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Indirect exchange of impurity atoms via the conduction band of a paramagnetic metal is 
investigated. Exactly solvable two-center models of impurity centers are considered. The 
method developed is used also to study indirect interaction between adsorbed atoms via the 
metallic surface-electron band of a substrate crystal. The effective interaction between 
electrons localized on impurity centers is evaluated. 

INTRODUCTION 

The structure of an alloy is known to be greatly in- 
fluenced by the long-range interaction between the impurity 
atoms. In particular, the onset of long-period superstruc- 
tures in binary alloys is apparently duejust to the presence of 
some form of long-range interaction between the atoms. ' In 
metal alloys, in which the electrostatic interaction is 
screened at interatomic distances, a particular role is as- 
sumed, besides elastic interactions, by indirect exchange 
between the impurity atoms. 

Indirect interaction plays no less an important role on 
the metal surfaces on which adsorbed films have been pro- 
d ~ c e d . ~  In this case electric dipole interaction takes place 
between charged adatoms, and falls off in proportion to 1/ 
R 3. Indirect interaction, however, which has in many cases a 
slower decrease with distance,24 can compete with the elec- 
tric-dipole interaction and determine the structure of the 
adsorbed film. 

The indirect interaction between impurity atoms in 
paramagnetic metals is usually determined by calculating 
the electron-density polarization induced in a metal by im- 
purity atoms. Solving the problem of electron-wave scatter- 
ing by impurities 

it is easy to obtain for the Fourier component Apk ( r )  = I/: 
$k - 1 of the electron density an expression averaged over 

the angles: 

( A p k ( r )  ) =f,(n) e2'hr/2kr2i+ H.c., 

which makes it possible to determine the electron-density 
polarization5: 

2 cos (2k,r+cp,) 
A p ( r )  = - S d 3 k ( p k ( r )  )= 6 

( a n ) "  r3 

If another impurity atom is present at the point r, it interacts 
with this induced electron density, and this produces 
between the impurities an effective interaction that falls off 
with distance in accordance with the law cited above. 

A more consistent approach to the determination of an 
indirect interaction is to use perturbation theory in a small 
parameter such as the interaction of the impurity with the 
electron of the metal (or the potential produced for the elec- 
trons by the impurity). In second-order perturbation the- 
ory, electron exchange is produced between two impurity 
centers via the electron band of the metal. Using such an 
approach for impurities having a magnetic moment, an ef- 

fective Hamiltonian that describes the indirect (RKKY) in- 
teraction between magnetic moment was obtained in Ref. 2. 
The magnitude of this interaction depends on the distance R 
between the impurity centers and is proportional to 
[(kF R)cos 2kF R - sin 2k, R ]/(kF R)4  (Ref. 6 ) .  

Description of indirect interaction by perturbation the- 
ory, however, is not always possible. The most obvious case 
is when the potential produced by the impurity is not low in 
energy. Another case, considered in an as yet unpublished 
paper by the author and V. Ya. Chernyak, occurs in the 
study of the interaction of two nonmagnetic impurity atoms 
with like electron levels located near the Fermi energy of the 
metal. In this situation, perturbation theory in the small pa- 
rameter V, the amplitude of the electron transition from an 
impurity level to the conduction band of the metal, diverges 
and cannot be used for this system. An exact solution of the 
problem was therefore obtained for the case of a weak intran- 
ucleon repulsion of the electrons by the impurity center. 

We describe here this case in greater detail, and focus 
attention on the unusual behavior of the indirect interaction 
at intermediate distances R between the impurities ( V 2  
<R - ' gk ,  ). For the same model, we obtain the effective 
indirect electron-electron interaction, and study also the in- 
fluence of neighboring impurities on the occupation of the 
electronic levels. We show next how the method of Ref. 7 is 
generalized for a description of indirect interaction adsorbed 
on the surface of a crystal having a metallic surface band of 
electronic states. The presence of an indirect interaction 
leads to mutual polarization of the adatoms and, as a conse- 
quence, to a change of the surface work function. 

We consider in addition two other cases (models of a 
point potential) in which an exact expression can be ob- 
tained for the indirect interaction between impurity atoms 
regardless of the size of the potential produced by the impu- 
rity atoms for the metal electrons. 

Finally, in the last section we dwell on the size of the 
indirect interaction between impurity atoms that have a lo- 
calized magnetic moment, and compare it with the interelec- 
tron (RKKY) interaction of these atoms. 

