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The effect of solitary Abrikosov vortices, trapped in electrodes of a Josephson tunnel junction 
perpendicular to its plane, on the tunnel current flowing through the junction is investigated in 
the framework of the macroscopic theory. The current-voltage characteristics (IVC) and the 
critical current of the junction are calculated in the entire temperature interval 0 < T <  Tc . It is 
shown that when the axes of the vortex lines do not coincide in the electrodes, the IVC have 
singularities at eV = A ( T), and the suppression of I ,  can be in a number of cases of the order 
of I, itself. The temperature dependence of the critical current is calculated in the case when 
one of the electrodes is a two-dimensional superconducting film in which pairs of vortices of 
opposite sign are created. 

I. INTRODUCTION 

Experimental studies of small superconducting tunnel 
junctions frequently reveal considerable variations of the 
critical current as the junctions are recycled.'-3 The most 
probable cause of this phenomenon is the capture, by the 
electrodes of the tunnel junction, of single Abrikosov vorti- 
ces in the course of the superconducting transition. In fact, 
simple estimates show that a magnetic flux on the order of a 
flux quantum @ penetrates into a junction on the order of 
10X 1Opm in the earth's magnetic field. The configuration 
of the frozen-in magnetic-field force lines depends substan- 
tially on the material of the electrode films. As a rule, they 
have a granulated structure with a certain characteristic 
granule dimension L determined by the film-deposition 
technology. The value of L can vary in a wide range. For 
example, in the Pb-In-Au alloy films frequently used in 
Josephson junctions the parameterL decreases, according to 
the data of Ref. 4, from 4000 to 500 A when the Au concen- 
tration changes from 0 to 10 wt.%. If the granule size L is 
small compared with electrode coherence length the core of 
the vortex effictively averages the pinning forces applied to it 
by the granules, bending of the vortex lines is not very prob- 
able, and the structure is close to that shown in Figs. la, b. In 
the opposite case the magnetic flux penetrates into the elec- 
trodes mainly along the grain boundaries, leading to forma- 
tion ofbent vortex lines (Fig. Ic) or to capture of the lines in 
one of the electrodes (Fig. Id).  

Analysis of the configurations leads to the conclusion 
that the Abrikosov vortices influence the properties of the 
tunnel junctions via two mechanisms. The first, "core mech- 
anism," is connected with the restructuring of the Green's 
functions of the superconducting electrodes in a region on 
the order of the coherence length near the vortex core. It was 
theoretically analyzed earlier5 only under the assumption 
that the vortex lines are straight and the electrodes making 
up the junctions are identical (Fig. l a ) .  The second, electro- 
dynamic, mechanism is due to the bending of the force lines 
of the magnetic field of the vortex, which leads to a coordi- 
nate dependence of the phase difference p of the order pa- 
rameters of the electrodes. The importance of taking this 
mechanism into account is attested to by numerical calcula- 
tions6 for SNS sandwiches with a thick normal-metal inter- 

layer. To this date, however, no theoretical estimates were 
made of the influence of the bent Abrikosov vortices on the 
properties of superconductor tunnel junctions. 

Our aim was a theoretical investigation of the influence 
of single Abrikosov vortices that differ in structure (Fig. 1) 
on the critical current and on the current-voltage character- 
istic (IVC) of tunnel junctions. The results explain a num- 
ber of phenomena observed experimentally in tunnel junc- 
tions, and to determine the temperature dependence of the 
critical current of the junction in the case when one of the 
electrodes is a two-dimensional superconducting film. 

2. JUNCTION MODEL AND ITS DESCRIPTION 

We shall assume that the tunnel-junction electrodes are 
dirty superconducting films with a Ginzburg-Landau pa- 
rameter x: = A /c$1 the transmission of the junction is low, 
and the transverse dimensions WSil , ,  where A, is the 
Josephson penetration depth. The low transmission of the 

