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The spectrum of Rayleigh scattering of light in a molecular gas is theoretically investigated for 
three forms of stationary disequilibrium: a temperature gradient, a macroscopic-velocity 
gradient, and a difference between the rotational and translational gas temperatures. The 
calculation is based in the kinetic method of determining the fluctuations in a nonequilibrium 
gas. The calculated scattering spectra for temperature and velocity gradients differ from the 
corresponding published ones mainly in that they contain asymmetric additions if the 
spectrum is polarized and account is taken of the changes in the depolarized part of the 
spectrum. These changes are of the same order for the temperature and velocity gradients as 
the effects in a polarized spectrum. The effect of the third form of disequilibrium on the 
scattering spectrum is considered for the first time ever. 

1. INTRODUCTION 

Theoretical and experimental research into the statisti- 
cal properties of nonequilibrium media has greatly increased 
of late (see, e.g., Ref. 1 ) . A feature of the theoretical studies 
is a large number of procedures (the hydrodynamic meth- 
~ d , ~ - '  the kinetic m e t h ~ d , ~ . ~  the nonlinear-response meth- 
od,''-l3 and some of their variants14715), which lead, how- 
ever, to ambiguous results. 

A critical review of these studies is in our opinion of 
interest in itself and is not the subject of the present article. 
We note only that back in 1970 Gantsevich, Gurevich, and 
Katilyus16 have derived all the fundamental equations need- 
ed to calculate fluctuations in a nonequilibrium state. 

Historically, the question of Rayleigh scattering of light 
in a nonuniformly heated crystal was first considered by 
Mandel'shtam" and quantitative by Leontovich19 very long 
ago and was expounded in detail in FabelinskiI's book. l9 The 
difference predicted by LeontovichI8 between the intensities 
of the Brillouin components under conditions of a tempera- 
ture gradient was found to be too small to be observed in - 
experiment.I9 Asymmetry in doublet intensities in a tem- 
perature gradient became observable experimentally only 
recently, in 1980 and 1984, first in a liquid (water20921) and 
later in a solid (fused quartz22 ) . 

The effect was first observed qualitatively in a 1980 
study of scattering of light by non-uniformly heated water, 
by Beysens, Garrabos, and Zal~ser ,~ '  but was quantitatively 
about one-third the value predicted by the theory.21 Later 
Kifte, Clouter, and PenneyS4 improved in 1984 the quantita- 
tive agreement between theory and experiment for water, 
and observed for the first time asymmetry of the scattering 
spectrum in fused quartz under temperature-gradient condi- 
tions. The results for fused quartz are still approximate, in 
view 6f the low scattered-light intensity which was recorded 
in these experiments at very small scattering angles, 0 5 lo. 

We calculate here the spectrum of Rayleigh scattering 
of light in a molecular gas under three types of disequilibri- 
um: 1 ) temperature gradients; 2) macroscopic-velocity gra- 
dient; 3) difference between the rotational and translational 
gas temperatures. The calculation is based on equations de- 
rived by Gantsevich, Gurevich, and K a t i 1 y ~ s . I ~ ~ ~ ~  We show 
that the changes produced in the scattering spectrum of a 

molecular gas by the first two types of disequilibrium occur, 
generally speaking, in both the polarized and depolarized 
components of the scattering spectrum. This result differs 
from previously known onesG9 first, in that account is taken 
of the changes occurring in the depolarized component of 
the scattering spectrum and having the same orders in the 
temperature gradients and velocity gradients as the changes 
in the polarized spectrum, and heretofore not taken into ac- 
count. Second, besides the known changes of the intensities 
of the polarized-triplet components, increments asymmetric 
in frequency appear in the spectrum (see Fig. 1 below). The 
effect exerted by the third type of inhomogeneity, due to the 
difference between the rotational and translational gas tem- 
peratures, was heretofore, to our knowledge, not considered 
in the literature. Note that the two effects are not included in 
the usual hydrodynamic approach to the calculation of a 
scattering spectrum, and contain terms of higher order of 
smallness in the hydrodynamic parameter I /A ,  where I is the 
gas-molecule mean free path and A is the wavelength of the 
light. 