1. INDIRECT INTERACTION OF NONMAGNETIC IMPURITY 
ATOMS IN THE ANDERSON MODEL 

This section reports the result of a joint study by the 
author and V. Ya. Chernyak, with some details of the calcu- 
lations made more accurate. Certain physical consequences 
of the use of the model are also considered. The simplest 
model is investigated, that of two nonmagnetic impurity 
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centers whose levels are located near the Fermi energy of a 
metal with an isotropic electron spectrum. 

In standard notation, the Hamiltonian of such a model 
takes the form of the Anderson Hamiltonian for two impuri- 
ty centers: 

where 

yo+ = 1 dkrck+ d2kL. 

Since the localized moment on an individual level is 
produced at sufficiently large values of U (the Anderson 
criterion), we shall assume U for impurities without a mag- 
netic moment to be the smallest energy quantity in the prob- 
lem. We shall therefore investigate the Hamiltonian ( 1 ) in 
two stages: we first put U = 0 and then take into account the 
finiteness of this quantity by perturbation theory. 

To diagonalize ( 1 ) under the condition U = 0 we break 
up the space Z k  of the one-electron functions of a band 
with a specified energy E = E ( k )  into a direct sum of the half- 
space Zil' of the wave functions that vanish at the points r, 
and r, where the impurities are located, and its band supple- 
ment ZkO':  

( 0 )  (1) a$*=%* +%k . 
The wave functions 

~ , , ~ ( r )  =sin(klr-ril )/klr-ril, i=I, 2 

constitute the basis of ZiO' since, on the one hand, they are 
orthogonal to the wave functions that vanish at the point ri, 
and on the other, it is possible to choose for any p from R k  
numbersc, andc,such thatp - c, @ ,, - c, @,, vanishat r, 
and r2. Then {q, ,,, , p 2 k 9  pnSk I,, 2 ,k>O make up the orthon- 
ormalized basis of the space of single-electron wave func- 
tions. Here (pnk In > (the orthonormalized basis of X i " ,  
while pkl,2 take the form 

( 
sin k I r-r, 1 

f 
i n  I r 1 ) ( 

kR 
( p * , . 2 =  -- k I*- 

k 1 r-r, 1 k I r-ri 1 -'". 

where R = / r2  - r, 1. Electrons with wave functions p,, , 
n > 2 do not interact with the impurities, since pnk (ri  ) = 0 
(i = 1,2), and at U = 0 the Hamiltonian of the system, in the 
chosen basis, takes following the transformation 
d l  +2-'l2(d1 + d2) d2+2-1'2(dl - d,) the form 

We have thus reduced the initial Hamiltonian to a one- 
dimensional and one-center form, thereby substantially sim- 
plifying the calculation of the Green's functions 

v:,, c:in (E) =[ €-Ed+P + 
E-Eq+p+i6 sgn E 

For the density-of-state functionp(&) = p ,  ( E )  +p2(&)  
we have accordingly from the relation 

In the case ~ ( k )  = k '/2m (note that the final result for the 
interaction between the impurities does not depend on the 
particular choice of the form of the spectrum) we obtain 

mv2 VZ 
pi.a(e)- 1m{{i - - I, T - (cos k,R-k.R sin k,R) 

2nvp 2vp2R 
mV2 P 

+iagne[-+- 2vF2R (sin k.R+kcR cos k B )  I )  
mVZ mV2k 

x [e-s:"r - ooa k 8 ~ + i 2 ( i  i- sin k8R )sgn & ]  -' } 
2vpR ~ V F  k,R 7 

( 5  

where k, (k  + 2 m ~ )  'I2; E:) is the renormalized value of 
E~ ; IO is the renormalization constant and is determined, just 
as E:), by the form of the spectrum (we assume below that 
v, = 1). 

It can be easily shown that the total energy of the system 
J ~p (E ) d ~ ,  in the region of the largest distances, kF R % 1, 
[min( V2, E~ ) ] R ) 1, is proportional to 

p(Al cos 2kpR-k A2 sin 2kFR)/(k,R)3, (6)  
where 

A,=[ (nV2)%d"(nIi2)L]/ [cdZ+ (nV2)2] ,, 
Az=2(nVZ) 3~d / [~dZ+  (nVZ)2] '. 