FIG. 1 .  Configurations of vortex lines in a tunnel junction. 
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junction makes it possible to assume that the Lorentz force 
of the current flowing through the junction exerted on the 
single Abrikosov vortices frozen in the electrodes is weak 
compared with the pinning forces that keep the vortices stat- 
ic. As a result, the value of the tunnel current can be obtained 
from the equations of the tunnel theory,' according to which 
the current is determined by the retarded Green's functions 
FR and GR in the electrodes. In the case considered these 
functions depend on the spatial coordinates in the junction 
plane, but since the mean free path of the electrons is small 
the connection between the quasiparticle and superconduct- 
ing currents I, and I, on the one hand and the FR and GR on 
the other hand is local: 

m 

X R e G I R ( ~ + e V , p ) R e G 2 R ( ~ , p ) ,  ( l a )  
m 

Here p is the coordinate in the junction plane and R, is the 
resistance of the junction in the normal state. The subscripts 
1 and 2 pertain respectively to the upper and lower elec- 
trodes, and the integration with respect to the spatial coordi- 
nates is over the entire area S of the junction. The smallness 
of the linear dimensions of the junction compared with A j  
makes it possible to define the critical current I, as the maxi- 
mum value of I, as given by ( lb )  : 

In the calculations of I, and I, we shall consider hereaf- 
ter situations in which the characteristic dimension a of the 
bent vortex (see Fig. lc)  is much smaller or larger than f ,,, . 
In the former case the bending of the vortex can be neglected 
and the problem reduced to a determination of the functions 
FR and GR for a straight vortex (Figs. la, b)  that penetrates 
both electrodes. In the latter case ( a )  f ,,, ) the tunnel cur- 
rent can be calculated by using a superposition principle, 
representing the field and current distributions in the junc- 
tion as a sum of fields and currents of the vortices, shown in 
Fig. Id, localized in the upper and lower electrodes, respec- 
tively. 

Further simplifications are due to allowance for the in- 
equality f ,,, (A ,,, (A ,,, is the depth offield penetration into 
electrode 1 and 2, respectively), which makes it possible to 
calculate independently the electromagnetic and core re- 
gions of the vortex. 

3. ELECTRODYNAMICS OF SINGLE ABRIKOSOV VORTEX 
IN A TUNNEL JUNCTION 

In the electromagnetic region of the vortex, i.e., at dis- 
tances p 2 ,., from its axis, the Usadel functions8 reach 
their equilibrium values F t  and &. In addition, the condi- 
tion WSA, allows us to neglect the Josephson currents 
through the tunnel barrier compared with the vortex cur- 
rents, and the equation for the gauge-invariant vector poten- 
tial 

takes in a polar-coordinate frame connected with the vortex 
axis (see Fig. 1) the form 

In this coordinate frame, the connection between the super- 
conducting current j = (0, j,,, , 0)  and the vector potential is 

The boundary conditions for Eq. (2)  and the depth of 
the electrodes are determined from the condition that Q(p, 
z)  go over into the known9 solution for a single vortex in a 
homogeneous superconductor: 

in the case shown in Fig. lb, and 

in the situation represented in Fig. Id. The boundary condi- 
tion on the electrode interface (z = 0)  is continuity of the 
magnetic-field components H, and Hz : 

The boundary-value problem (2) ,  (3),  (5 )  has a solution 
that describes the electrodynamic structure of the vortex 
shown in Fig. lb  and can be represented in the form 

e2 

P Q ~ , Z = A L ~  K ~ (  7) -J y 2 J l  (yp)  exp (-aIB2 1 z 1 )a;: 

where a,,, = (y + A G ~ ) ~ ' ~  and J, is a Bessel function of 
the first kind. It follows from ( 6 )  that the presence of a 
spatial inhomogeneity along the z axis does not affect the 
character of the behavior of the vector potential (and hence 
also of the current) in the region of the vortex core: 

In addition, though that the magnetic field component H, is 
not zero in the plane of the junction, the phase difference p of 
the order parameter of the electrodes does not become de- 
pendent on the coordinatep. To prove this statement it suf- 
fices, in the calculation of p, to move away a distance 
I z I  %A from the junction planez = 0 to the interior of the 
superconducting electrodes. In these regions, expression (6 )  
that defines Q(p, z)  goes over into ( 3 ) .  Consequently the 
phases X, and X, of the order parameters are determined in 
each electrode by the polar angle @:xi = @,x2 = 0 + pol and 
the phase difference p = X, - X, is a constant value po de- 
termined by the superconducting current that flows through 
the junction. 