2. CALCULATION OF THE SCATTERING SPECTRUM IN A 
NONEQUILIBRIUM GAS 

The calculation of the scattering spectrum in a nonequi- 
librium gas by the kinetic method developed in Refs. 16 and 
23 consists of three stages: 1 ) determination of the function? 
that describes the stationary nonequilibrium state of the gas; 
2) determination of the equal-time correlator of the fluctu- 
ations of the distribution function f relative to the nonequi- 
librium stationary function3 3) solution of the kinetic equa- 
tion for the fluctuation correlator with the initial condition 
obtained from stage 2. 

For a stationary nonequilibrium state with constant 
gradients of the temperature or of the velocity, the kinetic 
equation for7 (Ref. 21) can be represented in the form 

where? = fo( 1 + z),? 4 1. It is assumed here that the devia- 
tions of the function f from the equilibrium Boltzmann dis- 
tribution fo are small, therefore the collision integral I in Eq. 
(1) is written in linearized form.23 The function f = f (Q) 
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pertains to a diatomic molecular gas with translational and 
rotational degrees of freedom, so that the quantity 
Q = (V'M) contains the velocity v and the angular momen- 
tum M of the molecule. The quantity E(Q) = mu2/ 
2 + I M  2/2 is the total energy of the molecule, where m and I 
are the mass and the moment of inertia of the molecule; c, is 
the specific heat of the molecule at constant pressure. The 
parameters V and T determine the macroscopic values of the 
velocity and temperature of the gas, and Vi, = 1/2(b'K./ 
axk + dVk/b'xi). Summation over repeated indices is im- 
plied. Note that the left-hand side of ( 1 ) is the spatial deriva- 
tive of a function f,(Q,R) that is in local equilibrium and 
depends on R via the dependences of the quantities 
V = V(R) and T = T(R) on the spatial coordinates: 

The solution of the integral equation ( 1 ) for the func- 
tion 2 can be formally written in the form 

Here the operator ? -' is so defined that when acting on ei- 
genfunctions of the operator? with nonzero eigenvalues it is 
an ordinary inverse operator, but when acting on the five 
hydrodynamic modes with zero eigenvalues it yields zero. 

For a nonequilibrium gas, the equal-time fluctuation 
correlator 8f = f -?of the distribution function is connect- 
ed with the two-particle distribution function 

= r l  - r2, Q,, Q,) even in the case of an ideal gas'6s23 

Note that the distribution function f is normalized here to 
one particle. The two-particle correlation function 

cp(r, Q,,  Q,)=f, ,(r,  Q1 ,  Q2): f  ( r ,  Q l ) f ( O ,  Q z )  

is zero in an equilibrium ideal gas. In the presence of a devi- 
ation, stationary in time, of the distribution function f from 
the equilibrium function f,, the pair collisions between parti- 
cles lead to the onset of a nonzero stationary function p. The 
equation for p at small deviations from equilibrium is of the 
form 

where @ = f,(Q, ) f,(Q,)@, and the collision operator ?,, is 
given by 

where N is the gas density, w the probability of the transition 
Q ; Q; - Q,Q2, in the collision, differs from the usual Boltz- 
mann collision operator I, in that there is no additional inte- 
gration over dQ,. 

To solve Eq. (4) we expand the function @ jn thf basis 
of the orthonormal eigenfuctions ofthe operator I, + I,, i.e., 

@ ( r ,  Q1, Q2) = aaav (r)xa(Qi)x. .  (92). 
aa' 

and transform to the Fourier representation of the function 
@ with respect to the coordinate r = r,  - r,: 

(9, Q 1 ,  Q z )  = 9 e-iq'cp ( r ,  Q,,  Q,) dr, 

am., (s) = j e-iqra.a, ( r ,  Ql. Q,) dr. 

