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An experimental investigation was made of superconducting properties of metal- 
semiconductor superlattices formed by consecutive condensation of vanadium ( d  = 220A) and 
silicon (s = 10, 30, 40, 60, and 240 h;) layers. The temperature dependence of the parallel 
critical field was affected strongly by the thickness of the silicon layers. In the case of 
superlattices with s = 30-60 h; the three-dimensional behavior of HcII near Tc changed to two- 
dimensional at low temperatures. The critical parameters of the superlattices were compared 
with the corresponding parameters of their components. A theoretical model of a superlattice 
with a weak Josephson coupling between metal layers of finite thickness was considered. This 
model was used to find three independent methods for determination of the extrapolation 
length I, representing the force coupling the metal layers. The values of I calculated from the 
experimental data by all three methods agreed to within 15%. Estimates were obtained of the 
influence of the imperfection of the superstructure of these superlattices on the behavior of 
Hcl, ( TI. 

Synthetic superco'nducting superlattices represent con- dence made it possible to suggest three independent methods 
venient objects for the investigation of the size effects in su- for the determination of the coupling parameter (extrapola- 
perconductivity. Their properties, considered as a function tion lellgth I). All these methods gave similar values of I for 
of the superlattice parameters (superconducting layer thick- the same sample. We also obtained the influence of the im- 
ness and superlattice period), can be close to the properties perfection of the superlattice structure on the behavior of 
of three-dimensional anisotropic superconductors and to the Hell ( TI. 
properties of two-dimensional films. Moreover, the transi- 
tion from the three-dimensional ( 3 0 )  to the two-dimension- SAMPLES AND 

a1 (20 )  behavior is observed in the same sample as tempera- 
ture is varied.'-3 This transition is known as the crossover 
and it is exhibited not only by synthetic superlattices, but 
also by intercalated superconducting  compound^.^^' Syn- 
thetic superlattices have an advantage over layer dichalco- 
genides of transition metals because we can readily set the 
desired thicknesses of the insulating layers and vary the cou- 
pling between the layers as well as the thickness of metal 
layers. Moreover, the existing technology of fabrication of 
synthetic superlattices can ensure their regularity to a higher 
degree than in the case of superconducting layered com- 
pounds intercalated with large organic molecules. 

We shall report an investigation of critical magnetic 
fields of superconducting superlattices formed from vanadi- 
um and silicon layers. To the best of our knowledge, super- 
lattices made of these materials have not yet been investigat- 
ed. The coupling between the layers was varied by altering 
the thickness of the semiconductor. In contrast to the work 
familiar to us, we compared the properties of superlattices 
with the properties of single layers of vanadium and of a V/Si 
sandwich prepared in the course of the same evaporation 
cycle, i.e., it was possible to compare the behavior of a super- 
lattice with the behavior of its components. 

In addition to this experimental investigation, we car- 
ried out a theoretical analysis of a superlattice model with 
Josephson coupling between the layers, which gives more 
precise results than those obtained in Ref. 6. We considered 
various methods for the determination of the coupling force 
from the temperature dependence of the parallel critical 
field Hcil (T) .  Various characteristic parts of this depen- 