At intermediate distances V2, cd <R - ' < kF the interaction 
decreases more slowly: 

The term added to the Hamiltonian (2)  to account for the 
correlation energy U is of the form 

The first perturbation-theory corrections to the energy 
are given by the diagrams of Fig. 1, which make a contribu- 
tion proportional to U / E ~  ),R -3. Diagrams of higher orders 
also consist only of vertices and of the zeroth-order impurity 
Green's functions Gz$ [Eq. (4)  1 that join the vertices. 
There is therefore no integration over the momenta at all in 
such diagrams, and no divergences appear in any order of 
perturbation theory. We find as a result that in the limit as 
U-0 allowance for the corrections leads only to an arbitrar- 
ily small renormalization of the system energy. This means 
that the nonmagnetic impurities can interact at low tem- 
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FIG. 1. 

peratures via indirect exchange through the conduction 
electrons of the metal in accordance with Eqs. (6 )  and ( 7 ) .  

Also noteworthy is the result for the occupation of the 
electronic levels of the impurity atoms. The point is that in 
the situation considered, owing to the transitions of the elec- 
trons from an impurity atom to the electron band of the 
metal, the level spreads out into a quasilevel of width - V2, 
and in the case E, - V2 the occupation of the level at low 
temperatures may not be complete. This recalls the behavior 
of systems with intermediate valency, observed in a number 
of transition and rare-earth metals,' in which complete oc- 
cupation of the localized f level at the atomic center takes 
place. The substantial difference is that in the case of a sys- 
tem with intermediate valency the intra-Coulomb repulsion 
of the electron at the f center is large. The simplest approxi- 
mation to such a system is a zero-spin model,' in which it is 
assumed that U- m and the electron spins are not consid- 
ered (this approximation is justified in those cases when the 
scattering by impurity with spin flip can be neglected, for 
example in the case of strong anisotropy of the scattering 
amplitude). Such a system can be described by the Hamilto- 
nian ( 1 ) without the last term that describes the intra-Cou- 
lomb repulsion at the center, and without the spin indices of 
all the remaining terms. The formal procedures reported 
above remain unchanged, so that the mutual influence of the 
f centers on the quasilevels that occupy them can be deter- 
mined. Calculation of the quantity 

and of G:~(E) defined by Eq. (4)  makes it possible to deter- 
mine the change of the occupation of an f level in the pres- 
ence of another center at a distance R: 

ApdmTr?l~(kFR)~, VZRB,>l, kFRB1. (9 )  

The value of the "intermediate valency" is thus deter- 
mined also by the positions of the other centers. 

2. INDIRECT INTERACTION OF ELECTRONS OF 
NONMAGNETIC IMPURITY ATOMS 

We have discussed so far the interaction between impu- 
rity atoms, which is produced even at zero value of the pa- 
rameter U, by calculating the total-energy corrections that 
depend on the distances between the atoms. No less impor- 
tant is the question of the size of the indirect interaction 
between impurity-level electrons, which sets in at nonzero 
values of the parameter U. If the atom has a localized mag- 
netic moment (the case of large USE, and U) V2) the elec- 
trons interact in accordance with the known RKKY law. We 
calculate in the present section the form of the interaction 
for the case of nonmagnetic atoms ( U ~ E , ,  V2). 

To this end we return to the study of the Hamiltonian 
( 1 ) and consider the matrix element of the indirect interac- 
tions between impurity electronic states, which occur in sec- 
ond-order perturbation theory in the parameter U/E,. These 
matrix elements are described by the Feynman diagrams of 
Fig. 2. The diagram 2a describes two-particle excitation on 
centers, which are of no interest to use at present. We consid- 
er therefore the two remaining diagrams. The indices 1 and 2 
on these diagrams are the numbers of the impurities, and the 
internal lines, over the energies of which the integration is 
carried out, describe "mixed" electronic propagators 

Their Fourier components can be easily determined 
from the Green's functions (4)  calculated in the preceding 
section: 

V2 cos k,R-i sin(k,R) sgn e 3; ( E )  = 3', ( 6 )  = G;' ( e )  - G:,  ( E )  = - 
R (6-ed+iVZ sgn E ) ' -  (Vz/R)2[cos k,R-i sin(k,R) sgn E ] '  ' 

Since the states d t lo), i = 1, 2 are not eigenstates of the 
Hamiltonian ( 1 ), the interaction deduced from the diagram 
data has an imaginary part. This difficulty can be avoided by 
considering the limit V <E,  . 

