gordon equation solitons), while in Ref. 15 many other 
(about 20) examples are given of similar quasi-gas media 
which make a simple unified description possible. 

2. One of the equations in which we are interested can be 
easily gotten from simple obvious considerations by follow- 
ing the linear approach shown in Ref. 16. To do this it is 
sufficient to take into account that the total soliton energy is 
conserved when its front is twisted, and since the instanta- 
neous energy density equals u:A - u:'~, the following equa- 
tion must hold: 

duo"/at+div(uo"v,) =0, ( 3  1 
where v, are the transverse components of the group veloc- 
ity, for which we can, in turn, obtain approximate equations 
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of the geometrical-optics type. 
For a more rigorous derivation we note that an oblique 

soliton 

where the constants u,, A, a, 0 ,  cl are connected through the 
relations 

~ ~ = - ~ / ~ ~ ~ ~ + ' / ~ c ~ ( a ~ + p ~ ~  A = Z ( ~ ~ C , / U ~ ) ' ~  ( 5  

is a particular solution of the KP equations. We note that 
this solution is exact and a andflin it are arbitrary but, since 
in the KP equations themselves we assume that k ,  ( k  11,  we 
must assume also in (4)  that a, 04 1. In what follows, con- 
sidering the twisting of the front to be small, we shall assume 
that the function xO(t,y,z) is arbitrary and that the param- 
eters u0 and A also are no longer constant, as in (4),  but are 
functions which depend weakly on t, y, and z, while the fol- 
lowing inequalities hold: 

A ~ K X ~ O ,  AuaxyO, A,<x;. 

Under these conditions the approximate nonlinear equa- 
tions for the soliton perturbations can be obtained by a meth- 
od which is close to Whitham's method,13 which considered 
not a single soliton but modulated wave packets. 

With this in view we introduce the KP [Eq. (2) ] a po- 
tential p, putting u = p, and rewriting (2) in the form 

qt,+cp,cp,-~~~~~q~+'/~~~(cp~,+~~~) =O. (6) 
In this form the equation can be obtained from the Lagran- 
gian 

in which we substitute as the minimizing test function the 
potential 

ql=-suo(t, y, z)A(t, y, z)th0, 0=(x-xn)/A, (8)  

corresponding to the particular solution (4) .  In this case, 
taking into account the previously indicated inequalities, we 
shall retain derivatives of only the function xO(t,y,z); this 
leads to the result 

Moreover, by analogy with Whitham's method, we evaluate 
the integral 

which one must also consider as a new Lagrangian describ- 
ing the perturbation of the functions xo(t,y,z) and uo(t,y,z) 
in the soliton. 

The Euler-Lagrange equations then lead to the equa- 
tions 

d uo5 -- - div (uo'hcoV,xO) ), ( 1 1 ) 
d t 

and if we introduce the notation v, = - coV,xO, we get 

a dv, S 
-uo"+div(u,"v,) =0, - + (v,V)v, = - coV, , 

3 
1L 

d t at  
(12) 

with the additional condition du,, /dz = du, /dy indicating 
that the flow is potential. 

3. If uoo is the unperturbed soliton amplitude, it is con- 
venient to introduce the dimensionless instantaneous energy 
density p = ( u ~ u , ) ~ ' ~  and to rewrite ( 12) in the form of 
the gas equations 

dp - + div pv,=O, 
r3 t 

where the "effective pressure" equals 

pel,=-spoopT, y = ; / 3 ,  poo=2/iS~O~oo>0. (14) 

From this it is clear that perturbations of KdV solitons be- 
have as a monatomic (since y = 5/3) perfect gas, if the me- 
dium has a negative dispersion (s = - 1 ) and p,, > 0. In 
this case we get in the linear approximation the wave equa- 
tion 

d2pl/dt2-coo2A,pi=0, c0o='/s ( 2 ~ 0 ~ ~ 0 ) ' ~  (15) 

for the perturbationsp = 1 + p l , p l  4 1 which, hence, do not 
grow. Such solitions are stable but the analogy with the gas 
shows that when we take into account that the amplitude is 
finite, effects such as wave breaking (which, however, go 
beyond the framework of our approximations) are possible 
here. 

In media with a positive dispersion (s = + 1) solitons 
are unstable, as has already been established before both in 
linear and in non-linear approximations (see Refs. 2-5). 
This instability leads to the soliton2 self-focusing, which is 
very simply described by our Eqs. ( 13). For instance, for an 
axially symmetric perturbation Eqs. (13) take for s = + 1 
the form 

dp 8 a v  av -+ -rpv=o, -+ u- = -lhdp 
dt dr 

coo p 
dt r d r  d r 

(16) 

and have, in particular, a self-similar simple solution 

wherepo(r) is the density on the r = 0 axis; r = t - to < 0, 
and r*  is an additional parameter. Here - co < t < to and at 
time t = to (7--P - 0)  the soliton is self-focused at the point 
r = 0. 