We investigated metal-semiconductor superlattices 
formed by consecutive evaporation of vanadium and silicon 
layers from different sources in a vacuum chamber in which 
the residual gas pressure was 1.3 x 10 - 6 - 2 . 7 ~  lo-' Torr. 
Vanadium and silicon were deposited by electron-beam 
evaporation using two guns of different power. A superlat- 
tice was deposited on previously annealed ( T =  800°C) 
fluorophlogopite substrates kept at 100°C. The advantage of 
these synthetic mica (fluorophlogopite) substrates was their 
insensitivity to heating in a wide range of temperatures up to 
- 1000°C; moreover, films could be separated from the sub- 
strate when their structure was investigated by electron mi- 
croscopy. The evaporation took place through special heat- 
resistant masks with a selected geometry, which made it 
possible to use the four-probe method in the study of electri- 
cal properties of the evaporated samples. Typical dimen- 
sions of the samples were as follows: the length between the 
potential contacts was 5-6 mm and the width was 1-1.5 mm. 
In all the investigated superlattices the thickness of vanadi- 
um was d z 2 2 0  h;, but the thickness of silicon films was 
varied and it amounted to s = 10, 30,40, 60, and 240 h; for 
different samples. The thicknesses were determined, using 
two independent quartz sensors, on the basis of the mass of 
the deposited substance. The error in the determination of 
the vanadium layer thickness was + 1 A, whereas in the case 
of silicon layers it was + 2 A. All the superlattices consisted 
of ten V/Si packets. Some of the Samples were evaporated on 
silicon substrates. The top layer of a superlattice always con- 
sisted of silicon. Superlattices with different values of s were 
obtained in the course of different evaporation samples. 
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To be able to compare the critical parameters and to 
carry out electron-microscopic examinations, in a given cy- 
cle we evaporated not only a superlattice but also single films 
of vanadium as well as V/Si sandwiches with just one metal 
layer. The thickness of the V layer was always the same for a 
superlattice and control samples prepared in the same evap- 
oration cycle. Transmission electron microscopy showed 
that the Si films were condensed in the amorphous form, 
whereas the vanadium films were fine-grained (grain size 
- lop6 cm). Measurements of electrical properties were 
made in a cryostat fitted with a superconducting solenoid. 
During measurements a sample was at the center of the sole- 
noid and a special rod with a rotatable device made it possi- 
ble to alter the orientation of the sample relative to the ap- 
plied magnetic field. Parallel orientation was deduced from 
the minimum of the resistance of a sample to within an angle 
of 0.5". The dependences R ( T) and R (H)  were determined 
in the region of the transition to the superconducting state 
inside a liquid helium bath the temperature of which was 
varied in the range 4.2-1.6 K by pumping out the helium 
vapor. The voltage across a sample was measured with a 
digital voltmeter accurate to within l o 6  V. Temperatures 
were kept constant at a given value to within -0.003 K. 

The magnetic field dependences R (H) were recorded 
using an X-Y potentiometric plotter. All the measurements 
were carried out under dc conditions and the current was 
100pA. A thermal hysteresis was not observed. The critical 
temperature Tc and the critical fields HcII and H, were de- 
termined from the dependences R ( T )  and R ( H )  at the 
points R = 0.5R, (R, is the residual resistance). 

EXPERIMENTAL RESULTS 

Figure 1 shows the temperature dependences of the par- 
allel critical field Hcil for the superlattices with the silicon 
layer thicknesses s = 10, 30, and 240 A. Clearly, the behav- 
ior ofHcll depended strongly on the thickness s. Fors = 10 A 
the value of HcII was proportional to T,-T throughout the 
investigated range of temperatures, as in the case of the usual 
three-dimensional superconducting systems. For s = 240 A, 
we found that throughout the investigated temperature 
range the dependence Hell a (T, - T)'I2 was obeyed and 
this dependence was typical of thin films [ d  g { (  T), where d 
is the thickness of the metal film, and {( T) is the coherence 
length]. In the case of superlattic with s = 30,40, and 60 A, 
it was found that cooling changed the behavior of the critical 
field as reported earlier for Nb/Ge and Nb/Cu superlat- 
t i~es . ' -~  Near the superconducting transition temperature 
we found that HcII a T, - T, whereas at lower temperatures 
the corresponding dependence was HcII a (PC - T) ' I 2 ,  i.e., 
a transition from the 3 0  behavior of Hell near Tc to the 2 0  
behavior was observed when temperature was lowered. The 
critical temperature PC found by extrapolation of the depen- 
dence HcII ( T )  in the range of the 2 0  behavior to the value 
H = 0 was much less than the superconducting transition 
temperature T, of the superlattice. The difference between 
the temperatures PC and Tc was readily demonstrated (Fig. 
2)  by plotting the dependences of the critical magnetic field 
HCil for two superlattices with s = 30 and 60 A. We also 
included in Fig. 2 the dependences obtained for a single V 
film and for a V/Si sandwich fabricated during the same 