As a result, Eq. (4)  reduces to a system of equations for 
the coefficient functions a,,. (q) : 

where - v, are the eigenvalues of the operator I and corre- 
spond to the eigenfunctions X, : 

v m l  = l x a W ( Q ) x a ~  (Q)vf .  (Q)dQ,  

( I I Z X )  ... = .! xa' ( P I )  xa.' (0.) i12zfo (Q,)!,  (Q,) d~~ dQ,. 

We continue to seek the solution of the system (5)  under the 
condition qvgv, which is equivalent in the light-scattering 
problem to the condition Igi l  for applicability of hydrodyn- 
amics. It is precisely under these conditions that the triplet 
of the polarized light scattering is resolved. In this case, the 
solution of the system (5)  breaks up into three classes: 

1. The functions xu and x,, are hydrodynamic. 
2. ,ya is hydrodynamic and xu, is non-hydrodynamic. 
3. Both functionsx, and x,, are non-hydrodynamic. 
Recall that the five hydrodynamic f u n c t i o n s ~ ~  and the 

corresponding eigenvalues A i  of the operator iq-v + have 
the following actual 

E-E 

To be definite,the x axis is directed here along the vector q, 

u,,=(T/m)", E=c,T, AE=cV1"T, u,, =(c,/c,)'"uo, 

and c, is the specific heat of the molecule at constant vol- 
ume. It is convenient to express the widths yi of the hydrody- 
namic modes in the form 

where 7 and f are the shear and bulk viscosity coefficients, x 

870 Sov. Phys. JETP 65 (5), May 1987 T. L. Andreeva and A. V. Malyugin 870 



is the thermal conductivity coefficient, and p = mN is the 
gas density (g/cm3). 

If both functions are hydrodynamic, the solution of the 
system (5)  is 

For the second class of functions we have 

For the last class of nonhydrodynamic functions we obtain 

The foregoing expressions enable us to calculate the 
two-particle correlation function q, and thereby determine 
the equal-time correlator of the fluctuations in a nonequilib- 
rium gas. This correlator is the initial condition for the kinet- 
ic equation for the fluctuation correlator of the one-particle 
distribution function. The Fourier transform @ of the fluctu- 
ation correlator with respect to the coordinate and the time 
is 

m 

@ ( a .  q ,  R. Q I ,  Q 2 )  = 1 e- i (qr -mt ) (y ( t .  r l ,  Q l )  ~ ( 0 ,  r2, Q 2 )  )d f  dr, 
0 

where 

satisfies, at small deviations from equilibrium, the equation 

Wehaveusedheretherelationv,d /al = v,d /dr + 1/2v1d / 
d R, and the quantity vldfo/d R can be expressed in terms of 
the gradients of the parameters V and Tin accordance with 
relation ( 1' ). 

The form of the Rayleigh-scattering spectrum J(w,q) is 
expressed in terms of @(w,q,Ql,Q,) in the following man- 
ner'': 

J ( m ,  P )  = N Re j d ~ ~  dQ2Ba(Q1)  @ ( a ,  q ,  Q l ,  Q 2 )  

where 

w = w, - w ,  and q = k, - k, are the differences of the fre- 
quencies and the wave vectors of the scattered and incident 
waves; a,, (Q) is the molecule polarizability tensor and con- 
tains a scalar ( a ao) and symmetric ( a a,) part; e, and e, 
are the polarization unit vectors of the incident and scattered 
waves. 

Following the developed procedure of solving Eqs. (9) 
and ( 10) ,26 we transform from @ to a new unknown func- 
tion 

and expand t$e solution in the basis of the eigenfunctions of 
the operator I,, i.e., 

~ ( o , n , ~ ~ ) = x  b 5 ( o , q ) x 5 ( Q d .  
a 

If the conditions qv ( v  are met, the equations for the coeffi- 
cients 6, are given by 

Note that we have retained in both the left- and right-hand 
sides of the system ( 11 ) terms that are linear in the spatial 
gradients; the former contribute to the spectrum width, and 
the latter to its integrated intensity. In this representation, 
the scattering spectrum is given by 

a 

The solution of the system ( 11 ) leads to the following 
expression for the scattering spectrum: 

