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The quantum model of two coupled oscillators is investigated under conditions in which the 
model dynamics in the classical limit is highly stochastic and the stability-island measures are 
small. For this purpose the ranges of parameter values corresponding to the regular and 
stochastic dynamics in the classical case and the dependence of the Kolmogorov entropy on 
the system's energy are determined. In the quantum case histograms of the distribution of the 
spacings between adjacent energy levels are constructed , and the characteristic level repulsion 
exponents are determined. It is shown that, even in the region of the system's energies where 
the influence of the stability islands is clearly negligible, the level repulsion exponents exhibit 
strong nonmonotonic dependence on the dynamical characteristics of the system. 

1. INTRODUCTION 

After it became clear that chaos is possible in classical 
Hamiltonian systems, i.e., that such systems are K systems, 
there arose the natural question of how this dynamical prop- 
erty is reflected when such systems are quantized. The exact 
formulation of the resulting problems consists in the deter- 
mination of the properties of quantum K systems, i.e., those 
systems that are K systems in the classical limit (see Ref. 1 
for a review). The specific nature of the quantum problems 
leads in the steady-state cases to the necessity of the compu- 
tation of the energy levels. Therefore, one of the problems of 
K-system quantization is connected with the determination 
of the nature of the energy spectrum at those values of the 
parameters of the problem to which corresponds chaotic dy- 
namics in the classical limit. In Ref. 1 a large number of 
physical examples are cited which amount to the quantiza- 
tion of K systems. In Refs. 2 and 3 the view is expressed that 
the spectrum of quantum K systems possesses the property 
of energy level repulsion, a conjecture which is advanced in 
Ref. 4 for the spectrum of the excited states of heavy nuclei. 
By this we mean the following. 

We shall consider a set consisting of a large number of 
levels as an ensemble. Let us introduce for it the probability 
density P(AE) for the spacing between adjacent levels (the 
nearest-neighbor spacing) to be equal to AE. Then the level- 
repulsion property consists in P( AE) - 0 as AE-0. In Ref. 2 
the small-AE asymptotic form 

is obtained for surface electrons in a magnetic field. Here the 
repulsion exponent ,u depends on the Kolmogorov entropy 
h, i.e., on the dynamical properties of the system. The idea of 
repulsion has been confirmed by a numerical spectrum anal- 
ysis carried out in a billiard quantization model of the "sta- 
dium" type.' But the determination of the nature of the law 
of repulsion and the computation of the exponent p turned 
out to be a complicated problem even for a numerical analy- 
sis. It  is shown in Refs. 6 and 7 that a distribution of the type 
( 1.1 ) should be a characteristic property of stationary quan- 
tum K systems under sufficiently general assumptions. An- 
other point of view is expressed in Ref. 8. It consists in the 
assertion that p is always equal to unity, as obtains in an 
orthogonal Gaussian ensemble. The most important point of 

this assertion is the nondependence of the exponentp on the 
dynamical properties of the system. 

Below the level distribution law is investigated numeri- 
cally, largely for two types of systems: 1) for different bil- 
liard models in which the particle dynamics is chao t i~~ . '~ ;  2) 
for the two-particle Hamiltonians 

with some nonlinear particle-particle interaction 
U ( x , y ) .  Apparently, the occurrence of level repulsion in K 
systems whose quantum numbers have been destroyed can 
be regarded as having been reliably established on the basis 
of the data reported in these papers. But these data do not 
allow us to draw any conclusions about the law of repulsion. 
There are many reasons for this, and it will be useful to dwell 
on them. 

1. The main difficulty encountered in the determination 
of P( AE) is connected with the necessity to compute a large 
number of eigenvalues to a high degree of accuracy. Analysis 
shows that models of the coupled-oscillator type are prefera- 
ble to the billiard model, for they ensure a higher degree of 
accuracy in the determination of the spectrum. 

2. The second difficulty is connected with the fact that 
all the models that have thus far been investigated each has 
in its region of analysis not a very large Kolmogorov entropy 
h. This implies, for example, for Hamiltonians of the type 
( 1.2), that the phase space of the system contains stability 
islands of quite large measure. As a result the regular level 
sequences stemming from the motion on invariant tori in 
stability islands make a substantial contribution to the level 
distribution.13.14 Thus, we lose at not very large h values the 
possibility of determining the P( AE) for quantum K systems 
in the pure form. In particular, special attention is given to 
the control of the influence of the stability islands in the 
computations carried out below. 