The electrodynamic structure of the vortex shown in 
Fig. Id follows from the solution of the boundary-value 
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problem (2), (4), (5) and is described by the expressions 

It follows from (8a) and (8b) that at p )A, the fields and 
currents are localized in the region - A, < z  <A, near the 
junction plane. It is easily verified that the magnetic flux 
carried in a radical direction away from the vortex is equal to 
@,. In the other limiting case we have from (8a) and (8b) 

Ql (p, +0) xllp- (p/4h12) In (L/p), (9a) 

Q2(p, -0)- (p/4A12) ln (hllp). (9b) 

It follows from these expressions that the ensuing substan- 
tial deformation of the electromagnetic region of the Abriko- 
sov vortex does not lead to additional singularities in the 
behavior of the vector potential in the region of the core at 
z >  0, and the Q(p, z)  dependence at p 55, is again deter- 
mined by Eq. (7).  There is no core in the lower electrode, 
and the superconducting current flows counter to the cur- 
rent at z > 0. This leads to a spatial dependence of the phase 
difference q, of the electrode order parameters. Indeed, in the 
interior of the upper electrode (at z)A, ) the phase is equal 
as before to the polar angle 8, and in the lower electrode at 
z g  - A 2  the phase x2 is constant, so that Q2+0 in this re- 
gion. The gauge-invariant phase difference is therefore 

For the vortex shown in Fig. lc, the distribution of the 
fields and currents at a %Jlz can be obtained, as noted 
above, by linear superposition of the solutions (8)  for two 
vortices localized in the upper and lower electrodes, respec- 
tively at a distance a from each other. 

If the upper electrode is a thin superconducting film of 
thickness d l  (A,, Eq. (2)  must be solved jointly with the 
equation V X V X Q = 0, which specifies the distribution of 
the vector potential in the space above the film. Using here 
the condition that the field H be continuous on the second 
boundary of the electrode (at z = d l )  as well as the bound- 
ary conditions (4) and (5) we have for Q in the case shown 
in Fig. Id 

7 ( l l c )  B 2 = d l l - a l -  1 - ) C = - -- 
a +Y ~(21-y 

The electromagnetic structure of the core (p 5: {, ) is in this 

case the same as for a bulky film (d l  )A,), and at large dis- 
tances from the vortex axisp %A, the gauge-invariant vector 
potential takes the form 

where A,, = A :/dl is the effective depth of penetration of 
the field into the upper film. 

It follows from ( 12) that in the case considered the cur- 
rent decreases with increase of the distance from the vortex 
axis more slowly than in the case of an isolated thin film at 
p >A, (Ref. 9).  It follows therefore directly from the fluxoid 
quanization condition that the external magnetic field pass- 
ing through a thin film in a direction parallel to the vortex 
axis differs substantially from a,: 

Another consequence of the slow decrease of the current is 
the logarithmic dependence of the interaction energy U(p) 
of a pair of vortices on the distance p between them 

where the plus (minus) sign corresponds to vortices of oppo- 
site (like) sign. 

The foregoing analysis shows that at all deformations of 
the electromagnetic region of the vortex the character of the 
behavior of the vector potential in the region of the core, i.e., 
at distances from the center of the vortex line, is determined 
by expression (7).  Therefore further calculations of the qua- 
siparticle current can be carried out by the method described 
in Ref. 5, in which the functions GR and FR ( ~ g )  were calcu- 
lated for a single vortex by intergrating Usadel's equations. 

4. CURRENT-VOLTAGE CHARACTERISTICS OF TUNNEL 
JUNCTIONS 

An experimental study of the IVC of tunnel junctions 
yields data on the electromagnetic structure of single Abri- 
kosov vortices trapped in their electrodes. In fact, it follows 
from the foregoing analysis and from the results of Ref. 5 
that the presence of straight Abrikosov vortices in the elec- 
trodes (Fig. la)  leads only to weak singularities of the deriv- 
ative dl, /d V in the voltage region V = A( T)/e, and these 
singularities become washed away with rise of temperature 
and are practically zero at T 2 0.5 T, . If, however, the vortex 
is localized in one of the electrodes, it can be seen from Eq. 
(9b) that only weak screening currents flow in the second 
electrons and do not suppress the order parameter. The 
function ReG f in Eq. ( la)  can therefore be regarded as in- 
dependent ofp, equal to zero at E < A, and given by 

