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Nonlinear Alfven waves are considered in a homogeneous plasma with finite ion temperature. 
Account is taken of linear and nonlinear dispersion effects due to the finite Larmor radius of 
the ions. It is shown that these effects can be described by hydrodynamic equations similar to 
those of Grad. Hydrodynamic equations are obtained for nonlinear weakly dispersive Alfven 
waves in a plasma with arbitrary T i / T e  ratio. It is shown that Alfven vortices are present in 
such a plasma. 

1. INTRODUCTION 

Alfven vortices, initially discussed in Refs. 1 and 2, have 
recently attracted the attention ofmany worker~.~-"he rea- 
sons are, on the one hand, that Alfven vortices are among the 
most striking examples of nonlinear regular magnetoplasma 
structures and are in this sense of general physical interest, 
and on the other, the important role played by Alfven waves 
in the physics of outer-space and laboratory plasma. 

The starting point for the development of the theory of 
Alfven vortices was the idea of the analogy between the non- 
linear properties of Alfven waves and those of Rossby waves 
in a rotating shallow liquid. Taking into account the results 
of Larichev and Reznik,' who obtained an analytic solution 
for the nonlinear equation of Rossby waves in the form of a 
solitary dipole vortex, the authors of Refs. 1 and 2 obtained 
an analogous solution for Alfven waves, and named the cor- 
responding nonlinear object an Alfven vortex. 

Common to Refs. 1 and 2, and also to 5, is the fact that, 
first, they deal with a plasma having fl > me /mi  ( P) is the 
ratio of the plasma pressure to the magnetic field pressure, 
while me and mi are the masses of the electron and ion; 
second, they neglect effects due to the finite ion temperature, 
Ti -0. This neglect is justified if T, 4 Ti ( T ,  is the electron 
temperature), hereafter called the case of a finite-pressure 
plasma with cold ions. In contrast to Refs. 1,2, and 5, Ref. 4 
deals with vortices in a plasma withP < m, / m i .  In this case 
one can neglect effects connected both with finite Ti and 
with finite T , ,  meaning a cold plasma. Both types of plasma 
were discussed in Ref. 3, while the plasma considered in Ref. 
6 had P >  m , / m ,  and Ti 2 T , .  

References 1 and 2 were deficient in two respects. First, 
no account was taken in the initial equations of the nonlinear 
term connected with the wave component of the magnetic 
field. Second, the conditions used in Refs. 1 and 2 to match 
the solutions on different sides of the singular line of the 
vortex were excessively simplified. The first of these errors 
was corrected in Ref. 8, where new solution-matching condi- 
tions were formulated for a rather large class of magneto- 
plasma vortices, including Alfven vortices. A corrected var- 
iant of Refs. 1 and 2 can be taken to be Ref. 3, in which the 
errors of the former were clarified and correct prescriptions 
were obtained for dipole vortices corresponding to the case 
B > m , / m i  and T,%Ti .  

We note also that the first of the above deficiencies of 
Ref. 1 was criticized in Ref. 5, and the second in Ref. 6. The 
criticism should be regarded as justified. It must be noted at 

the same time that the same matching conditions as in Refs. 
1 and 2 were used both in Ref. 5 and in a paper by the same 
group of authon4 This shortcoming of Refs. 4 and 5 was 
pointed out in Ref. 3, where correct solutions were obtained 
for dipole Alfven vortices in the case P < me / m i ,  thereby 
correcting Ref. 4. 

A correct answer to the question of what dipole Alfven 
vortices are at P > me / m  , , Te % Ti and also at B < me /mi  
can be found in Ref. 3. One of the purposes of the present 

' paper is to cast light on Alfven vortices in a plasma with 
P> me / m i ,  Ti 2 T, . This question was the subject of Ref. 6, 
where an attempt was made to treat it by using a traditional 
hydrodynamic description of the plasma, based on equations 
comprising a simplified variant of Braginskiys equatiom9 
We shall make it clear, however, that equations of the type 
given in Ref. 9 are insufficient for the analysis of Alfven 
vortices under the indicated conditions. 