3. The dynamical properties and entropy h of the sys- 
tem ( 1.2) depend on the system's energy E. Therefore, there 
occurs in the analysis of the distribution of a large number of 
levels occupying a large energy interval an intermixing of the 
statistical ensembles with different distribution parameters. 
The narrower the energy interval containing the levels in 
question is, the more homogeneous the ensemble of levels 
will be. On the other hand, a small energy interval will con- 
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tain a few levels. Therefore, a reasonable compromise is re- 
quired in the choice of its dimensions. 

The present paper is devoted to the study of the regular 
and stochastic regimes in the quantum and classical cases for 
the Hamiltonian ( 1.2) with the potential 

The potential ( 1.3 ) with a = 0 is derived in Ref. 15 in the 
Yang-Mills quantum field model. In Ref. 1 1 this potential is 
introduced as a model of a system with chaotic motion. It is 
investigated in Ref. 16 with the aid of the criterion for the 
overlap of the resonances. The study of quantum chaos in 
this model is carried out in Refs. 11, 17, and 18. 

The potential ( 1.3 ) guarantees the finiteness of the mo- 
tion in the case when a ) O  andB> - a. The chosen form of 
the potential energy is the most general under the following 
assumptions: 1 ) U(x,y) is a polynomial of order not higher 
than four; 2) U(xy) possesses the C,, symmetry, i.e., 

In the a = 0 case the parameter B can be eliminated 
from the Hamiltonian with the aid of a scaling transforma- 
tion. In our paper we study the nature of the classical motion 
and the properties of the quantum spectra of the model at 
different a values, which leads to the appearance of an addi- 
tional parameter in the problem. It turns out, in particular, 
that the motion is always regular in some range of values of 
the parameters a and f l  (see also Ref. 19). 

The main result of the investigation is connected with 
the determination of the level-spacing distribution function 
under conditions in which we can eliminate the influence of 
the stability islands. A level repulsion law of the type ( 1.1 ) 
was computed in different intervals of the energy spectrum, 
i.e., at different values of the Kolmogorov entropy. The data 
obtained enable us to conclude that a universal p = 1 expo- 
nent does not exist. It is possible that the repulsion exponent 
depends nonmonotonically on the energy corresponding to 
the spectral interval in question. 

2. PROPERTIES OF THE CLASSICAL MODEL 

The potential ( 1.3) does not change its form when the 
coordinate axes are rotated through ~ / 4 .  In this case the 
parameters a and /3 transform linearly: 

a'= (a+P) 12, p'= (3a-B) 12. 
I( a 

(2.1) 

Notice that the Hamiltonian ( 1.2) with the potential 
( 1.3 allows the separation of the variables, and is integrable 
in the following obvious cases: 

(cylindrical coordinates ) and 

(Cartesian coordinates). Under the transformation (2.1 ) 
the case (2.2b) goes over into 

Thus, the rays (2.2a)-(2.2~) divide the domain of the 
parameters a and 0 into four parts: 

I. -a<B<O 
11. o q c a  
111. aGfiG3a 
IV. 0<3a<P. 

Under the transformation (2.1 ) the regions I and IV, I1 and 
I11 go over into each other, so that the indicated parameter 
domains are physically equivalent. 

Analytic investigation of the motion of the system is 
possible in the region of small energy values: 

To do this, let us go over in the Hamiltonian (1.2) to the 
action-angle variables: 

When the nonlinear terms are discarded, the natural 
frequencies for the two degrees of freedom are equal, i.e., the 
system is degenerate. Let us, for the purpose of investigating 
the motion go over to the variables, J,, 8,, J,, and 8, with the 
aid of the generating function 

The expression (2.4) goes over into 

where, on account of (2.3), the term H, is small. 
Averaging H ,  over the fast phase 8,, we obtain an aver- 

aged Hamiltonian H, in which we can, in accordance with 
(2.3),setJl =E: 

In the 3a <fl case there exists a separatrix passing 
through the hyperbolic points J, = 0 and 8, = + ~ / 4 .  
There occurs in the vicinity of the separatrix a stochastic 
layer that goes over into chaos at E 2  1, a fact which is con- 
firmed by both our computational data and the results ob- 
tained in Refs. 14, 15, 17, and 18. 