B,' (B,+C5) 
+ Re r, -ia+(v,+Ava) 

a>5 

ABj* (ABj+Acj)  
-'Re.C - i ( o +  R,) + (y j+Ayj )  . (12) 

j 4 5  

As seen from ( 12), the scattering spectrum consists of a nar- 
row polarized triplet (first term) with widths y j ,  and a broad 
depolarized spectrum (with width of the order of v, ), on 
which a fine structure (third term) is superimposed. It is 
expedient to continue the analysis of the spectrum separately 
for the three disequilibrium cases, viz., in the presence of a 
temperature gradient, of a velocity gradient, and a difference 
between the rotational and translational temperatures. 

3. SCATTERING SPECTRUM IN THE PRESENCE OF 
TEMPERATURE GRADIENT 

Consider a gas with a constant temperature gradient. In 
this case we obtain for the equilibrium single-particle func- 
tion, using (2)  and ( 6 ) ,  the expression 

Substituting the obtained 2 in (8) ,  we calculate the coeffi- 
cients a that determine the two-particle correlation function 
P: 
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We have calculated here only those coefficients a which con- 
tribute to the scattering spectrum. In particular, since 
B, = /?., = 0, the spectrum does not contain the coefficients 
a,, and a,. These coefficients were chosen with allowance 
for the following circumstances: 1 ) the depolarization scat- 
tering is determined by a tensor of second rank in M [Eq. 
( 10) 1; 2) the function2 is vector nonhydrody~amic mode 
[see Eq. ( 13) and the definition of the operator I -'I; 3)  the 
operators I,,, 1, and I - ' are scalar. 

Using the coefficients a, we calculate the values of Cj 
and ACj accurate to terms linear in the small parameters 
quaC/v, and also the width corrections Ayi which account 
for the changes in the spectrum and are proportional to the 
temperature gradient: 

The expression for the polarized components of the 
scattering spectrum in the presence of a constant tempera- 
ture gradient takes thus in the indicated approximation the 
form 

The main changes in the polarization spectrum of the scat- 
tering, as seen from ( 16), reduce to the appearance of a dif- 
ference between the integrated intensities and the widths of 
the Brillouin components, proportional to the parameter E',  

and of small asymmetric increments to the spectrum, pro- 
portional to the parameter &". If we put &" = 0 in ( 16) and 
expand in powers of the parameter E' accurate to first-order 
terms, we obtain the known expression most frequently dis- 
cussed in the literature (see, e.g., Refs. 7 and 8) .  Note that 
neither the cited papers nor the present one take into account 
the inhomogeneous line broadening due to the temperature 
dependence of the sound velocity. 

The asymmetry in the Brillouin components consists of 
two terms. The first, proportional to AB,, characterizes the 
connection between the translational and rotational degrees 
of freedom of molecule collisions in a gas.26 The second, 
proportional to &11B5, is due to the temperature gradient. 
Their ratio is of the order of AB,/&"B5 -a2/a,-g1. In the case 
of spherically symmetric molecules a, = 0 and AB = 0, i.e., 
the asymmetry is due only to the temperature gradient. For 
simple diatomic molecule we have a,/a,- 1 - 10- ' and 
AB,/&"B,- lo-'/&'. More detailed estimates of the param- 
eters E' and E" will be given below. 

