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We examine the evolution of density inhomogeneities in a gravitating medium, taking into 
account the influence of surrounding inhomogeneities. It is shown that the collective stochastic 
gravitational field due to density fluctuations can significantly change the rate of evolution of 
density differences: in the spatially flat Friedmann model, S -t 'I3. An estimate is derived for 
the spatial correlation scale of the fluctuations. 

1. We consider the cosmological problem of the origin 
of the observed distribution of matter. Let there be density 
inhomogeneities in a uniform, isotropic Friedmann model of 
the universe filled with a medium obeying Pascal's principle. 
The probability of thermal fluctuations in density' is 

where Tis the temperature, and R,, is the minimum work 
required to produce the density difference S reversibly in the 
gravitating medium, with R,, -S2 (Ref. 2). It was shown 
in a classic paper by Lifshitz3 that those density differences 
which exceed the scale set by thermal processes in a medium 
are unstable. These large-scale fluctuations are nonstation- 
ary, they have an amplitude distribution different from ( 1 ), 
and they comprise the nuclei of a new distribution of matter, 
which is neither uniform nor isotropic. A description of the 
development of such a nucleus ought to take into account the 
effect of surrounding fluctuations within the gravitational 
interaction radius ct (horizon), where t is the cosmological 
time in the model. Let there be in fact two neighboring 
spherical inhomogeneities ofmass m, + Sm, and m, + Sm,. 
In the Newtonian field of the mass m,, the fluctuations Sm, 
experience an accelerating force Gm,Sm,/r2 directed to- 
ward the center of m,; r is the radius of the inhomogeneity, 
and Gis the gravitational constant. The total mass m, + Sm, 
experiences an accelerating force in the field of the mass 
m2 + 6m2: 

where R > r is the distance between the centers of the inho- 
mogeneities. The net accelerating force on Sm, is (to first 
order in Sm ) 

miSmi + m2 (mi+6mi)  mi6m2 (2)  
bSm,=-G 

R 
+C- 

r R2 ' 
where b is the acceleration. In a uniform and isotropic mod- 
el, the net effect of the masses m, is zero, so that after averag- 
ing over all m2 the second term on the right-hand side of Eq. 
(2)  vanishes. The first term is responsible for self-gravita- 
tion of the inhomogeneity m, + 6m2, and the third takes into 
account the change in state of motion of m, in the presence of 
Sm,. As the model expands, the number of fluctuation inside 
the horizon varies, and thus so does their amplitude distribu- 
tion, so the net effect of the fluctuations Sm, is not zero. This 
collective interaction results in large-scale density inhomo- 
geneities evolving more or less in concord. 

This effect is similar to one which is well known in the 
general theory of re la t i~ i ty ,~ .~  involving local changes in a 

coordinate system during accelerated motion of gravitating 
fluctuations. If we describe the dynamics of density fluctu- 
ations relative to a uniform and isotropic coordinate system, 
the effect may be considered a manifestation of the collective 
stochastic gravitational field of the fluctuations. 

We analyze below, in the spatially flat Friedmann mod- 
el, the stochastic dynamics of density fluctuations on spatial 
scales which do not exceed the horizon. We assume that the 
model is filled by a medium with negligible pressure (dust). 
This makes it possible to ignore thermal effects (fluctuation- 
induced density inhomogeneities, acoustic waves), and to 
take the distribution ( 1) as a starting point. 

In linear perturbation theory, the evolution of density 
fluctuations does not depend on the behavior of other fluctu- 
ations, and is governed by determinative equations. By in- 
serting the appropriate Langevin sources into these equa- 
tions, one can proceed beyond the scope of perturbation 
theory (see Ref. 6, for example), and take the collective field 
into consideration. The statistical characteristics of Lange-. 
vin sources are given by a nonstationary amplitude fluctu- 
ation distribution function. 

The existence of collective fields leads to a change in the 
rate of growth of density differences in a uniform and iso- 
tropic model. According to one of the linear modes derived 
in Ref. 3, the excess density Sp falls off more slowly 
(Sp -t -413) than the density of the expanding background, 
for whichp -t -2, so the density difference grows with time: 
S=Sp/p-t 213. Nearby fluctuations can slow down the rate 
at which Sp decreases, and the density difference will then 
grow more efficiently than in linear perturbation theory. 
Quantitatively, the effect is important for small fluctuations, 
which still participate in the overall expansion of the model, 
and are naturally described in an expanding frame of refer- 
ence. Collective field processes which have been retarded 
can be neglected at the nonlinear stage of development of 
density perturbations. 

2. We describe the development of density inhomogene- 
ities relative to a background model with a synchronous 
metric: 

where the scale factor 8-q2, 7;1 is the conformal time, 
8dq = cdt, q -t 'I3, Roman indices are summed from 0 to 3, 
and Greek indices from 1 to 3. The motion of matter within 
the frame of reference is governed by the field equations 

where x is the Einstein gravitational constant, Tu is the ener- 
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gy-momentum tensor of the medium, and GU is the Einstein 
tensor. 

Consider two nearby fluctuations, SGU (q,xa - Ea ) 
and 6GU (q,xa - 1, ), in the neighborhood of the points Za 
and Zu respectively. The superposition principle holds for 
small perturbations, so that in the reference frame of (3) the 
stochastic dynamics of density fluctuations in the vicinity of 
the coordinate origin Za are given by 

x [6T,j  ( 1 1 ,  x") + 6Tij (11, I )  ]=6Gij ( q ,  3") +6Zlij ( q ,  xa-Za), 

(4) 
where STU (v,xa ) is the fluctuation corresponding to 
SGV ( 7 , ~ "  ) in the energy-momentum tensor of the medium, 
and 8pU (q,xa ) is the increment to 6To (v,xa ), correspond- 
ing to the value of the tensor 8?rU (q,xa - Za ) in the neigh- 
borhood of Ea = 0. The second terms on both sides of Eq. 
(4) play the role of Langevin sources. 