In the 3a >p case all the trajectories are closed around 
the elliptic points J, = 0, 8, = & n/4,O. The data obtained 
in the numerical modeling show that the motion is regular in 
this parameter domain. This agrees also with the results ob- 
tained in Ref. 19. 

The Lyapunov exponent a was computed in the follow- 
ing manner. The system's state vector z( t )  = {x,p, ,y,p, } 
was determined by means of a numerical solution of the 
equations of motion. Concurrently, the vector z,(t)  was 
computed. The initial conditions for it was chosen in the 
form 

xi=x, P,,=P~+~=, Y I = Y ,  P,,=P,+~,, 

wherex, y,p, , andp, are the initial values of the components 
of the vector z, and 6, and 6, are small quantities that are 
chosen with the aid of the conditions 

((z-z,I[=d~, (2.6a) 

The quantity do determines the initial distance between 
the vectors z and z, along the Euclidean norm. In the compu- 
tations it was taken to be equal to do = low5. The condition 
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(2.2b) guarantees the equality of the initial energies for the 
vectors z and z,. This circumstance distinguishes our meth- 
od from the one proposed in Ref. 20. 

The above-described procedure was repeated after the 
quantity 

d(t)=jlz(t)-z,(t)ll 

has attained a prescribed value dm,, (we chose dm,, = 1 ), or 
when t > t,,, (t,, = 50). In this way we computed the se- 
quence of values {d ,  ) and the exponents 

after which we determined the trajectory-averaged Lya- 
punov exponent a. The total motion time along the trajec- 
tory was chosen from the range ( 1-3) x lo4. This guaran- 
teed a high degree of accuracy in the computation of a ,  since 
this quantity ceases to vary in the region of short times. 

Concurrently, we constructed the PoincarC cross sec- 
tion by the method described above. We divided the phase- 
space cross section in the plane (x,p, ) into No = 4450 cells, 
and computed the number N, of cells through which the 
trajectory passed. Then we determined the fraction 

of volume occupied by the trajectory and the Kolmogorov 
entropy h = OR,. The data obained for a = O,P = 1 and for 
a = 1/6, P = 1 are presented in Fig. 1. 

Notice that R, is very close to unity when E 2 50. In fact 
only - 1 % of the region around the elliptic point x = 0, 
p, = 0 turns out to be unfilled. But the correct computation 
of R, in this region is difficult because the numerical deter- 
mination ofN, in the regions close to the phase space bound- 
ary is a difficult task. 

Thus, our computations show that, as the energy in- 
creases, the stability islands in the phase space of the classi- 
cal problem virtually vanish. This circumstance is important 
for the investigation of the quantum problem, since the char- 
acteristics of the behavior of the level distribution function 
cannot be explained by the influence of the islands. 

3. THE QUANTUM PROBLEM. STATlSTlCS OF THE ENERGY 
LEVELS 

In the quantum case to the model (1.2) with the poten- 
tial ( 1.3) corresponds the Schrodinger equation 

^' i.._ 0 7 100 ZOO E 

FIG. 1.  Dependence of the trajectory- and phase-space-averaged Lya- 
punovexponent uon the total energy E: 1 ) a = O,P = 1; 2) a = +,p = 1. 

We solved Eq. (3.1) through the expansion of '4' in 
terms of the wave functions of a harmonic oscillator with 
frequency equal to unity, taking account of the symmetry of 
the Hamiltonian. We computed only the eigenvalues corre- 
sponding to the completely symmetric representation of the 
C4" group. 

In the computations the infinite Hamiltonian matrix 
was replaced by a finite matrix of dimension N. The majority 
of the computations were carried out for N = 2550. 

The limitation of the number of basis functions leads to 
errors in the computation of the upper eigenvalues. To esti- 
mate the number of accurately computed eigenvalues, we 
compared the results of the computations carried out with 
N =  2550 and N = 3660 for the parameters a = 0 and 
/? = 1. The comparison shows that only the first 500 eigen- 
values in the N = 2550 case can be computed with error 
smaller than 0.01 %; subsequently, the error increases rapid- 
ly. Thus, only 20% of the total number of computed eigen- 
values corresponds to energy levels of the original Hamilto- 
nian. The remaining levels are affected by the "boundary 
effect." In our opinion the accurate estimation of the num- 
ber of correctly computed energy levels is given insufficient 
attention in investigations of quantum chaos. 