Re G2R=~/(~Z-A2)  '" for &>A. (15) 

Numerical calculations show that in this case the IVC has 
near V = A/e, in the entire temperature interval, a singular- 
ity that is clearly seen on the plot of the differential conduc- 
tivity dIq /d Vagainst V (see Fig. 2) .  The cause of this differ- 
ence between the IVC structures is that in the former case 
the electrons tunnel in the region of the vortex core from a 
zero-gap into a zero-gap region, whereas in the latter case 
they tunnel from a zero-gap region into a superconductor 
having a gap in the density of states. If a deformed vortex 
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FIG. 2. Results of numerical calculation of the differential conductivity of 
a tunnel junction in which is frozen an Abrikosov junction having the 
structure shown in Fig. Id, for different values of the temperature: T /  
T, = 0.8 (curve 1; 0.7 (2);  0.6 (3); 0.4 (4); 0.1 (5);  the vertical scale is 
arbitrary. Insets--experimental results.' 

that broaches both electrodes is trapped in the junction, its 
contribution to I, at V = A/e will be, by virtue of the super- 
position principle, double the contribution of a vortex local- 
ized in one of the electrodes. 

Differential-conductivity singularities similar to those 
shown in Fig. 2 were observed in a number of experiments 
(see, e.g., Refs. 1 and 2). Thus, this figure shows experimen- 
tal plots of dIq /d V vs the voltage V obtained in Ref. 1 for 
Sn - 1 - Sn(a, b, c, d )  and Pb -I - Pb (a', b ', c', d ', e') 
junctions of areas 25 and 16 pm2, respectively, at T = 1.5 K 
in a perpendicular magnetic field. Curves a, b, c, d and a', b ', 
c', d ', e' correspond to different values of the field, and the 
corresponding magnetic fluxes through the junction differ 
by a value of the order of the flux quantum a,. The authors 
of Ref. 1 attributed the discrete changes of the conductivity 
to the entry, into the junction, of individual vortices whose 
axes in the upper and lower electrodes were in general differ- 
ent. This assumption is confirmed by the presence of peaks 
on the experimental dIq /d Vcurves at V = A/4 for Sn-N-Sn 
and Pb-I-Sn junctions; these peaks are approximately of the 
same form as the theoretical curves 4 and 5 calculated for T /  
T, = 0.4 and T/Tc = 0.1 respectively. 

It must be noted, however, that in a quantitative com- 
parison with the theory developed in the present paper we 
must separate the considered mechanism that produces the 
singularities from the contribution made by two-particle 
tunneling processes, which have a threshold at V = A/e 
(Ref. lo),  and also from single-particle tunneling processes 
in the region of the core of a straight vortex, if the coherence 
lengths of the electrode materials are substantially different. 
The possibility of separating the contributions of the indicat- 
ed mechanism is due to the difference of the behavior of the 
singularity at V = A/e when the external magnetic field is 
increased. In the last of the cases listed above, the effect is 
proportional to the number of vortices in the junction, i.e., it 
increases linearly with the field at H(H,, . The magnetic 
field does not affect two-particle tunneling processes. On the 

other hand, an increase in the number of bent vortices in the 
electrodes with increase of the field can lead, as a result of 
saturation of the pinning centers and of the interaction 
between the vortices, to their effective "rectification," i.e., to 
a decrease of the amplitude of the singularity of the differen- 
tial conductivity per vortex at V = A/e. The total contribu- 
tion of the vortices to I, can increase as well as decrease with 
increase of field. The very existence of a nonlinear depen- 
dence on the magnetic field, however, means that bent vorti- 
ces are trapped in the junction. This is apparently the situa- 
tion realized in the experiments of Ref. 1. 