4. Of great interest is the possibility to obtain a general 
solution in the case of a two-dimensional medium when, as 
we have already noted, the KP  equation can be integrated 
completely by means of the IS method. In the most interest- 
ing two-dimensional unstable case Eqs. ( 13) take the form 

and can also be completely integrated using the method indi- 
cated in Ref. 15 which allows us to reduce the set ( 18) to a 
simple Laplace equation. 

To do this we perform first the hodograph transforma- 
tion, introducing the inverse functions t (  p,v) and y(  p,u) 
for which we get from ( 18) the linear equations 

y,=vt,+coo2p-'"t,, y,=vt,--pt,, (19) 
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FIG. I .  Evolution of the reduced thickness of a KdV soliton In the 
self-focusing process. The numbers at the curves show the time In 
units of - yt for - m < t < 0. 

the compatibility condition of which is an equation for the 
time 

p"~t,,+2p'"t,+coo2t,.=0, (20) 

which can also be reduced to the Laplace equation, if we 
introduce instead ofp and v  new dimensionless variables 

r=p'", z=-v/3coo, (21) 

and replace the time t (  p,u) by a new function which has to 
be found, $(r,z) = tr3I2; this gives 

Finally, we can, for convenience, add to r and z a fictitious 
"angle" p and consider r,p,z as cylindrical coordinates in 
some "phase" space. For the auxiliary function-the "po- 
tential" = $(r,z)cos mp we get the Laplace equation 

AY (r, cp, z)=O. (23) 

We can indicate for it two very interesting solutions if we 
restrict the consideration to only those spontaneous pertur- 
bations which vanish in the limit as t-+ - co so that p = 1, 
u = 0. This means that the "potential" must be produced 
only by "charges" which are positioned on the circle of unit 
radius r = 1, z = 0 and the Laplace equation must thus be 
solved in toroidal coordinates g,p,v introduced through the 
relations 

r=o sh z, z=o sin q, o=(ch Efcos q)-', 

The general solution of the Laplace equation can then be 
written in the form of a series of associated Legendre func- 
tions of the second kind, Q 7 : 

y = ------ 'OS mq a,,Qin (a) cos (nq+f.), ,% 
a = cth E, 

each term of which corresponds to a definite multipole. 
Of most interest, however, are only the first two terms, 

the Coulomb and the dipole terms, which lead to the two 
simplest possible solutions for the time: 

A 1 chE+ cosq A = - = - =  
A r sh E 9 

U - =- -3 sin q 
32= 

COO ch E + cos q ' 

sin q 
ky=-q +'- 

sin (3nQi-t), 

where y = kc,,, k = 21r//Z, A is the wavelength (the only 
parameter in the problem). In the linear approximation we 
have from (27) 

A=1+2eTt cos ky, 

and in the nonlinear case the time evolution of the reduced 
soliton thickness A(t,y) is shown in Fig. 1. We must note 
that the similar problem of the self-focusing of a wave train 
of cnoidal waves, which are also solutions of the KP equa- 
tion, had been considered earlier in Ref. 17, but was de- 
scribed by different equations. 

5. In conclusion we emphasize that our gas equations 
( 13) contain only the velocity v, which is at right angles to 
the direction of propagation of the soliton ( 1 ) and in this 
way it differs from the "general-geometric ray" equations of 
Ref. 18, which contain also the component v l l  along the nor- 
mal to the soliton front. We note also that the gas equations 
( 13) can be obtained in the particular two-dimensional case 
(t,x,y) from the equations of Ref. 10 if in the latter we drop 
seven terms with derivatives A , , ,  , the retention of which 
was shown in Ref. 12 to lead to inaccurate results in the 
maximum growth-rate region. 

Although our equations, generally speaking, do not de- 
scribe the maximum growth-rate region, instabilities of a 
similar type are known, for instance, the Buneman instabil- 
ity, where this region is suppressed by other factors, neglect- 
ed by us, in particular, by quasilinear effects. We also note a 
recent paper19 where the collapse of Langmuir waves de- 
scribed by a NSE is also considered in the long-wavelength 
approximation. We have used it in Ref. 14 to analyze the 

yt=-r-2Ql(a), y t=r-ZQii(a)cos(q+fl). (26) stability of NSE solitons. 
The authors are very grateful to V. I. Petviashvili for 

One can check that the Coulomb solution corresponds to a valuable remarks concerning this paper. 
soliton perturbation that is periodic in the y-coordinate, 
whereas the dipole solution corresponds to an isolated soli- 
ton perturbation localized in the y-coordinate. In the dipole 
solution we can, through choice of a phase f, corresponding 
to a definite orientation of the dipole, obtain three interest- 
ing cases: a "hump", a "well", and, finally, a "doublet" in 
the form of a "hump + well" combination. 

In particular, for the Coulomb case of (26) we find, 
using (19), 
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