In the linear approximation in the temperature gradi- 
ent, the depolarized scattering spectrum reduces, using 
(15), to the form 

It can be seen from ( 17) that the presence of a temperature 
gradient leads to a difference, proportional to the parameter 
E', between the contrasts of the dips in the fine structure at 
the Brillouin frequencies. The dip at the undisplaced fre- 
quency and the broad part of the spectrum with width - v, 
[the first two terms of ( 17) ] are not sensitive to the tempera- 
ture gradient in the discussed approximation in the param- 
eter qua, /v. Thus, the presence of a temperature gradient is 
manifested in the HH component of the depolarized light 
scattering, for in this case the fine structure consists of two 
dips at Brillouin frequencies, and is not manifested in the VH 
component, where a dip occurs only at the undisplaced fre- 
quency .26 

4. SCATTERING SPECTRUM IN THE PRESENCE OF A 
VELOCITY GRADIENT 

For a constant velocity gradient in a gas, the small in- 
crement to the single-particle distribution function is of the 
form 

Using (8)  and ( 1 1 ), we calculate the values of a, C, and Ay 
which describe the increments, linear in the velocity gradi- 
ent, to the polarized scattering spectrum: 

where the unit vectors e,, and e, are perpendicular to e, and 
their choice is determined by the relation Fik (eYiezk 
+ e,,e,, ) = 0. Satisfaction of this condition ensures diagon- 

alization of the operator 1/2 Vik (viv, - 1/38, vZ) in the ba- 

872 Sov. Phys. JETP 65 (5), May 1987 T. L. Andreeva and A. V. Malyugin 872 



sis of the functions X, and x,. Introducing the notation 

we obtain the following expression for the intensities Po' 
and Jdep of the polarized and depolarized spectra: 

where 

The coefficients AB satisfy the following polarization rela- 
t i o n ~ ~ ~ :  

AB,=-AB2~2e,p,-i/,e,e2, 

ABsme12e2V+elyez+, AB4~elrezr+et,eu, 

where el and e, are the unit vectors of the polarizations of the 
incident and reflected waves. 

It follows from (20) that the gas disequilibrium due to 
the velocity gradient alters the total intensity of the doublet 
components in the polarization spectrum, i.e., violates the 
Landau-Placzek relations in the gas, and leads to small 
asymmetric increments to the Brillouin frequencies (see Fig. 
lc  below). In contrast to the case with a temperature gradi- 
ent, however, in this case the scattering spectrum remains 
symmetric with respect to the substitution w- - w, i.e., 
about the point w = 0. In order of magnitude, the param- 
eters E ;  and ET are given by 

In the depolarization scattering spectrum (2 1 ) a disequilib- 
rium in the form of a velocity gradient alters the quantities 
r,, r 2 ,  r,, r4 that determine the widths and contrasts of the 
fine structure of the depolarized spectrum. In the HH com- 
ponents of the depolarized-scattering spectrum, the con- 
trasts of the narrow dips at the Brillouin frequencies are 
changed, and in this case the contrasts of both dips change in 
like fashion, in contrast to the temperature gradient, where 
the dip-constrast changes were of opposite sign. 

In the VH component of the spectrum, in the presence 
of a velocity gradient, the fine structure at the undisplaced 
frequency is in the general case a superposition of two Lor- 
entz profiles with different widths r, and I?, and with differ- 
ent intensities. Recall that in the equilibrium case this fine 
structure is a dip in the form of a single Lorentz profile of 
width y, = y, (Ref. 26). When depolarized scattering is ob- 
served at small angles, however,the coefficients AB, and AB, 
vanish, whereas the dips at the Brillouin frequencies remain 

AB1 #O, AB,#O (see the polarization relations given above 
for AB). 

5. SCATTERING SPECTRUM IN THE PRESENCE OF A 
DIFFERENCE BETWEEN THE ROTATIONAL AND 
TRANSLATIONAL TEMPERATURES OF THE GAS 

The disequilibrium considered can be produced in a 
gas, for example, by exposing it to light of frequency close to 
that of the frequency of the rotational transition in the gas, 
i.e., having a frequency on the order of 2B,, j, where B,,, is 
the rotational constant of the molecule and j is  the rotational 
quantum number. 