5. CRITICAL CURRENT OF TUNNEL JUNCTION 

If the vortices trapped in the junction are straight (see 
Figs. l a  and lb) ,  it follows from ( lb)  and from the condition 
p = x2 - x1 = po = const, obtained in Sec. 3, that the phase 
difference be constant, that the influence of the vortices on 
the value of 1, is due to the existence of only the core mecha- 
nism. In the case {, zf2 = f of greatest interest from the 
experimental point of view, the corrections to I,, necessitat- 
ed by the presence in the electrodes of Abrikosov vortices, 
are proportional to the vortex density n: 

Here F, ( T) is a monotonically decreasing function of tem- 
perature, a plot of which is shown in Ref. 2 of Ref. 5. The 
correction to the critical current for the contribution of one 
vortex is of the order of 

i.e., it is proportional to the area in which the superconduc- 
tivity is suppressed. Here I, and I, are the critical currents 
of the junction in the presence and absence of vortices in the 
electrodes, respectively. 

If the trapped vortices are not straight (see Figs. lc and 
Id), the change of the critical current id due mainly to the 
electrodynamic mechanism. Indeed, in the case shown in 
Fig. lc, as follows from Eq. ( 10) and from the superposition 
principle, the phase difference p ( p )  depends on the polar 
angles 8, and 8, that determine the directions from the axes 
A and B to the selected observation point C (see Fig. 3) .  
From geometric relations and from the definition ( lc)  of I, 
it follows that the decrease of the critical current is 

The integration in ( 17) is over the entire junction area S. At 
a2)S it follows from ( 127) that 

FIG. 3. For use in the calculation of the critical current of a junction with 
a vortex having the configuration of Fig. lc. A and B-axes in the upper 
and lower electrodes, respectively; phase difference q, = 8, - 8,. 

852 Sov. Phys. JETP 65 (4), April 1987 A. A. Golubov and M. Y. Kupriyanov 852 



FIG. 4. Critical current I, vs the distance b  between the vortex axis and 
the center of a round junction of radius R.  Dashed-asymptote of I , /  
I ,  = 1.3 b / R .  

i.e., AI,/I, a (a/W12, which exceeds substantially the 
"core" mechanism if a ) {. 

If the vortex is trapped in only one electrode, the change 
AI, of the critical current can be even of the order of the 
critical current I, itself. For example, in the case of a vortex 
trapped at the center of a junction with round electrodes, we 
find from ( lb) ,  ( l c )  and (10) thatI, = 0, i.e., AI, =I,. If 
the symmetry is violated, i.e., if the vortex is displaced from 
the center of a round junction of radius R by a distance b, we 
get, taking the influence of the edges of the junction into 
account by the image method, 

arcsln 8. pmox 

Numerical calculation using ( 19) (see Fig. 4) shows that at 
b 5 0.5R the critical current I, increases linearly with in- 
crease of the parameter b: I, /I, = 1.3b /R and I, +I, as 
b+R. 

We have estimated above the contribution made to the 
suppression of the critical current by a number of vortex 
configurations shown in Fig. 1. These results, together with 
the superposition principle, permit the critical current to be 
calculated for any given arrangement of the vortices in the 
junction. Let us consider a number of the most interesting 
cases. 

1. Let the external magnetic field be so weak that only 
one vortex is captured in the junction, in which all its loca- 
tions are equally probable. If the vortex penetrates both elec- 
trodes, the suppression of the critical current is independent, 
in the most typical case a2 ( S ,  of its coordinate in the vortex 
and is determined by Eq. (18). If, however, the vortex is 
localized in one of the electrodes, to calculate the expecta- 
tion value of the critical current it is necessary to average 
( 19) over the parameter b: 

b 

The result shows that when a vortex is trapped in one of the 
electrodes of the tunnel junction its critical current is de- 

FIG. 5. Schematic illustration of vortex lattices in the upper (dark cir- 
cles) and lower (light circles) electrodes. The solid and dashed circles are 
Wigner-Seitz cells in the upper and lower electrodes, respectively. The 
hatched area is the cell-intersection region, in which the current is deter- 
mined by the vortices 0 and 0 '. 

creased on the average by one-quarter of its value. 
2. Let a finite number of vortices be trapped in the junc- 

tion, but let the external field H be weak enough (H4Hc2 ) 
to be able to regard the vortices as isolated. In this case the 
suppression of the critical current is proportional to the 
number of vortices. The proportionality coefficient is deter- 
mined by relation ( 16) if the vortices are straight, and by 
( 18) if the vortex lines are bent. In fields H /Hc2 R (c /a) 2, 

where a is the characteristic dimension of the bent vortex 
(see Fig. 2c), the electrodynamic regions of the vortices 
overlap and the change ofI, depends on the degree of order- 
ing of the vortices in the electrodes. 