An answer to the question of which hydrodynamic 
equations are applicable to the problem of nonlinear Alfven 
waves in a plasma with P < m, /mi  and Ti k T, is one more 
purpose of the present paper. 

Section 2 deals with a decription of nonlinear Alfven 
waves in a plasma with P > me /m,  and Ti k Te . Account 
must be taken in this problem of several abstruse phenomena 
of magnetized-plasma physics. To understand the gist of the 
present paper we deem it useful to offer the following few 
explanations. 

We note first that the nonlinear objects of interest to us 
are connected with weakly dispersing Alfven waves, which 
are described in the linear approximation by a dispersion 
equation of the form 

Here w is the oscillation frequency, k, and k ,  are respective- 
ly the components of the wave vector along the equilibrium 
magnetic field B,llz and across B,, cf, = B ; / 4 m , m i  the 
square of the Alfven velocity, no the equilibrium density of 
the plasmap; = T,/rn,rdi, the square of the ion Larmor ra- 
dius, wBi = eBdm,c  the ion cyclotron frequency, e  the ion 
charge, and c  the speed of light. The terms with k :  in the 
right-hand side of ( 1.1 ) represent the dispersion increment 
to the oscillation frequency and are therefore called disper- 
sive. The term withpi describes the electron contribution to 
the dispersion, and the term with pf  the ion contribution. 
Equation ( 1.1 ) can be derived with the aid of the kinetic 
equation for the dielectric tensor of the plasma, by expand- 
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ing in powers of the small parameter k : pf, therefore waves 
of type ( 1.1 ) are called kinetic Alfven waves (see, e.g., Ref. 
10). This term reflects also the fact that Eq. ( 1.1 ) cannot be 
derived from the standard magnetohydrodynamics equa- 
tions, such as of the Braginskii type.9 This is evidence that 
hydrodynamics of the type of Ref. 9 is not appropriate to the 
problem of linear weakly dispersive Alfven wave. It must be 
noted, however, that formal application of this hydrodyna- 
mics leads to a dispersion equation of type ( 1.1 ) , in which 
the coefficient of pf, while incorrect, still differs from zero 
and turns out to be of the correct sign. In this sense equations 
of the type of Ref. 9 describe approximately the ionic contri- 
bution to the dispersion of linear Alfven waves. As to the 
equations used in Ref. 6, they yield an equation of type ( 1.1 ) 
with a zero coefficient of pf.  In other words, the linear-ap- 
proximation equation of Ref. 6 (see the equation preceding 
Eq. ( 10) of Ref. 6) does not take into account the ion contri- 
bution to the dispersion. According to ( 1.1 ) this contribu- 
tion is of the order of Ti /Te compared with the electron 
contribution of Ref. 6 to the dispersion. The linear disper- 
sion equation of Ref. 6 is therefore incorrect at Ti k Te, i.e., 
precisely in the case that the authors of Ref. 6 claimed to 
analyze. 

The ion contribution to the dispersion of low-frequency 
magnetosonic waves was previously considered in Ref. 11. It 
was shown there that, as in our case of Alfven waves, Bra- 

hydrodynamic description of the ions, the effects of the vec- 
tor nonlinearity are accounted for by terms of the type VV 
( V  is the hydrodynamic velocity of the ions), whereas the 
linear effects are terms of2 /at type. It is clear therefore that 
the problem of allowance for nonlinear dispersion terms due 
to the finite character of Ti can be solved if all the terms of 
type V, together with the d /dt terms, are retained in the ion 
hydrodynamic equations that take adequate account of the 
linear description. Grad's hydrodynamics satisfies precisely 
all these requirements. It is clear therefore that this hydro- 
dynamics is suitable for the description of the problem of 
interest to us. 

As to the hydrodynamics used in Ref. 6, it does, just as 
Grad's hydrodynamics, allow for or neglect terms of type 
VV to the same extent as terms of typed /at. Since, however, 
as noted above, the hydrodynamics of Ref. 6 does not take 
into account the ion contribution to the linear dispersion 
terms, it is clear that it does not allow for the corresponding 
contribution to the nonlinear dispersion terms. 