For a dusty medium, Eqs. (4) break up into two groups 
of equations. The first defines the connection of the density 
differences and of the velocity perturbations with the scalar 
perturbations of the metric [see Eqs. ( 12) and ( 13) below]. 

The subject of our analysis is the second group of equa- 
tions, which describes the dynamics of scalar perturbations 
of the metric. Following the development in Ref. 3, we repre- 
sent scalar perturbations as a set of harmonic oscillators 
exp (in, xa ) with amplitudes 

where na is a wave vector in the space {xa ), and nZ = na na . 
We then obtain from the equations (4) for the isotropic and 
anisotropic amplitudes p, and A, 

where the dots signify differentiation with respect to q, and 
the amplitudes;, and2, pertain to the neighboring oscilla- 
tor exp [in, (xu - 2" ) ] localized in the vicinity of the point 
2". 

In the orthogonal space of the variables &,,An), we 
introduce the distribution function f(p, J, ,;, ;in ,Za ,q) 
for the amplitudesp, and A, (using the approach developed 
in Ref. 7), under the condition that there is a neighboring 
oscillator with amplitudes (G, A, ). The continuity equa- 
tion for f is 

Let W(1" ,q)  be the probability that the oscillator 
(p, ,An ) has a neighbor (in A, ). From the formula for the 
total probability, we find the equation for the amplitude dis- 
tribution function, 

where the integration over 2" is carried out in the flat space, 
and the integrations over in and 2, span all allowable val- 
ues: (p, I (p* 4 1, lil, I <A * 4 1. Wederivetheequation for W 
in the following way. On the one hand, the number of oscilla- 
tors is N = 1 + J Wd 32, and on the other, N = 1 Fdp, dR, , 
so the equation for W takes the form 

I +  I  hi-5 Fdp,dh. .  (8) 

Equations (4 )- ( 8 ) describe the self-consistent problem 
of the stochastic dynamics of density fluctuations at spatial 
scales within the event horizon. At larger scales, fluctuations 
are independent of one another, and evolve in accordance 
with the Lifshitz equatiom3 

At the initial time qo, let the right-hand sides in ( 5 )  
equal zero; for the physical modes, then 

hn=C1(1+2/15n2q2)-C21q3+ ( a , - Q 2 ) e x p ( - i n a f a ) ,  (9) 

pn=C1 (1-2/,sn2qz)+C2/q3+(bl+QD2)exp(-in,N"~), 

where 2@, = in + /I,, and 

2@2=b-%-'/,  j (nzq1-n2q3+9112-9q) b, dq 

and the constants C, and Cz are determined by the initial 
conditions of the problem: p, (77,) = pOJn (qo) = R O. 

As an example, let us consider an initially Gaussian am- 
plitude distribution8 forpO and Lo, 

where i and /i are mean values, A,, and An are variances, 
and A = A, A,. From (9)  we findp0 and R O as functions of 
p , J , ,~ , J ,  ,za, and q, and then, using (6)-(8), we find f 
and F. The dynamics of the most likely fluctuations are de- 
scribed by the extremum equations, d F  /ap, = 0 and aF / 
dR, = 0. We can then evaluate the behavior ofFnear a max- 
imum. The solution of Eq. (7) is 

where Fo is a normalizing constant. We represent f as a 
power series i n i ,  and A,, keeping terms to first order. Car- 
rying out the integration, we find 

the expressions for a, p, y, l,, l,, a , ,  and w, are written out 
in the Appendix. Let F be normalized such that 
2F0p*R * = 1; Eq. (8)  then takes the form 
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where 

G= (a-P-2p.h') 

p*a. [ ( a+b)  a i+(a -B)aa  + ( 2 - y )  mi- ( a -B )aa  
X - 

( 2 n )  '" A,"' A ,, 'I' 

It has been assumed here that the integral on the right-hand 
side of Eq. (8) is evaluated near a fairly sharp maximum of 
the integrand. Making use of ( lo),  we find for the most like- 
ly fluctuations 

The first terms on the right-hand sides in ( 1 1 ) correspond to 
linear perturbation t h e ~ r y . ~  The second terms are related to 
the collective effect already described, and if A, ) A, (or 
A, )A, ), they depend only weakly on the time 7. 

The amplitude of the density difference Sn is 

and the amplitude of the velocity perturbation Su, is 

3a2~pc2(6u,la).=-n, ( f i n +  A,). (13) 

We now evalute the spatial correlation of the density 
fluctuations. We extend the integration in ( 10) over an infi- 
nite domain, bearing in mind that W = 0 beyond the event 
horizon. The integral equation thus derived is satisfied, for 
example, by a delta function: W-S(fa - ba ), where 
b a = c" + 10, is a complex vector, with nu Ca = 0 and 
I c I  = Id I .  We can obtain an estimate for Id I from ( lO)-it is 
the spatial correlation scale length of the oscillators: 
n, da = In 5. 

If we consider the case A, = A,, the expression for [ is 
simplified: 

In that event, transforming from 7 to t, we find for the most 
likely density perturbations 

where a, = ~ ( 7 , )  andp, = ~ ( 7 , ) .  Thus, the most likely dif- 
ferences grow most efficiently, with S, -t ' I 3 .  The spatial 
correlation scale length for fluctuations also increases with 
time. 

nA '" ( t l to)3-2p'A* 
nada = ln [ (y ) p'h' (p'+A') 

APPENDIX 
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