We consider now a special case, when the vortices are 
regularly arranged in each of the electrodes. The maximum 
possible suppression of the critical current on account of the 
electrodynamic mechanism is reached in this case at the 
maximum relative displacement of two vortex lattices in the 
upper and lower electrodes (see Fig. 5) .  It follows from this 
figure that the phase difference p ( p )  at a given pointp of the 
junction, and consequently also the superconducting cur- 
rent, is determined only by the distribution of the fields and 
currents of two vortices whose Wigner-Seitz cells overlap in 
the region where the given point is located. As a result we 
obtain the following expression for the critical current: 

wherea = ( 3  + cos28) ' I2  - cos 8. Thus, in the case consid- 
ered the critical current I, is one-quarter of I, . 

If the vortices are randomly placed in the junction, the 
phase difference at the given point p is determined by the 
expression 

where the phases in the first and second electrodes,~, andx, 
respectively, are random function of the coordinatep in the 
junction plane, and their values are uniformly distributed in 
the interval from 0 to 277. The phase difference ip (p) is there- 
fore also a random function uniformly distributed from 0 to 
277, and integration over the spatial coordinates in ( lb) and 
( lc)  leads directly to the equality I, = 0. 

6. TOPOLOGICAL PHASE TRANSITION IN JOSEPHSON 
TUNNEL STRUCTURES 

We consider in this section the Josephson properties of 
junctions in which one electrode is a thin ( d l  <A, ) supercon- 
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ducting film. In the absence of an external magnetic field 
there are produced in the thin film, in fluctuating fashion, 
pairs of oppositely directed vortices that do not penetrate 
into the lower film (i.e., with an electromagnetic structure of 
the type shown in Fig. Id).  The equilibrium density of a pair 
of vortices is determined by the Boltzmann factor 

n=gl-2 exp (-2~lkT),  

wherep =: ( H  :/8){ :dl is the energy connected with forma- 
tion of the normal cores of the vortex pair. With allowance 
for expression ( 14) for the potential energy of the interac- 
tion between a vortex and an antivortex, the Hamiltonian of 
the vortex system considered is of the form 

i +j 

wherepi are the coordinates of the vortices in the electrode, 
and the sign + is chosen in accordance with the same rule as 
in Eq. (14). The Hamiltonian (24) does not contain the 
energy of vortex pinning by film inhomogeneities, an energy 
assumed to be small compared with the vortex-interaction 
energy. The most significant property of the Hamiltonian 
(24) is the logarithmic dependence on the distance \pi - pj / 
between the vortices. According to Refs. 11 and 12, a Bere- 
zinskii-Kosterlitz-Thouless (BKT) topological phase tran- 
sition takes place in such a system and consists of dissocia- 
tion of a pair of vortices of opposite sign with formation of a 
plasma of free vortices. The temperature of the transition is 
determined by the implicit relation 

It should be noted that, strictly speaking, there is no BKT 
transition in an isolated thin film, for according to Ref. 9 the 
logarithmic divergence of the vortex energy in the film is cut 
off at a lengthil, = il ,/d (d is the film thickness), so that at 
any temperature the density of the free vortices is different 
from zero. The results of the BKT model apply therefore to 
an isolated superconducting film only if its characteristic 
dimension Wgil, (Refs. 13-15). In such a bounded film, 
however, the interaction of the vortices is more complicated 
because of the influence of the boundaries; this leads, in par- 
ticular to the appearance of an additional phase transition.16 

The Josephson system considered in the present paper 
is of interest because the BKT transition that takes place in it 
influences substantially the Josephson properties of the 
junction. At T <  T,, the thin-film electrode of the junction 
is filled with vortex pairs at a density n determined by (23) 
and with an average pair size (a2) which, according to Ref. 
12, is equal to 

Each vortex pair contributes to the suppression of the criti- 
cal current of the junction via the electrodynamic mecha- 
nism considered above. At temperatures not too close to T,,  
the average pair size is small compared with the average 
distance between the pairs (i.e., (a2) <nP1),  and the total 
suppression of the critical current is the sum of the contribu- 
tion of the individual pairs, and the proportionality coeffi- 
cient is determined by ( 18). As a result we obtain an'order- 
of-magnitude estimate of the corrections to the critical 
current: 