In Sec. 2 we present nonlinear equations for Alfven 
waves and simplify them as applied to the problem of Alfven 
vortices. The procedure for deriving these equations from 
general hydrodynamic equations of Grad's type is described 
in the Appendix. The specific features of dipole Alfven 
waves are investigated in Sec. 3. The results are discussed in 
Ref. 4. 

ginskii's hydrodynamic approach9 leads to an incorrect 
expression for this contribution (both the magnitude and the 2. ALFVEN WAVES, AND 

sign of the coefficient of the term of type k : pf turn out to be THEIR SIMPLIFICATION IN THE CASE OF STATIONARY 
WAVES 

incorrect). On the other hand, according to Ref. 11, a cor- 
rect expression for this contribution is obtained by using According to the Appendix, in the case of a plasma with 

~ ~ ~ d * ~  hydrodynamic approach,~2-14 unlike ~ ~ ~ ~ i ~ ~ -  finite ion temperature, the closed-current equation div j = 0 

kii's9 yields more complete expressions for the viscosity ten- is the form 

sor and for the heat flux. This circumstance suggested to us 
the idea of testing the suitability of Grad's hydrodynamics 
for the calculation of the ion contribution to the dispersion of 
Alfven waves. It was found that this hydrodynamics yields 
exactly the same linear dispersion equation as the kinetic 
approach, i.e., Eq. ( 1.1 ) . This attests to the compatibility of 
Grad's hydrodynamics with the linear problem of the kinetic 
Alfven waves. 

The low-frequency magnetosonic solitons discussed in 
Ref. 11 are due to weakly linear weakly dispersing waves. A 
feature of the equations that describe such solitons is additi- 
vity of the nonlinearity and of the dispersion. In the Alfven- 
vortex problem, on the contrary, there is no such additivity: 
the nonlinear dispersion equations play just as an important 
role in the equations for these vortices as the usual linear 
ones. This is indicated by the fact that Alfven vortices are 
strongly nonlinear waves, as is clear from an analysis of Alf- 
ven vortices in a plasma with cold ions, Ti -+ To (Ref. 3). In 
this case, both the linear and the nonlinear dispersion equa- 
tions are determined by the electron temperature. All the 
terms are then accounted for in standard  hydrodynamic^.^ 
If, however, r. 2 T, , the linear dispersion terms are correct- 
ly taken into account, as noted above, in Grad's hydrodyna- 
mics. The question is then whether one can expect this hy- 
drodynamics to account adequately also for the nonlinear 
dispersion term. This question can be answered by recalling 
that the nonlinear effects due to the existence of Alfven vor- 
tices constitute none other than a vector nonlinearity.' In a 

Here q, and A are the electrostatic and vector potentials giv- 
en by Eqs. (A. 10) of the Appendix, 

A ,-d - - 2  /dz2+d2/dy2, 

and the operators d,,/dt and &ll are defined as follows: 

Equation (2.1 ) is supplemented by standard electronic con- 
tinuity and longitudinal-motion equations 

where f i  is the perturbed electron density. The condition that 
the electronic thermal conductivity be infinite along the 
magnetic field, B-V T, = 0, is assumed satisfied. 

Equations (2.1 ), (2.3), and (2.4) are the initial ones in 
the problem of interest to us, that of Alfven vortices in a 
uniform plasma with m,/mi <P < 1 and with an arbitrary 
ratio of Ti and T, . 

Note that it is convenient also to use in lieu of (2.1 ) a 
relation that follows from (2.1) and (2.3) 
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and is none other than the ion continuity equation. 
Itfollowsfrom (2.1), (2.3),and (2.4) thatdW/dt = 0, 

where W is the energy of the waves, given by 

3 BL2 To. = L J { n o m i [ ~ E 2  - --p:(rot,VE)'] +-+-*)dr.  
2 4 4n no 

With the aid of (2.5) we obtain one more conservation law 
dK /at = 0, where 

By analogy with hydrodynamics,I5 we can call K the gener- 
alized entrophy. 