The effective Hamiltonian of the interacting impurity 
electronic states at various centers, obtained from an analy- 
sis of these processes, has the form of an exchange operator: 

where, as usual the operator Si, i = 1, 2, stands for 

B " , u Y ,  B are Pauli matrices, and 

J(R)  - 1m 3,' (e+o)B,. ( E )  de. 

We are not interested in the retarded part of the interaction, 
and put w = 0. The asymptotic form of J ( R )  at large dis- 
t a n c e s ~ ~  R)1, kF R)1, ( U ,  V 2 g e d )  is then 

FIG. 2. while at intermediate distances E, (R - ' < kF we have 
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UZVL sin 2k,R 
J ( R )  

Ed3 (kFR)' 

Note that the same dependence of the interaction on the 
distance was obtained in Ref. 9 for the intermediate region in 
the case of indirect exchange between localized magnetic 
moments of rare-earth impurity atoms. 

Indirect exchange between impurity electronic states is 
thus also an oscillatory effect and decreases like a power law 
with distance. In contrast to the interatomic interaction 
[Eqs. (6)  and (7)  ] the interelectron interaction vanishes in 
the limit as U-0. 

It should also be noted that the presence of other impu- 
rity atoms alters the interelectron interaction only in the 
next order in the parameter V 2 / ~ d ,  i.e., ( 1 1 ) describes a pair 
interaction in the considered limit V 2  <E,. This permits the 
result to be applied to a lattice of impurity atoms. 

3. IMPURITY INTERACTION IN THE MODEL OF POINT 
POTENTIALS WITH SHALLOW LEVEL 

For a comprehensive study of indirect exchange 
between impurities, it would be of interest to investigate also 
other possible models that describe impurity atoms. We con- 
sider in this section the interaction of two impurity atoms 
that produce for the electrons a deep potential well with a 
shallow level. Such a potential is characterized by a ratio 
IEoJ / U--+ 0,  where E = - JEoJ is the bound electronic level 
of the well, and U is the depth of the well. At fixed Eo it is 
necessary to make U-  w , in which case R -0 in such a way 
that UR '- const, or J U(r)d 3r - Uo R - 0. The solution of 
the problem of scattering by one such well is well known. We 
shall consider two wells simulating the potential produced 
by the impurities, and investigate the scattering, from them, 
of electrons from the metallic band of the crystal, which oc- 
cupy at low temperatures all the band states below the Fermi 
levelp. Just as before, the electron spectrum is assumed iso- 
tropic and quadratic. 

The problem of particle motion in the field of one such 
S-well can be formulated in the language of the boundary 
conditions imposed on the wave function at the location ri of 
the well": 

The general expression for the solution of the Schrodinger 
equation for small jr - ri / and I = 0 (I is the orbital momen- 
tum) is tC, = a + p / i r  - ri 1, wherea/fi = z. The entire rea- 
soning of Sec. l ,  based on the assumption of a point interac- 
tion between the electron and the impurity, is applicable also 
in this case. We need only take into account in addition the 
presence of a singularity of the wave function at the impurity 
center. 

This allows us to write down directly the form of the 
wave functions that constitute the complete basis of the elec- 
tronic states that interact with the two impurity centers: 

From the boundary conditions on the impurity centers ( 15) 
we can easily determine for i = 1, 2 the phase shift: 

sin k R  cos k R  
b0*=arctg[(k k 7 ) / ( z  P ) ] .  (17) 

distances r from both centers ( r% R ) is 

$,++ (Clr )  cos ( k R  cos cp) sin (kr+60+), 
(18) 

$,--+ (Clr )  sin ( k R  cos cp) cos (krf6,-) , 

where cosp = R.r/Rr. Imposing at infinity the boundary 
conditions $(L) = 0 as L -+ w , we obtain from ( 18) for the 
density of states pf ' = 1/L (k, + , - ki ) , in the continuous 
limit, 

The R-dependent correction to the total energy of the system 
takes the form 

The first nonvanishing term in the expansion of this energy 
in the parameter (k, R ) -' 4 1 is proportional to (at IEol 
4 p  

P Cos ( 2 k ~ R )  1 ( k p R )  (21) 

and describes the magnitude of the indirect interaction of 
two impurity centers. 