In a real situation, light absorption by a gas produces in 
the latter, naturally, stationary thermal flows directed away 
from the walls of the working vessel. This leads inevitably to 
spatial gradients of the gas temperature, and hence to the 
spatial inhomogeneity of the distribution function, discussed 
above in detail. Thus, light absorption by the bulk of the gas 
can be an effective method of producing large temperature 
gradients and is already used in experiment." The main dif- 
ference, in principle, between effects connected with tem- 
perature gradients and spatially homogeneous effects due to 
a difference between the rotational and translational tem- 
peratures is that in the former case the changes in the scatter- 
ing spectrum are asymmetric with respect to w = 0, and in 
the latter they are symmetric. Therefore, eliminating the 
symmetric component of the spectrum, we obtain only ef- 
fects connected with the difference between the rotational 
and translational temperatures Trot and T,,  (see Fig. 1 ) . 

Consider light absorption that is uniform in the volume 
and the ensuing rise of Trot of the gas relative to Ttr . In this 
case 

where E,, and Erot are the translational and rotational ener- 
gies of the molecule. The stationary nonequilibrium incre- 
ment 2 can then be represented in the form 

The possibility of introducing two temperatures presup- 
poses rapid relaxation over the rotational and translational 
degrees of freedom (within times t - v- ', where v is the gas- 
kinetic collision frequency) and a sufficiently slow exchange 
between them over times t- Av-', with Av4v. 

Calculation of a and C leads to the following results: 

1 1 
a,, = - (P12x) H=a22, aJ5 = - (1 1 2 ~ )  55, 

271 2 ~ 5  

1 1 
Ct = - (tl2X) llBt - - (112,) 12Bi 

271 2 P a c  

1 -- (112~) 15B5=Ca*, 
' W a c  

where 
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where 

pends strongly on the choice of the molecule and on the pa- 
rameter of the exciting laser radiation. For the same reason 
we disregard the corrections to the widths y, and y,; this 
does not affect the changes of the integrated intensity of the 
spectrum. 

The polarized-scattering spectrum takes the form 

y5 + NB, (ABl-aNB,) o+qu,c +NB52 (I+ a,,) 7 
0 + y 5  ' (0+9uac) 2+y12 

It can be seen from (24) that the changes in the spectrum 
reduce in this case to the following. 

1. The integrated intensity of the central component is 
changed by an amount a,,- (AT/T) (Av/y,). 

2. Besides the change of the integrated intensity 
a, ,  - (AT /T) (Av/y,), the Brillouin components acquire 
asymmetrical increments a"  - (AT/T) (Av/quaC ) (see Fig. 
Id).  

FIG. 1 .  Polarized component of Raleigh scattering of light in a molecular 
gas: a--equilibrium case, y, and y,-respectively the widths of the Bril- 
louin and central component; b--in the presence of a temperature gradi- 
ent VT,e, VT<O, e,-unit vector in the direction of the scattering wave 
vector qi c-in the presence of a macroscopic velocity gradient V ,  [see 
( 19) 1, &, e,,eqk < 0; d-in the case when the gas rotational temperature 
Trot exceeds the translational temperature r 8 < 0. Figs. b, c, and d show 
for comparison (dotted) the light-scattering profile for the equilibrium 
gas. 

Here Av is the average value of the collision operator i in the 
state g2 with allowance for the numerical factor g that en- 
sures the normalization (gz(gf) = 1. The coefficient fl is of 
the order ofp- AT/T, as can be seen from the definition of 
the function 2 [Eq. (22) 1. The sign of depends on the 
actual form of the rotational-level excitation function and 
can be either positive or negative. It can be shown that when 
sufficiently low rotational levels E, < Tare excited the coef- 
ficient p is negative, and in the region of high excitation 
energies E, ) Tit is positive. In the intermediate region there 
exists a point wherep = 0 (Ej - T). In the present paper we 
confine ourselves to these general remarks and do not con- 
sider the actual form of the excitation function, since it de- 