An advantageous characteristic of polynomial poten- 
tials of the form ( 1.3) is the negligibly small errors made in 
the computation of the Hamiltonian matrix elements. At the 
same time, in the billiard models, for example, the computa- 
tion of the matrix elements is complicated, and can serve as a 
source of additional errors (see, for example, Refs. 9 and 
10). 

It is well known that energy-level repulsion occurs in 
quantum systems that are chaotic in the classical limit. For a 
quantitative description of the effect (or of its absence), a 
histogram of the level-spacing ( A E )  distribution is con- 
structed which is then approximated by a smooth function 
P ( s ) ,  wheres = A E / ( A E ) .  

The most generally used distributions are the distribu- 
tions 

2 
F ( 2 )  = n exp (2 ' )  .I exp (-t') at. (3.2) 

I 

where O<q< 1 (see Refs. 13 and 14), and the distribution 

P(s; p) =Asu exp(-ysw*'), 

wherep20 (see Ref. 17). The expressions (3.2) and (3.3) 
permit the passage to the Poisson-distribution limit 

at q = 1, p = 0 and the orthogonal-Gaussian-ensemble dis- 
tribution limit 

(3.5) 
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In the distribution (3.2) the parameter q plays the role 
of the phase-space region occupied by the regular trajector- 
ies. But in our case the solution of the classical problem 
shows that, in the energy region E 2 50, the stability-island 
portion does not exceed it. Therefore, in the energy region 
20 5 E S 200 of interest to us, the distribution (3.2) practi- 
cally reduces to (3.5), a fact which does not correspond with 
our results. 

The expression (3.3) better describes the distributions 
obtained by us in the region of fairly high energies. But the 
calculations showed that the variation of one parameter p 
does not allow us to approximate the computed distributions 
with a high degree of accuracy. Therefore, it is convenient to 
introduce, for example, the following two-parameter distri- 
bution: 

withp>O and v > - p. The distribution (3.6) is normalized 
by the conditions 

m - 
0 0 

In the course of the computations we constructed level- 
spacing distribution histograms, which we then approximat- 
ed by the distribution (3.6) with the aid of the method of 
least squares. 

The computations were carried out according to the fol- 
lowing scheme. We computed the eigenvalues of Eq. (3.1) 
with the parameters /3 = 1 and a = 0, +, +, and +, To in- 
crease the number of events for each of these pairs of param- 
eters, we diagonalized an ensemble of 13 matrices, the pa- 
rameters a and p of which differed by lop3. Such a 
difference in the parameters changes substantially the eigen- 
values of the Hamiltonian, but has virtually no effect on the 
distribution P ( s ) .  Thus, we had at our disposal 6500 eigen- 
values for each of the four pairs of a- and p-parameter val- 
ues, which allowed us to decrease the P ( s )  fluctuations. 

Further, following D y ~ o n , ~ '  we divided the entire ener- 
gy interval into subintervals, each containing a sufficiently 

FIG. 2. Histograms of the nearest-neighbor spacing distribution for the 
parametersa = 0,/3 = 1; n is thenumberoflevels ands = AE/ (AE ). The 
continuous curve is an approximation constructed with the aid of the 
formula (3.6) .  The energy region is 20 < E<40.  

large number of levels. All the events within one subinterval, 
with different small changes in a andP near their prescribed 
values (e.g., a = O,p = 1 ), constitute a representative of the 
ensemble of nearest-neighbor spacings. The various subin- 
tervals are characterized by different average values of the 
energy AE, i.e., by different dynamical characteristics (in 
particular, different values of the entropy h ) .  Of course, we 
could have done without the division into subintervals, as 
was done in the first numerical level-statistics analyses. But 
the narrower a subinterval is, the less important is the role of 
the fluctuations in the level distribution. This is due to the 
strong inhomogeneity of the properties of the system of cou- 
pled oscillators ( 1.3) as functions of the energy E. This in- 
homogeneity is, in particular, indicated by the plot of the 
function c+(E) in Fig. 1. It can be seen from this plot that the 
exponent achanges roughly by a factor of two over the entire 
energy 20 5 E 5 200 considered by us. 