4. IMPURITY INTERACTION IN THE MODEL OF DEEP POINT 
POTENTIALS 

We consider one more two-center problem that admits 
of an exact solution. The potential produced by an individual 
impurity has in this model the form of a point well, but deep- 
er than in the preceding case: S Ud 3r = const. Such a well 
can be described by the limiting expression 

The Hamiltonian of such a two-center system takes in the 
second-quantization representation the form 

(we put below, as usual fi  = 2~ = 1 ) . 
We expand the operators $+ ( r )  in a basis of standing 

plane waves that are symmetric and antisymmetric relative 
to the symmetry plane of the system: 

d3k 
%+(r) = j - (ack cos k ,~+aZ,~  sin k,x) e'*lr, 

kx>O ( 2 ~ )  

where the origin of the coordinate frame is taken to be the 
midpoint of the segment joining the two impurities, while 
the x axis is directed along this segment. In this frame, the 
impurity positions are described by the points ( + R /2, 0, 
0). The Hamiltonian (22) takes in the new basis the form 

The asymptotic form of the wave functions (16) at large 
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pxR kzR + + sin sin oz,kaZ.+H..)  (k,, px 2 0 ) .  (23) 

The equations for the temperature Green's functions 

take the form 

For the Hamiltonian (23) this means that 

and analogously 

k"R 
sin % G::) = 1, [ i c o n - ~ ( k )  + pIGk(R2'- Vsin- 

g,rl,w 

kx'R 
[ i o n - ~ ( k ) +  )1]~!:: - v sin- s i n -@-G" ' -  0, 

9,9,>0 
2 q k -  

where ~ ( k )  = k2. The solutions of (25) and (26) at T =  0 
are 

G,61S2'= 1 
e-e,+p-i6 sgn a  

v 
-k - (l*cos k R )  ( ~ 1 - 8 k + ) 1 - i 6  sgn 8)" 

2 

l+cos k'R 

. , , x . a o  e-e,.+p-i6 sgn E 
) I .  (27) 

For the R-dependent part of the density of states 

we obtain accordingly 

V V (1-VZ)  cos 2k,R 2VZ sin 2k,R 
Ap ( E )  - - - 

l + V z  [ 1+V2 R l + V Z  R 1 ' 
k,  = (kR2+e) ',. (28) 

As a result we get for k, 1 the R-dependent correction to 
the total energy E = J EP ( E ) ~ E :  

V 2  ( 1 - V Z )  cos 2kFR 2V3 sin 2kRH 
AE - 

( l + V 2 ) '  ( k F R ) 3  ( 1 + V 2 ) z  ( k R R ) 3  

= v2 cos (2k,R+cpF) (29) 
(k,R) ' 

1 - v z  
cpF = arccos 

( 1 + v 2 ) 2 '  

which is in fact the law governing the decrease of the indirect 
interaction of two impurity centers with increase of distance. 

5. INDIRECT INTERACTION OF ADSORBED ATOMS VIA THE 
ELECTRONS OF THE SURFACE BAND OF A SUBSTRATE 
CRYSTAL 

It was already indicated in the Introduction that indi- 
rect interaction of atoms plays no less important a role on the 
surfaces of crystals on which adsorption monolayers are pro- 
duced, and in the formation of the structure of clean faces of 
single crystals. In the present section we use the method de- 
veloped to determine the interaction of two nonmagnetic 
adatoms that exchange electrons via a metallic surface band 
with a quasi-two-dimensional isotropic spectrum. We study 
for this purpose a two-dimensional model described by a 
Hamiltonian of the Anderson-Newns type, which is similar 
for two centers to the analogous expression (2) in standard 
notation (see, e.g., Ref. 11 ) : 

where r, and r, are the coordinates of the adatoms, and the 
electron energy is reckoned from the Fermi level p of the 
system. Just as in the investigation of the Hamiltonian ( I) ,  
we consider first the case U = 0, and then take into account 
the finite character of this quantity by perturbation theory. 