FIG. 1 .  Dependences of the critical magnetic field HCI on the reduced 
temeprature t = TjT, ,  plotted for three superlattices with the silicon lay- 
er thicknesses 10A (1) ,  30A (2) ,  and 240A (3 ) .  

perature dependences of the critical field were plotted using 
the coordinates Hfll  and T (Fig. 3 ) .  A comparison of the 
results for the superlattices with s = 30,40, and 60 A, which 
exhibited the crossover effect, demonstrated that a reduc- 
tion in the thickness s expanded the range of the linear de- 
pendence Hcli ( T) near T, . 

A comparison of the critical parameters of a superlat- 
tice (SL), a single film of vanadium, and a V/Si sandwich 
(Fig. 2) prepared in the same evaporation cycle led us to the 
conclusion that in all the investigated batches irrespective of 
s the critical temperatures obeyed the inequalities 
T < T :L < T 1"'.  he inequality T < T sL was due to the 
fact that the V layers unprotected by silicon oxidized to a 
certain depth and this reduced Tc. (In the case of thin V 
films the critical temperature fell on reduction in the thick- 
ness.' Oxidation in fact reduced the thickness of the unpro- 
tected V films.) For the majority of samples we found that 
T F  = T1's',since in sandwiches the V layers were practical- 
ly unoxidized. The inequality T F <  T:"' was clearly 
obeyed by those superlattice samples in which the V layers 
were not quite identical. The critical magnetic fields Hc, of 
all the investigated samples varied linearly with temperature 

FIG. 2. Temperature dependences of the parallel critical field for superlat- 
tices with s = 30 A (1) and s = 60 A (2) ,  for a single film of vanadium 
( 3 ) .  and for aV/Si sandwich (4) .  Samples 1,3, and 4  were prepared in the . ,, 

evaporation cycle as the superlattice withs = 30 A. The tem- same deposition cycle. 
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FIG. 3. Temperature dependences of Ht l l  for superlattices with s = 30 A 
( 1 ) and s = 60 A ( 2 ) .  The inset shows the tran$tion region of the depen- 
dence H,,, (T)  for a superlattice with s = 30 A. The continuous curve 
represents a theoretical calculation based on Eq. ( 1 8 ) .  

and, irrespective of s, the following empirical relationship 
was obeyed (Fig. 4) : 

THEORETICAL MODEL AND COMPARISON WITH 
EXPERIMENTAL RESULTS 

Behavior of critical fields of superlattices with finite 
thicknesses of the metal layers was investigated theoretically 
by Deutscher and Entin-Wohlman6 by solving the linearized 
Ginzburg-Landau (GL) equation for a periodic system of 
layers coupled by a weak Josephson interaction. This prob- 
lem was solved in Ref. 6 assuming that the modulus of the 
order parameter I  I was the same for all the metal layers and 
that the change of l $ l  across the layer thickness was negligi- 
ble. It was found that in the case of a magnetic field parallel 
to the layers at temperatures close to Tc (weak fields) the 3 0  
behavior should be observed, whereas at low temperatures 
(strong fields) the behavior should be of the 2 0  type. More- 
over, a condition for the 80-20 crossover was found. How- 
ever, the simplification of the problem made by assuming 
that I $ /  = const in a layer resulted (as shown below) in 
some error in the determination of Hcil in the 2 0  range be- 

cause of inaccurate allowance for the energy of weak cou- 
pling. The hypothesis that I $ [  is constant in different layers 
prevented us from estimating the influence of inhomogene- 
ities associated with the inequivalence of the individual su- 
perlattice layers, which was quite likely in real samples for 
technological reasons. 