6. DISCUSSION 

The foregoing results ( 16), (20), and (24) for the pro- 
file of the spectrum of polarized Rayleigh scattering of light 
in a nonequilibrium gas are shown in Fig. 1 for three disequi- 
librium types: the presence of a temperature gradient (Fig. 
lb),  a velocity gradient (Fig. lc) ,  and differences between 
the rotational and translational gas temperatures (Fig. Id) .  
Figure la  shows the form of the spectrum in the equilibrium 
gas. As seen from the figure, besides the changes in the inte- 
grated intensity of the triplet components, the spectrum ac- 
quires, for all three types of disequilibrium, asymmetric in- 
crements with zero integrated intensity. It must be 
recognized here that even in the case of an equilibrium gas 
with rotational degrees of freedom, the polarized scattering 
contains small asymmetric increments proportional to the 
parameter qua, /Y (see Fig. 1 ). Therefore increments of the 
same type, due to the disequilibrium and proportional to the 
parameters E" and a", can be of the same order of magnitude 
as the equilibrium asymmetric components. However, the 
increments due to the disequilibrium reverse sign when the 
direction of the wave vector q is changed, and can thus be in 
principle separated from the equilibrium ones. 

We estimate now the parameters E', E", a l l ,  a", that 
determine the changes in the spectrum of a nonequilibrium 
gas. In the presence of a temperature gradient, the spectrum 
changes are determined by the parameters E' and E", exact 
microscopic expression for which are Eqs. ( 16). Using these 
equations, we obtain the following estimates of E' and E": 

Here /1 is the mean free path of the incident light, 8 is the 
light-scattering angle (assumed to be small), L - T / ( V T  ( is 
the characteristic length of temperature variation in the gas, 
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and a is the reciprocal sound-absorption length at 180" scat- 
tering angle. To observe the effect experimentally in gases it 
is expedient to use the smallest possible scattering angles, 
0 9  1. Assuming 8- lo-' rad,--0.6", A = 4. lo-, cm, L = 5 
cm and using the values of a for simple gases, we obtain from 
Ref. 17 (p. 239) the value of E' and E" listed in the table. It is 
clear from the table that under the indicated conditions the 
parameters E' are quite large and are observable in experi- 
ment. In view of the weak temperature dependence of the 
refractive index in gases, in contrast to liquids and solids, the 
scattering angle 8 can be substantially smaller than the cho- 
sen value 0 = lo-' rad used in experiments on liquids and 
solids. TO observe in experiment the spectrum-asymme- 
try effects connected with the parameter E", it is advanta- 
geous to decrease the scattering angle 0 even more and to 
lower the gas pressure by 10-100 times. For example, choos- 
ing e- rad andp- 1 atm we get E'-0.4, E" -0.01. Ob- 
servation of different intensities in a Brillouin doublet in the 
presence of a temperature gradient is quite realistic in gases, 
and observation of more subtle effects connected with the 
parameter E" requires a spectrum-reduction accuracy not 
worse than 1 %. 

It must be noted that the greatest difficulty is caused in 
these experiments by the small amount of light contained in 
the accessible solid angle, not exceeding 0 ', which imposes 
stringent requirements on the receiver sensitivity. The mea- 
sured value of E' for ~ a t e r ~ ' - ' ~  is E'-0.06, and in fused 
quartz the observed effect was too weak to be measured. 

According to the foregoing estimates, the value oft '  in a 
gas can be of the same order as in a liquid, or larger (see 
Table I ) .  It is therefore of great interest to perform such an 
experiment in a gas, for which the theoretical predictions are 
fully unambiguous. 

Note that besides the changes observed above in the 
polarized component of the spectrum, effects of the same 
order in the parameter are present in the depolarized scatter- 
ing spectrum [see Eq. ( 17) ]. At small scattering angles 
these effects are manifest in the form of different contrasts of 
the narrow dips at the Brillouin frequencies, superimposed 
on the wide depolarized-scattering contour. The dip-depth 
change due to the temperature gradient is of the same sign as 
the increments in the polarized doublet (see Fig. lb ) .  