By analogy with the arguments adynced in the preced- 
ing section, we expand the operators \V,+ (r)  in a basis of 
symmetric and antisymmetric waves: 

.. 
j "k 

+(I )  + ( Z )  
Y .+ (r) = - eikgrv (ck,,, cos kxrx+~k,a  sin k,r,) . (3 1 ) 

k x S O  (an) ' 

Putting r, = - R /2, r, = R /2 and making the substitution 
d ;f, -2-"2 ( d  ,+ + d; ), we transform the Hamiltonian 
(30) at U = 0 into 

where 

For the Green's functions of such a Hamiltonian we 
obtain accordingly 

n V 2 [ 1 * J o ( k H ) ] k d k  -' 
G:" ( E )  = [ E - E d  + j I &-&k+y-i8 sgn E ' 

- vn,k 
(E-ek+p--iS sgn E) '  

(34) 
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where J,(x) is a Bessel function of zero order. 
Calculations similar to those of the preceding sections 

yield readily the form of the indirect interaction at large dis- 
tancesk, R$1, R min(V2,cd)$1: 

In the region of intermediate states k , ' 4 R 4 V -2, E; I ,  

whose density can cover, for actual values of the parameters 
V2 and E ~ ,  a rather wide interval of submonolayer coatings, 
the interaction has a non-attenuating character: 

.oV4 sin (2kFR) ln[R min(V2, ~ d )  ] . (36) 

The first nonvanishing corrections to (35) in terms of the 
parameter U / E ~  are expressed by the same diagrams as in 
Fig. 1, are proportional to U / ( k ,  R ) 2, and are consequently 
insignificant in the limit as U+O. This result may turn out to 
be important for the understanding of the causes of the re- 
construction of a pure surface of a semiconductor crystal, 
particularly the Si( 11 1 ) - (7 X 7) surface whose structure, 
according to the latest experiments (scanning of the Si sur- 
face with an electron m i c r o ~ c o ~ e ' ~ )  seems to contain 12 sili- 
con adatoms or adatom clusters per unit surface cell of 49 
atoms. The presence of a long-range alternating -sign inter- 
action between such adatoms can stabilize the long-period 
superstructures. l 3  In particular, the presence of interaction 
that falls off in accordance with (35) can stabilize the 
(7 x 7) structure.14 No less important a question is that of 
the possibility of stabilizing a superstructure by an interac- 
tion that varies in accordance with (36). The existence of a 
surface band near the Fermi level for this face was reliably 
established in photo-electron-spectroscopy experiments. 

To conclude this section, we wish to show how indirect 
interaction between adatoms can influence the work func- 
tion of a crystal surface. It is known that electrostatic dipole 
interaction of charged adatoms can lead to their mutual de- 
polarization, i.e., to a decrease of the charge, when the ada- 
tom quasilevels are located near the Fermi level of the sub- 
strate crystal.'' Since the indirect interaction (35), (36) 
falls off more slowly than the dipole interaction, its influence 
on the occupation of the quasilevels can compete with the 
electrostatic interaction. When determining the change of 
the work function of a surface by adsorption, account must 
be taken of the total change of the surface charge, i.e., the 
occupation of the levels of the adatoms in the surface band of 
the substrate crystal. 

Recognizing that the chemical potentialp of the system 
is determined by the substrate bulk electrons, the occupation 
Au can be easily determined by substituting in the expression 
for the surface-charge density 

the Green's functions (33) and (34). It can be easily shown 
by calculation that the R-dependent correction Au to the 
surfacechargeu = Jp(c)dcisgivenby (k, R>) 1, V2 R ,  1) 

A o ~  (Al cos 2kFR+A2 sin 2kpR) /kFR, (37) 

The screening of such a surface charge in the case of a semi- 
conductor crystal substrate (with a metallic surface band) 
occurs over a "Debye" distance, whose value can reach 
ID - lo4 A. In this case the electrostatic energy stored in the 
space-charge region of the semiconductor may turn out to be 
appreciable and lead to a noticeable bending of the bands, 
AE- (4n-/c)AcelD (thus, at Au- 10" cm-2 the value of 
AE reaches - 1 eV). In the calculation of the surface charge, 
which determines the work function of the surface of a semi- 
conductor crystal, it is therefore necessary to take into ac- 
count the indirect interaction (via the electrons of the sur- 
face band) of the adsorbed atoms. 