A plasma with T, = 0 is subject also to the conservation 
law dM /at = 0, where 

Note that we have obtained the integrals of motion 
(2.6)-(2.8) under the assumption that the quantities p, A, 
A, p,  A, A, and A L 2 p  are continuous. We shall show pres- 
ently that this assumption is valid for our Alfven-vortex 
problem. 

Let p, A, and ii depend only on x and q = y + az - ut, 
where a and u are certain constants (cf. Ref. 8). This corre- 
sponds to the case of traveling stationary waves. For such 
waves it follows from (2.3)-(2.5) that 

Here 

and the operators & and 3, mean 

An important property of Eqs. (2.9)-(2.11) is their vector 
integrability, the meaning of which is explained in Ref. 8. 
Using the vector-integration procedure, these equations can 
be reduced to linear ones. By integration, we get from (2.10) 
and (2.11) 

F,=C, ( A-aBox) , (2.16) 

F=C(cp-uBox/c), (2.17) 

where C and C, are certain constants. The curves on which 
the equalities 

900 Sov. Phys. JETP 65 (5). May 1987 

q ( r )  =uBox/c, (2.18) 

A (r)  =aBox (2.19) 

are satisfied are singular lines of the system (2.9)-(2.11). 
The constant C can have different values on different sides of 
the line (2.18). We confine ourselves below for simplicity to 
an analysis of localized solutions for the case C, EO. This 
means that in our problem F, = 0, i.e., according to (2.13) 

en, u 
a ~ = - 5 ~ ( q 1 - - ~ ) .  TO. ac 

Taking into account the explicit forms of the operators 
& and L9, [see (2.14) and (2.15)], we get 

Substituting (2.21) in (2.9), carryingout the vector integra- 
tion, and assuming the corresponding integration constant 
to be zero, we arrive at the following relation between q, and 
A: 

U 
R = % ( ~ - - A ) .  T O .  ac 

In addition, from (2.16) and (2.20) we obtain the connec- 
tion between ii and A: 

Substituting (2.22) and (2.23) in (2.12) and taking into 
account the assumption made above that the wave disper- 
sion is weak, ( p i ,  pf  A, < 1, and also the relation u2 za2c f ,  
ensuing from this assumption [see ( 1.1 ) 1, we get 

In this approximation we can assume that p =:uA /ac in the 
right-hand side of (2.17) [see (2.22) 1. It follows then from 
(2.17) and (2.24) that 

Note that in the weak-dispersion approximation the differ- 
ence between (2.18) and (2.19) is inessential. 

We have thus reduced the nonlinear Alfven-vortex 
problem to a linear one characterized by Eq. (2.25) with 
different values of the constant C on opposite sides of the 
singular line A - aB+. This substantial simplification is the 
result of the integrability of our system of equations (2.9)- 
(2.11). 

3. DIPOLE ALFVEN VORTICES 

We consider dipole Alfven vortices, putting 

( c p ,  A, i i ) = ( @ ,  2, N)cos  0. (3.1) 
Here cP, Z, and N depend only on the radial coordinate 
r= (x2 + v2) The angle variable 0 is defined by the rela- 
tion 8 = arctan(q/x). We assume that C = 0 at r > a and 
C #Oat r <a, where r = a is the singular point of the vortex. 
We seek the solutions of (2.25) on different sides of the sin- 
gular point and match them at r = a, assuming that at this 
point the quantities p ,  d p  /dr, A, p ,  A, aA /dr are contin- 
uous. Taking (2.22) and (2.23) into account, we conclude 
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that this matching makes A, A and f i  also continuous. 
In addition, applying the operator A, on both sides of 

(2.22) and recognizing the continuity of A, q, and A, A, we 
conclude that the quantities A: A and A, ii are also contin- 
uous. Finally, applying the operator A: to both sides of 
(2.23) we find that if terms of order A: are neglected then 
A: q, is also continuous. This justifies, in particular, the pro- 
cedure used to derive the integrals of motion (2.6)-(2.8). 