Figure 2 shows an example of the histogram of the level- 
spacing distribution in some region of the spectrum for 
a = 0, B = 1. It can be seen from it that the behavior of the 
histograms for some subintervals in the region of smalls can 
have a nonmonotonic character. This is corroborated also by 
the dependences of the parameters of the distribution (3.6) 

FIG. 3. Values of the distribution parameters p ( 0 )  and 
v ( 0 )  for different values of the energy E and different 
Hamiltonian parameters: a )  a = 0, P = 1; b)  a = +, 
P = l ; c )  a = + , P = l ; a n d d )  a=),p= 1 .  
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lowed us to eliminate the influence of the stability islands. In 
all, we obtained nine histograms encompassing the energy 
range 40 < E < 167, over which the entropy changes by a 
considerable factor. The respresentative histograms in Fig. 4 
exhibit a fairly substantial discrepancy between the level- 
spacing and Dyson distributions. This shows that, to obtain 
a function P(s) that varies more appreciably, we should con- 
sider a system with a large Kolmogorov entropy. One more 
comment on these histograms. At small entropy values the 
procedure of data processing with the aid of formulas of the 
type (3.5) or (3.6) may turn out to be too crude and incapa- 
ble of distinguishing the dynamics of level repulsion. 

4. CONCLUSION 

FIG. 4. Histograms of the distribution of the relative 
nearest-neighbor spacings (s) for a = 0 and 8 = 1 in two 
energy intervals (n is the number of levels). Each histo- 
gram contains 650 levels. The continuous curve is an ap- 
proximation constructed with the aid of the formula 
(3.6): a)  94<E<109, p = 1.6, v = 0.7; b) 144<E< 157, 
p = 1.2, v = 0.7. 

on the energy E corresponding to the middle of the subinter- 
val. The parameters p and Y depend nonmonotonically on 
the energy (Fig. 3a), the p values being fairly far from the 
value p = 1, which corresponds to the orthogonal-Gaus- 
sian-ensemble distribution (3.5). And what is more, the lev- 
el-spacing distribution exhibits a dip (Fig. 2) in the region of 
low energies, which is not described by formulas of the type 
(3.2)-(3.3). 

Figure 3b shows the results of computations carried out 
for the potential parameters a = +,B = 1. They lie closer to 
the boundary a = P /3 of the region of regular motion in this 
case than in the preceding case. It can be seen that the pa- 
rameter~ ,  as a function of the energy, varies nonmonotoni- 
cally from 0.2 to 1.8. We also carried out computations for a 
potential with separable variables, i.e., a potential with 
a = f, B = 1. The results obtained (Fig. 3c) show that the 
level distribution, to which would have corresponded the 
parameter values p = 0 and Y = 1. We can also see here an 
essential dependence of the parameters on the energy. 

Finally, Fig. 3d shows the results of computations car- 
ried out for the parameters a = +,8 = 1, which correspond 
to the region of regular dynamics. The level distribution in 
this case exhibits strong irregularity in the dependence on 
the energy subinterval, and the parameterp does not tend to 
zero. 

Since the increase of the parameter a#O leads to the 
integrable case, it is useful to discuss in greater detail the case 
a = 0, in which the entropy increases with increasing ener- 
gy. Two corresponding histograms are shown together with 
the fitting curves in Fig. 4. Each of them was constructed 
with 650 levels, the accuracy of determination of which al- 

The above-presented numerical results show that the 
property of level repulsion in quantum K systems is not the 
only characteristic of the level-spacing distribution. The pa- 
rameters obtained for the distribution P ( s )  vary nonmono- 
tonically with the energy region. This property of nonmono- 
tony is not connected with the influence of the stability 
islands, since the distribution P(s) was determined in that 
energy region where chaos in the classical limit was so highly 
developed that the stability-island measure was negligibly 
small. Therefore, we can expect the complicated form of the 
distribution P(s),  as a function of the energy region, to be 
determined by the dynamical properties of the correspond- 
ing classical system. 
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