I,(T) =ICo(T) [I-n(T) (a2(T)>], n(a2><I, (27) 

where I, (T)  is the temperature dependence of the critical 
current without allowance for the vortex-pair formation. 
This dependence was calculated in Ref. 17 with allowance 
for the influence of the fluctuations of the modulus of the 
order parameter near T,. Since T2, is close to T, for real 
film parameters (with the exception of quasi-two-dimen- 
sional films - 10W8 cm thick), we havep % kT2, in a large 
temperature interval and (27) remains valid pratically all 
the way to T = 2T2, and turns out to be invalid only in a 
narrow interval near T,, , of width 

In this interval we have (a2) -n-' and I, decreases abruptly 
(almost jumpwise) as T-+ T,, and vanishes at T = T2, , 
which is the point at which the film goes over into the resis- 
tive state, after which I, = 0 at T> T,, . 

We know of no experimental investigations of the 
Josephson properties of junction with one or both thin-film 
electrodes (the film thicknesses should be of the order of 

cm). In investigations of such systems it is of interest 
also to measure the dependences of the differential conduc- 
tivity dIq /d V on the voltage V since, as shown in Sec. 4, this 
yields information on the vortices trapped in the junction. 
Note that the temperature T2, approaches T, of the film as 
the parameter R , /R, decreases, where R , is the sheet resis- 
tance of the film and R, = We2 is the maximum metallic 
resistance. By T, is meant here the transition temperature, 
suppressed by order-parameter fluctuations, of a bulky sam- 
ple,17,18, i.e., the temperature at which local superconductiv- 
ity first appears. 

7. CONCLUSION 

We have investigated the influence of the Abrikosov 
vortices trapped in the electrodes of a tunnel junction on the 
tunnel current through the junction. We have shown that the 
vortices exert their influence via two mechanisms: 1 ) a "core 
mechanism" connected with the restructuring of the 
Green's functions of the superconducting electrodes in the 
region of the coherence length near the vortex core; 2) elec- 
trodynamic mechanism due to the coordinate dependence of 
the phase difference q, of the order parameters of the elec- 
trodes in the junction plane when the force lines of the mag- 
netic field of the vortex are bent (see Figs. lc  and Id).  The 
contribution of the vortex to the quasiparticle current is de- 
termined, independently of its electromagnetic structure, 
only by the first of these mechanisms, but in the case of bend- 
ing of the vortex lines there appear singularities in the form 
of peaks on the plots of the differential conductivity dIq /d V 
against the voltage Vat e V = A ( T) . These singularities were 
observed experimentally in Refs. 1 and 2. 

The suppression of the critical current of the junction is 
determined mainly by the electrodynamic mechanism. 
Thus, even a single vortex trapped in a junction can change 
the critical current I, by an amount of the order ofI, . Such 
a strong suppression was observed in experiment,' where a 
decrease of I, by 80% was observed after passage of short 
current pulse IBI, through one of the electrodes. 

If one of the junction electrodes is a thin (d l  gi l  , )  su- 
perconducting film, the vortices localized in the film hardly 
transport any magnetic flux (@ = @&,/il, <@,) and in- 
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teract in accordance with a logarithmic law at distances 
p 2 c,. When an external magnetic field is applied perpendic- 
ular to the junction plane, the superconducting properties of 
such a film are fully suppressed even in a field 
H = Hc2i12/iliL gHc2 .  At H = 0 and at finite temperature, 
the film contains fluctuating pairs of vortices of opposite 
sign, and a BKT phase transition takes place in their system. 
These processes determine the temperature-dependent cor- 
rections to the critical current of the junction at T <  T, ,  and 
a jumpwise decrease of I, to zero at T = T , ,  . Interest at- 
taches to an experimental investigation of Josephson junc- 
tions with thin-film electrodes. Estimates show that T , ,  
differs noticeably from T, (i.e., T,,/T, 5 0.999) i f  the film 
sheet resistance is R ,  2 10W3RC, where Tc of the film is 
shifted relative to the critical temperature T,  of the bulky 
sample. 
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