We assume that r in (2.25) is large enough, and the 
potential A is proportional to exp( - xr).  We find then that 
the argument x of the decreasing exponential can take on 
values x, and x,, where x,,, is defined by the relations 

x,"(po"3p,"/4)-' (I-u2/a2Ca2), xza=O. (3.2) 

The presence of zero roots, x i  = 0, reflects the fact that the 
asymptote of the Alfven vortices contains, besides the ex- 
ponentially decreasing part (at x: > O), also a part that de- 
creases as a power law. In this sense the Alfven vortices can 
be called degenerate two-potential vortices, alternatives to 
the standard two-potential vortices for which (x: ,x: ) > 0. 
Examples of standard two-potential vortices were consid- 
ered in Ref. 16. 

At r > a the radial part of the potential A [see (3.1 ) ] is 

with the fall-off argument x of the potential of the vortex in 
its outer region. In all the previously investigated electro- 
static-vortex examples (see Ref. 8) the MDE were linear in 
x2 and had, in accordance with the asymptote of the poten- 
tial as r + W, a single decreasing exponential. In this case it is 
possible to solve the MDE for u, i.e., find the function 
u = u (a,x2), and regarding x2 as a free parameter (limited 
mainly by the requirement x 2  > 0) one can determine the 
possible range of variation of the velocity u. An example of 
such a procedure can be found in Ref. 8. In the case of stan- 
dard two-potential vortices, when we deal simultaneously 
with two values of x2, the interval of the possible values of 
the velocity u should be defined differently, namely by the 
requirement that both x: and x: be positive. In the case of 
degenerate two-potential vortices, however, when x: = 0, 
the quantity x: plays the same role as x2  does in the electro- 
static-vortex problem. The procedure of finding the possible 
interval of the velocities u is then similar to that in the case of 
electrostatic vortices. 

From the foregoing and from Eqs. (3.1 ) it is clear that 
the Alfven vortices considered by us in a plasma with 
f l>  me /mi have an Alfven propagation velocity u < CYC, . 
This fact was first noted for Ti = 0 in Ref. 3. 

described by the relation 

(3.3) 
4. DISCUSSION OF RESULTS 

Z ( r )  =E,K,(x,r)+E,lr, 
Using Grad's general hydrodynamic equations, we 

wherel, is a modified Bessel function ofthe second kind, and have obtained a set of equations (2. ), ( 2.3 ), (2.4) that de- 
El and E2 are certain constants. In the interior region, how- scribes nonlinear Alfven waves in a plasma with allowance 
ever, i.e., at r <a,  the function Z ( r )  is given by for the finite Larmor radius of the ions. These equations 

Z ( r )  =aBor+D,J,(yr)+D,I,(hr), (3.4) 

where J ,  and I, are a Bessel function and a modified Bessel 
function, Dl, D,, y, and A are constants which are deter- 
mined, just as El and E2 from the matching conditions. Solu- 
tions of the type (3.3) and (3.4) were initially obtained in 
Ref. 3 for the case TI = 0. 

It is clear from (3.2) that the role of finite Ti reduces 
only to a renormalization of the rate at which the potentials 
fall off in the outer region, a scale characterized by the pa- 
rameter x,, and of the analogous scales in the internal re- 
gion, characterized by the parameters y and A. 

An important feature of any type of vortex having a 
singular point is the condition that the vortex parameters be 
matched. In the case of electrostatic vortices such a condi- 
tion was cited, e.g., in Ref. 8, while in the case of standard 
two-potential vortices it was given in Ref. 16. In our case of 
degenerate two-potential vortices the condition that the vor- 
tex parameters be matched means that3 

[ E ( p 2 + y 2 ) +  (l-E)h" L+(h2+y2)B 
+ [ E  (p2-7" + y " ( e - I ) ]  G=O. (3.5) 

Here 

B--BKn(fi)IKi(B), Lahln(h)I l i (h) ,  

Plots of the function 9 ( r )  and Z( r ) ,  obtained with 
allowance for relations (3.3)-(3.5), are given in Ref. 3. 