In the presence of a velocity gradient, the parameters E ;  

and E;) that govern the change in the spectrum of the non- 
equilibrium gas, can be estimated in the same manner as in 
the case of a temperature gradient: 

elr=-eq,eq1,Vt,/2y,- 1/L02a,  

where L -v,,/I V,, ( is the tensor component in the case when 
the coordinate axis x is chosen along the velocity V and y 
along the gradient ofV, . It can be seen from the estimate that 

TABLE I. Values of parameters E' and E" for several simple gases. 
I 

the effect considered do'es not occur, i.e., E; = E;' = 0, if q is 
perpendicular to the axis x or y, and in particular if q is 
directed along the velocity V or is perpendicular to the veloc- 
ity V of the gas as a whole. The maximum effect takes place if 
q is in the xy plane at an angle 45" to these axes. Assuming by 
way of estimate 8- a characteristic transverse cell di- 
mension d - 1 cm, a gas pressure p - 1 atm, and a velocity 
gradient dV, /dy - lO-*vJd, we get E ;  -0.01, E;'- 

The estimate for the gradient was chosen with allowance for 
the condition that the gas flow be laminar, i.e., R < lo3, 
where R is the Reynolds number. This shows that it is much 
more difficult to observe the effect in this case than in the 
case of a temperature gradient. 

In the depolarized part of the spectrum, at small scat- 
tering angles, the presence of a velocity gradient leads to a 
small change (proportional to E ;  ) of the contrast of the nar- 
row dips at the Brillouin frequencies. The fine structure of 
the spectrum at the undisplaced frequency vanishes in the 
case of small-angle light scattering. 

We proceed now to the third type of gas disequilibrium 
due to the difference between the rotational and transla- 
tional gas temperatures. In this case we assume the gas to be 
uniformly illuminated by the laser at a frequency close to 
that of the rotational transition of the molecule. To increase 
the light-absorption probability it is preferable to choose 
molecules having dipole moments, such as HD, HCl, NO, 
CO and others. Both the translational and the rotational 
temperatures can be made stationary by heat removal 
through the vessel walls. The light source should be a second 
laser with frequency in the optical band. I t  is convenient to 
observe the scattering at small angles, just as in the preceding 
cases, so as to decrease the value of y,, i.e., increase the pa- 
rameters a,,, a,,, a", that determine the disequilibrium-in- 
duced changes in the scattering spectrum [see (24) and Fig. 
Id]. As seen from Fig. Id, in this case (P < 0 )  the intensities 
of all the components of the triplet decrease ( a a ,  ,, a,,) and 
asymmetric additions to the Brillouin doublet ( a a" ) ap- 
pear. The parameters a ,  ,, a,,, a"  are given by 

A v 
a,, = -- 1 AT 

2ys 

For more specific numerical estimates of these parameters it 
is convenient to consider the following relations: 

where E' and E" are parameters that characterize the changes 
in the spectrum in the presence of a temperature gradient 
and were numerically estimated above, I is the mean free 
path, and L is the characteristic length of temperature 
change in the gas. Putting L - 5 cm, we obtain for 1 atm gas 
pressure the values 1- lo-, cm and ZL -2, It can be 
seen from (25) that the ratio a ,  ,/E' becomes of the order of 
unity at a very small deviation AT/T- lo-'. Thus, the 
change of the doublet intensity under these conditions can 
serve as a very accurate indicator for the determination of 
the ratio AT/T. 

To observe the effect in experiment it is expedient to 
measure the doublet intensity as a function of the exciting- 
radiation intensity. This dependence (Fig. 2) is linear and its 
interpolation to zero intensity of the exciting radiation yields 
the values of the doublet intensities under equilibrium condi- 
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FIG. 2. Integrated intensity of Brillouin doublet vs the external radiation 
power P,,,, exciting the rotational degrees of freedom. 
8, < 8, < 8, < 8,-scattering angles; /3 < 0. 

tions. The slope of the line is inversely proportional to q2, 
and its interpolation to zero intensity of the exciting radi- 
ation yields the intensities of the doublet under equilibrium 
conditions. The slope of the straight line is inversely propor- 
tional to q2, and the family of curves plotted for different q 
(i.e., for different scattering angles 8 )  converges to one point 
corresponding to zero pump intensity. 
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