We shall determine the temperature dependence of HcII 
for a superlattice by solving the GL equation using the same 
model as in Ref. 6, but we shall not make the assumption 
mentioned above. Moreover, we shall estimate the influence 
of a weak inhomogeneity of the layer thickness and coupling 
strength in a superlattice on the behavior of HcIl (T). 

The linearized GL equation is similar to the Schro- 
dinger equation for an electron. The spectrum of electrons in 
a semiconductor superlattice subjected to a magnetic field 
parallel to the layers was investigated in Ref. 8. The spectra 
were classified in Ref. 8 using the eigenvalues of the operator 
of magnetic translation by a period L &/D (L, is the mag- 
netic length and D is the superlattice period). This made it 
possible to separate the variables in the Schrodinger equa- 
tion and to reduce it to an ordinary differential equation. 
Using the same classification of the spectra, we obtained the 
following representation for the GL equation of each layer 
(i.e., for Ix - nD I  <d /2, wherex is the coordinate along the 
normal to the superlattice layers, n = 0, + 1, f 2, ... ) : 

Here, T = ( Tc - T)/T, ; T, is the temperature of the super- 
conducting transition in H = 0; ( = {(T = 0)  is the coher- 
ence length; L $ = cfi/eH ; H is a magnetic field directed 
along thez axis; K is a quasiwave vector which parametrizes8 
the solution of the GL equation; 1x1 <D /2L ;. The bound- 
ary condition matching the solutions of the system of equa- 
tions ( l ) are 

$'(Dn+d/2) =$ ' (D(n+l )  -d /2) .  

Here, the extrapolation length 1 represents the force of the 
coupling between the layers. In the case of a weak coupling 
the values of l are larger: the length I is inversely proportion- 
al to the transparencey of the insulating layer to electrons9; 
in the "dirty" limit, we can use the formulas from Ref. 9 and 
readily obtain the relationship between the extrapolation 
length and the conductivity a ,  of a single layer and the tun- 
nel resistance R, per unit area of the dielectric layer 
I =  2a,RN. 

We shall assume that the metal layers are thin com- 
pared with the extrapolation length and with the coherence 
length (( T) : 

Under these conditions the order parameter varies little in 
each of the layers. The inequality (4) means that vortices 
cannot penetrate into the individual superconducting layers. 

The critical field can be found by determining first the 
minimum eigenvalue r in Eq. ( 1 ) subject to the boundary 

FIG. 4. Temperaturedependences of the critical field H,, for a superlattice 
( 1 ), a single film of vanadium ( 2 ) ,  and a V/Si sandwich ( 3 )  for the series (2 )  when is fixed. Obviously, the 
with S = 30 A. value of r corresponds to K = 0. In the absence of a magnetic 
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field ( H  = 0 )  the smallest eigenvalue ( r  = 0 )  corresponds 
to constancy of the order parameter throughout the super- 
lattice: $(Dn)  = const. In a magnetic field the order param- 
eter is inhomogeneous in each of the layers and, moreover, it 
changes from one layer to the next. I t  follows from the condi- 
tion (3)  that in allowing for all the terms of the first order of 
smallness in respect of the parameter d /I in order to find 
$ ( x )  inside the metal layers it is sufficient to expand $ ( x )  to 
the term quadratic') in respect of x - nD: 

The boundary conditions of Eq. (4) allow us to find the 
coefficients of the expansions of $' and $" in Eq. (5 ) :  

Next, using the variational principle we shall determine 
the influence of the field H on T.  This can be done by finding 
a minimum of the functional 

corresponding to a fixed value ( $ 1 .  If the first function in the 
variational method is Eq. ( 5 )  with the coefficients ( 6 )  in 
eachsegment (nD-d /2 ,  nD + d / 2 )  and thevariable param- 
eters are assumed to be the coefficients $(Dn)  = $ ( n  ), then 
a magnetic field can be allowed for to within HZ. This 
allowance for the field is justified on the basis of the inequali- 
ty (4).  The variational procedure gives the following system 
of finite difference equations: 