It is known (see, e.g., Ref. 8) that another important 
feature of electrostatic vortices is the modified dispersion 
equation (MDE) of the vortex, which relates the vortex 
propagation velocity u (and also the propagation angle a )  

agree with the heuristic equations of Ref. 17. We havk shown 
that the conserved quantities in nonlinear Alfven waves are 
the energy and the generalized entrophy (2.6) and (2.7). At 
To = 0 there is one more integral of the motion, defined by 
Eq. (2.8). An additional important properties of the derived 
nonlinear equations is that in the case of traveling stationary 
waves they reduce to linear on different sides of the singular 
lines. When account is taken of the weak dispersion of the 
waves, the entire system of equations reduces then to the 
single equation (2.25). We have analyzed this equation for 
the case of dipole Alfven vortices and have shown that it has 
asolutionoftheform (3.1), (3.3), (3.4), which is analogous 
to that of Ref. 3. A classification of the possible types of two- 
potential vortices is presented, according to which Alfven 
vortices are degenerate two-potential vortices. In addition, 
earlier studies of the theory of Alfven vortices are critically 
analyzed. The present paper completes therefore, on the one 
hand, the initial stage of the theory of Alfven vortices, aimed 
at establishing their possible existence, and on the other it 
lays the groundwork for the development of a more complete 
theory of nonlinear Alfven waves. The starting point of this 
theory should be the equations (2. I ) ,  (2.3), and (2.4) ob- 
tained above. 

APPENDIX 

Hydrodynamic descrlptlon of nonlinear Alfven waves In a 
hot-Ion plasma 

The aim of this Appendix is to derive Eq. (2.1 ) within 
the framework of Grad's hydrodynamics. We recall that by 
Grad's hydrodynamics is usually meant a system of hydro- 
dynamic equations that contains, besides the continuity, mo- 
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tion, and heat-balance equation also equations for the viscos- 
ity tensor ?i and for the heat flux q. Using this 
hydrodynamics, we recognize that in the Alfven-wave case 
of interest to us only the transverse motion of the ions is 
significant. In addition, it can be verified that effects con- 
nected with the heat flux are inessential in our problem. We 
therefore put q = 0 and take into account only the viscosity- 
tensor components 7,. = - ryy , ?T,~  = ryx . According to 
Ref. 13, in the case of a collisionless plasma these quantities 
are defined by the equations 

dn, av, av, - + 2n, div ~+n,,(- - -) 
dt ay ax 

av, av, 
+pi(- - -) -20Btn,.=0, ax dy 

anw a v, - + 2n., div ~ + n ,  (2 - -) 
dt aY 

Here d /dt = a /at + VV and pi is the ion pressure. 
We solve Eqs. (A. 1 ) by expanding in powers of l/wBi . 

At our required accuracy we obtain then 
(0) (1) 

nikanik +nik , (i, k) = (2, Y). ('4.2) 

Here r$' is that part of the tensor which corresponds to the 
Braginski7 appro~imation,~ 

r;;' is the Grad correction12 to the viscosity tensor, 

(0 )  

n::' = - [% + 2n:) div v-n:;' rotZv 1. 
20Bd 

The remaining initial hydrodynamic equations of our 
problem are standard. These are the ion heat-balance equa- 
tion 

d 
- pi+2pi div V+ (hV) V=O, 
dt ('4.5) 

where V is the ion velocity, and the equations of motion of 
the electrons and ions. It is assumed also that the quasineu- 
trality condition is met. 

From the ion and electron equations of motion, with 
allowance for Maxwell's equations, we obtain 

rot,(mindV/dt+ v;) =(BV)rot, B/4n, (A.6) 

where B = B, + B is the total magnetic field. This equation 
is the closed-current equation, div j = 0. We represent the 
ion velocity in the form 

V=Vz+VP+Vn+V, (A.7) 
where 

v~=c[Ee , ]  lBo, VP=c[e,, Vpi] lenBo, 
(A.8) 

V,=c[e,, Vnl lenBo, V,=[e,, dOVE/dt]/~Bi, 

d,/dt = a /at + V, V, and e, is a unit vector alongz. Substi- 
tuting (A.7) in (A.6), we obtain, at the required accuracy, 

do cna A 

- A,rp + c a,,A,A+X=O. 
d t 

(-4.9) 