6. INDIRECT INTERACTION OF IMPURITY ATOMS HAVING 
A MAGNETIC MOMENT 

We have discussed so far indirect interaction of non- 
magnetic impurity atoms. In the present section we study 
the interaction of atoms having a localized magnetic mo- 
ment. The manner of interaction of the electrons that make 
up the localized moment of the impurity is well known. The 
spin-dependent part of this interaction (the RKKY interac- 
tion), obtained in second-order perturbation theory in the 
parameter of the exchange-integral J of the impurity elec- 
trons in a metal,6 is proportional to 

where 6, and 6, are the spin operators of the electrons local- 
ized on two impurity centers (the exchange Hamiltonian 
from which this expression is obtained will be given below). 
According to an erroneous opinion, the same expression de- 
scribes the interaction energy of impurity atoms, if the spin 
ope:atprs are replaced by their vacuum mean values 
(O/SlS210), where 10) is the unperturbed vacuum state of 
the system (see, e.g, Ref. 16). It is easily seen, however, that 
such a mean value vanishes in the absence of external field. 
To calculate the indirect interaction between impurity 
atoms it is therefore necessary to use the next higher orders 
of perturbation theory. 

To this end, we consider the exchange Hamiltonian that 
describes the interaction of the electron of the impurities and 
of the metal: 

where 

u = ( u  X ,  u y ,  u ) are Pauli matrices, and c& (c , ,  ) and 
d ,,+ (d,,, ) are the creation (annihilation) operators for the 
electrons of the metal and impurity, respectively. 

FIG. 3. 
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FIG. 4. 

The matrix elements that describe the interaction of the 
impurity electrons, and appear in second-order perturbation 
theory, are expressed by the diagram (a)  of Fig. 3 and lead to 
Eq. (38). The correction to the system energy, in the same 
order, is expressed by diagram (b)  of Fig. 3 (the solid and 
dashed lines represent respectively the Green's functions of 
the metal and impurity electrons). The closed impurity 
loops denote taking the traces of the operators gi, which are 
equal to zero by virtue of the properties of the Pauli matrices 
(meaning thereby that (0/6,6,10) = 0). 

The next order corrections to the energy are expressed 
by the diagrams of Fig. 4 (we leave out diagrams with closed 
loops). Diagrams resulting from permutation of two vertices 
having the same number do not lead to new expressions. The 
diagram technique and the expressions for the impurity 
Green's functions are given in Ref. 17. Summation over the 
frequencies in diagrams 4a and 4b lead to a zero result. The 
only nonzero diagram is 4c, the analytic expression for 
which is, apart from a constant factor, 

where 

We shall not present here the details of the unwieldy albeit 
standard calculations. The result of these calculations for 
large R (k, R $1) is proportional to the quantity 

cos 2kpR P S2 (SSI)  p 1n2 - , 
(kRR)' 7 (2S+1)' T 

(41 

which describes in fact the indirect interaction of two impu- 
rity atoms. Note that this equation is valid only for not too 
low temperatures ( T 2  T ,  , where T ,  is the Kondo tempera- 
ture), at which the perturbation theory does not lead to di- 
vergence. Thus, although the dependence on the distance 
between the impurities in this expression coincides with 

(38), the interaction is of the next lower order in (J/ ,u)'  at 
T 2  T , .  To obtain the spin-dependent part of the indirect 
interaction at low temperatures it is necessary to sum the 
divergent terms of all orders of perturbation theory. 

CONCLUSION 

We have considered in this paper various cases of indi- 
rect interaction of two impurity centers via electrons of the 
metallic band of a crystal. It was found that the exact solu- 
tions obtained for the interaction at large distances are de- 
rived quite simply from the simple qualitative consider- 
ations cited in the Introduction, which permit a correct 
description of the dependence of the indirect interaction on 
the distance R between impurity, namely, it is proportional 
to CFcos(2kF R + p, )/(k, R ) 3. The expressions obtained 
in the paper can be used to refine the details of the interaction 
and to determine the parameters p, and CF in cases when 
this cannot be done within the framework of perturbation 
theory. 

A qualitatively similar dependence on the distance 
between the impurity centers is exhibited by indirect interac- 
tion of electrons localized on impurity levels, although the 
magnitcde of the interelectron interaction can differ sub- 
stantially from the interatomic interaction for both magnetic 
and nonmagnetic impurities. 

Finally, the method developed can be used to determine 
the indirect interaction between atoms adsorbed on the sur- 
face of a crystal via the metallic surface band of the crystal. It 
turns out that this interaction can lead to mutual depolariza- 
tion of adatoms and influence the work function from the 
crystal surface. 

In conclusion, the author thanks L. A. Bol'shov and A. 
M. Dykhne for a helpful discussion and valuable remarks. 
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