In Eq. ( 8 )  we have all the terms of the order of 1/1 and H Z  
including the cross terms. With the same precision we can 
obtain also each solution. Equation ( 8 )  was derived without 
imposing any restrictions on the rate of change of $ ( n  ). The 
braces in Eq. ( 8 )  are used to collect the terms which are 
included in Ref. 6. Ifwe retain only these terms, then Eq. (8)  
can be reduced by the Fourier transformation to Eq. ( 7 )  of 
Ref. 6. An analysis of all the other terms in Eq. ( 8 )  readily 
shows that they give rise to corrections to the values of T 
which are of the order of ( d  / I )  ( d l H  /@,)', where @, is a 
magnetic flux quantum. 

In the range of weak fields (i.e., at temperatures close to 
T, ) these corrections are unimportant. The order parameter 
$ depends weakly on n. Therefore, the finite differences can 
be replaced by the corresponding derivatives $ with respect 
to the coordinate X = nD. In the main approximation with 
respect to H, we obtain from Eq. (8 )  

H,,, ( T )  =cDo(dl)'"/2n~' ( T ) D ,  ( 1 0 )  

which is typical of an anisotropic three-dimensional super- 
conductor. The characteristic spatial scale ofthe variation of 
$ ( x ) ,  defined by Eq. ( 9 ) ,  is much greater than the superlat- 
tice period so that a superconducting nucleus should pene- 
trate a large number N of the layers: 

When the field H is increased, the size of a nucleus (i.e., 
the value of N )  decreases and when the field is sufficiently 
strong the nucleus is concentrated mainly in one layer [the 
amplitude $ in the neighboring layers is proportional to 
- ( d  / 1 ) 2 ] .  We can then assume that + ( n )  = 0 for all values 
of n # O  in Eq. ( 8 ) ,  which gives the following value of 7: 

It is clear from Eq. ( 1 1 ) that in strong fields we have 

Equation ( 12) contains a characteristic temperature 

Tc=Tc  (i-2g2/Ld), ( 1 3 )  

which can be found by linear extrapolation of the depen- 
dence ( 12) to H = 0. The functional dependence He(, ( T )  is 
identical with that obtained for a single thin film, i.e., in 
strong fields the 2 0  behavior is observed. The values of the 
critical field given by Eq. ( 12) are higher than the values of 
HCII  reported in Ref. 6 for the same parameters of the system 
and this is due to inclusion of corrections to .r in our study. 
Two features of Eq. ( 1 2 )  should be remembered. Firstly, 
linear extrapolation of the formula ( 1 2 )  typical of the 2 0  
range to the field H = 0 yields a "critical" temperature Tc 
which is lower than T,. Secondly, the effective thickness of 
the layers can be deduced in the usual way from the deriva- 
tive dH f i I  / d T ,  and this thickness is less than d:  

These two features are a consequence of a characteristic 
proximity effect: the layer which contains a nucleus comes 
into contact via insulating layers with those in which the 
superconductivity is suppressed by the field. 

The transition from the 3 0  to the 2 0  behavior of 
HcII ( T )  occurs in a fairly narrow range of fields near H,, 
defined as follows6: 

Equation ( 8 )  is easily generalized to that case if the 
parameters I, d ,  and D vary from layer to layer. This makes it 
possible to estimate the corrections to HCII  ( T )  due to small 
structural fluctuations of the superlattice parameters. Using 
the solution of Eq. ( 9 )  which is not perturbed by fluctu- 
ations, we find that in the first order with respect to the 
deviations 61, Sd, and SD from the average values I ,  d ,  and D, 
we obtain the relative change in HcII  : 

It is clear from Eq. ( 16) that the deviation of the de~endence 
As in Ref. 6, Eq. ( 9 )  yields the dependence HcII ( T )  from linearity in the 3 0  range is small not only be- 
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cause of the smallness of fluctuations of the superlattice pa- 
rameters, but because there is an additional small factor 
1/N. Obviously, small deviations of SH,,, from the linear 
dependence of Ref. 10 are typical also of a perfectly regular 
superlattice and they are due to the discrete nature of its 
structure. Using Eq. ( 16) and also Eq. ( 10) from Ref. 6, we 
obtain 

TABLE I. 