Here q, and A are defined by the relations 

EL=-V,(p, B,=[ VA, e,l ,  (A. 10) 

the subscript 1 labels the vector components transverse to 
the equilibrium magnetic field B,, and A, = a 2/ax2 + a 2/ 

ay2. The quantity X is defined as 

This quantity is due to ion-temperature effects. 
We putp, =poi +pi ,  wherep,, andp, are the equilibri- 

um and wave parts of the ion pressure. For the homogeneous 
plasma considered by us, Vp,, = 0, it follows from (A.5), 
when Eqs. (A.8) for V, and V, are taken into account in Eq. 
(A.3) for do ' ,  that 

p"i=2enop,2A,cp+ p, (A. 12) 

wherep satisfies the relation 

d0p/dt=0. (A.13) 

According to (A. 13) the quantityp does not depend on 
the equilibrium ion temperature To, . Equation (A. 13) itself 
is valid even for cold ions, Toi = 0, i.e., in the case whenp is 
the wave part of the ion pressure, p = pi . A nonzero solu- 
tions of (A. 13), 3 # 0, would mean then the presence of a 
pressure perturbation in a plasma with a zero equilibrium 
pressure, thereby contradicting the usual physical notions 
that pi is small compared with poi. Assuming the situation 
with F#O to be far-fetched, we put j5 = 0 and accordingly 
rewrite (A. 12) in the form 

jii=2enop,2A,cp. (A. 14) 

Taking (A.14) into account, we transform Eq. (A.8) 
for Vp into 

Vp=2cpi'[ez, VA,(pl /Bo. (A.15) 

Using (A.15), as well as the expression (A.8) for V, and 
Eq. (A. 10) for E, , we obtain the following expression for the 
contribution of the terms with Vp to (A. 11 ) : 

2cpiZ do 
AL~T. (A. 16) 

When calculating V, from Eq. (A.8) it suffices to take 
into account only the components of the tensor r"', in 
which we put V = V,. We have then 

v,=-p;A,v~/2. (A.17) 

From this equation we find that the contribution of the terms 
with V, to (A. 11 ) is obtained from the relation 

do cptZ do 
rotz{- v.+ (v.v) v.} = - -- 

28. dt *lZ" 

(A.18) 
dt 

We calculate now the contribution made to (A. 1 1 ) by 
the term with we use here Eqs. (A.3) and (A.4), the expres- 
sions of form (A.8) for V, and V,, and relation (A.14) for 
pi. We get then 

rot, Vn(O)= -.  
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rot, Vn"'= - 

(A. 19) 

Equations (A.20) and (A. 19) illustrate the remarkable fact 
that although the tensors a'') and a'" are formally of differ- 
ent order of smallness, their contribution to the wave equa- 
tion (A.9) is of the same order. From (A.2), (A.19), and 
(A.20) it follows that 

3 p,'n0mic do 
rot, Vn= - - - AL 9. 4 B, dt 

Using (A.11), (A.16), (A.18), and (A.21) we reduce 
(A.9) to Eq. (2.1 ) of Sec. 2. 

In the linear approximation, the use of (2.1 ) yields for 
the Alfven waves a dispersion equation that coincides with 
( 1.1 ) . This is evidence that Grad's hydrodynamics is appli- 
cable to the problem of linear Alfven waves, as noted in Sec. 
1. If Braginskii hydrodynamics is used, however, i.e., the 
a(') contribution is neglected, a dispersion equation of the 
form ( 1.1 ) is obtained, but withp: preceded by 1 rather than 
3/4. 

We call attention also to the fact that the right-hand 
sides of Eqs. (A.19) and (A.20) for a'" and n'" contain 
nonlinear terms of rather complicated structure (with de- 
rivatives 6' /ax, ) . When the indicated contributions are 
summed these terms cancel each other, and are therefore 
missing from the wave equation (2.1 ) . In the Braginskii ap- 
proximation these terms would be contained in the wave 
equation, which would have then a much more complicated 
structure than (2.1 ) . 

Note that a set of equations that coincides, in the case of 
p3A, [sic!] and if dissipation is neglected, with our system 
(2. l ) ,  (2.3), (2.4) was obtained heuristically in Ref. 17. 
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