SHfl /SH,,, SdN (H) /d (17) 

Superlattices 
with d / S  ( A )  

(for the sake of simplicity we shall assume that only the 
quantity d can fluctuate and, moreover, we shall assume that 
D /d- 1 ). It is also clear from Eq. ( 17) that the role of the 
correction to Eq. ( 10) due to the superlattice inhomogeneity 
decreases on increase in the field and on approach to the 
crossover region (H<H,,), where N(H)  - 1 the deviations 
of Hcil (TI from linearity are related to the prvoperties of a 
homogeneous superlattice. 

In the 2 0  range the homogeneities localize a nucleus in 
that superlattice layer for which the value ofHfII of Eq. ( 12) 
is maximal. It is clear from Eqs. (13) and (14) that the 
inhomogeneities of the layer thickness d have the greatest 
effect on the relationship between the bond length d,, and 
the nominal value of d. If Sd /d 2 d /15Z, the superlattice in- 
homogeneities affect the value of d,, more strongly than the 
Josephson interaction in a regular superlattice. 

Equations ( lo) ,  ( 13 ) , and ( 15) representing the 2 0  
and 3 0  asymptotes of the temperature dependence Hell ( T) 
and the crossover point make it possible to consider several 
independent methods for the determination of the extrapola- 
tion length I, which represents the interlayer coupling forces 
of the superlattice. We shall now give these formulas in the 
form most convenient for the comparison with other experi- 
mental results: 

In our experiments it was found that three series of sam- 
ples with the superconducto~ layer thicknesses s = D - d 
amounting to 30,40, and 60 A show clearly the existence of 
the crossover in the dependence H,,, ( T) (see Figs. 1 and 2) .  
Near T, the 3 0  behavior of the HcII (T)  field is observed, 
whereas in strong fields Hfl l  is a linear function of T, i.e., the 
2 0  behavior is exhibited (Fig. 3).  The extrapolation tem- 
perature T, is found to be less than T, (Figs. 2 and 3), which 
is in agreement with Eq. ( 10). In qualitative agreement with 
Eqs. ( lo ) ,  ( 13), and ( 15) it is found that the region of the 
transition from the 3 0  and 2 0  dependences correspond to a 
temperature close to PC. A reduction in the thickness of the 
Si films increases the strength of the bonds and the 3 0  behav- 
ior of H,, (T), which expands as shown in Figs. 2 and 3. 
When the thickness is s = 10 A, then the crossover effect is 
not observed in the investigated range of temperatures (Fig. 
1) .  

The values of 1 deduced from Eqs. ( lOa), ( 13a), and 
(15a) for two batches of superlattices are listed in Table I. 
The quantity d is attributed the values obtained by the stan- 
dard method using the formula 

220130 I I I 970 I 800 
2ZO/Ci0 1130 1250 

' I '  A (i5a' 

and the data for one V/Si packet. The coherence length for 
superlattices was found from the corresponding derivative 
dH,, /dT. It is worth noting the good agreement between the 
values of I obtained by different methods for samples in each 
batch. The region of the transition from the strong 3 0  behav- 
ior to the characteristic 2 0  dependence of the field HcII (T)  
amounts to 0.2-0.5 K, depending on the sample. We calcu- 
lated 1 from Eq. ( 15a) taking H,, to be the field correspond- 
ing to the temperature PC, because this temperature lies al- 
ways approximately in the middle of the transition interval. 
The scatter of the values of I listed in Table I does not exceed 
15%. [For a superlattice with s = 40 A the values of I ob- 
tained from Eqs. ( 13a) and ( 15a) are the same and Iestimat- 
ed from Eq. ( 10a) differs considerably from the other two.] 
It should be pointed out that a better agreement could not be 
expected since the thickness of the semiconductor layers was 
determined only in the course of deposition and could not be 
monitored in any way in the finished superlattice Fluctu- 
ations of the thickness of the metal layers can be deduced 
from the experimental data and it was found that these were 
fairly small. This was confirmed by the good egreement (to 
within 1 A)  between the values of d,, deduced respectively 
from the slopes dHf l l  /dT in the case of superlattices with 
s = 30 A in the 2 0  range and from Eq. ( 14) using the value 
ofd = 226 A obtained for a single packet of V/Si in the same 
batch of samples. 

A typical value of d /I, assumed to be small in the the- 
ory, was close to 0.2 for all the investigated samples. It 
should be noted that the value of d / I  deduced from the ex- 
periments of Beasley'12 is considerably less ( - 5 x 10 - 3 ) .  

Nevertheless, both in our case and in Refs. 1 and 2 the model 
of weak coupling describes well not only the behavior of 
Hell (T)  in the 3 0  and 2 0  ranges, but in the region of the 
crossover itself. This is demonstrated by the inset in Fig. 3 
for the sample with s = 30 A when the transition region is 
most prominent. In plotting the graph in Fig. 3 we used the 
parametric equation6 for the Hell (T )  curve: 

H,,,=cD,/nD (dlq)". (18) 

12, A (1381 

Here, a (q )  are the eigenvalues in the Mathieu equation writ- 
ten down in its canonical form.'' We assumed that d is 226 
A, as deduced from measurements on a single V/Si packet, 
whereas the value ofD was selected in such a way as to fit the 
experimental points to the calculated curve in the 3 0  region. 
We can see from Fig. 3 that the approximating function ( 18) 
describes well the transition region. The discrepancy 
between the experimental values and the function ( 18) ob- 
served at lower temperatures is associated with the differ- 

1 3 ,  A (1Oa) 
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ence between d,, and d, which is ignored in Eq. ( 18). 
It is worth noting the relatively small change in the cou- 

pling parameter I on increase in the thickness of the semicon- 
ductor layers in a superlattice. In the case of ideal layers free 
of short circuits the coupling would be reduced very rapidly: 
I a exp (s/a,) (the characteristic length a, is of the order of 
the interatomic distance). The weak dependence I (s) for the 
investigated samples is probably due to the presence of me- 
tallic short circuits in the Si layers. 

The results for the samples with s = 240 b; show that in 
this case there is practically no coupling between the layers 
and the 2 0  behavior begins immediately from T,. The criti- 
cal field Hell (T) is governed by the parameters in a single 
superconducting film. 

The measurements of the critical fields H C I  (T) and 
their comparison with the theory reported above show that, 
in spite of the imperfection of the semiconductor layers, the 
crossover is observed clearly for some of the superlattice 
samples. Hence, it follows that this feature of the behavior of 
Hell (T) is not affected by imperfections of the superstruc- 
ture. 

We shall conclude by noting that interpretation of our 
experimental results is based, as in Ref. 1, on the assumption 
that in the 3 0  behavior range the field is H,, and not the 
surface superconductivity field H,, . Good agreement is then 
obtained here and in Ref. 1 with the calculated curve 
Hcli ( T )  throughout the investigated range of temperatures, 
i.e., both in the 3 0  and 2 0  regions. However, it is still un- 
clear why a superlattice does not exhibit surface supercon- 
ductivity. This requires further study. It is possible that the 

answer may be provided by experiments involving determin- 
ation of the angular dependences of H,  for a superlattice. 

The authors are grateful to A. N. Stetsenko for the help 
in the preparation of the samples. 

'It should be noted that the approximation used in Ref. 6 corresponds to 
negligibly small terms $' and $" in Eq. (5) .  
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