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A comprehensive experimental study of the scattering of light in fused quartz showed that the 
relaxation theory of the Rayleigh scattering developed for equilibrium systems is inapplicable 
to glasses. This is because the equilibrium theory ignores the unlimited rise of the relaxation 
time as a glass forms from the melt. A modified theory allowing for this aspect is developed 
and it predicts a qualitative difference between the nature of the scattering in glasses from that 
in equilibrium solids and liquids, and provides a quantitative description of all the 
experimental results obtained by the authors. 

In 1970 one of the present authors1 developed a general 
relaxation theory of the Rayleigh scattering of light in iso- 
tropic bodies, relating the Rayleigh scattering coefficient to 
equilibrium thermodynamic properties of matter. The sub- 
sequent great improvement in the precision of the absolute 
measurements of the scattering coefficient2.' has made it 
possible to check the validity of this theory in the case of 
different scattering media. 

It has been demonstrated experimentally394 that in the 
case of low-viscosity liquids the theory of Ref. 1 describes 
experimental results to within better than 1-2%. In the case 
of solids this situation is much more complex. The existence 
of a static shear modulus has the effect that the number of 
parameters governing scattering is five, whereas in the case 
of liquid it is two. Verification of the theory requires inde- 
pendent determination of all these parameters. Moreover, 
the only type of isotropic solids is in the form of glasses. In 
spite of the many investigations of the scattering of light in 
such media, the attempts to describe these results within the 
framework of any theory have so far been unsu~cessful.~-~ 

Our main task was to investigate experimentally the 
scattering of light in glasses. It should be pointed out imme- 
diately that our results (obtained for fused quartz) were in 
strong conflict with the predictions of the theory of Ref. 1. 
We shall show that this conflict is due to anomalous slowing 
down of relaxation on transition of a liquid to a 
Allowance for the anomalous increase in the relaxation time 
together with some additional assumptions makes it possible 
to modify the formulas of theory of Ref. 1. The results of 
such a modified theory will be found to be in quantitative 
agreement with our experimental data. 

THEORETICAL SCHEME AND DESIGN OF EXPERIMENTS 

We shall recount briefly the general scheme used in cal- 
culation of the coefficient representing the scattering of light 
in an isotropic medium based on the equations of hydrody- 
namics and on the fluctuation-dissipation theorem (for de- 
tails see Ref. 1 ) . The intensity of the scattered light is gov- 
erned by fluctuations of the permittivity E , ~ ,  which in turn 
are related to deviations of macroscopic variables from their 
average values. We shall assume that, in addition to the 
quantities which are conserved (density, momentum, and 
energy), a medium is described by a set of relaxation param- 

eters, some of which are symmetric zero-trace tensors. The 
introduction of such tensor parameters is necessary because 
they are responsible for the depolarized scattering, which 
always occurs in a liquid. On the other hand, relaxation of 
these parameters gives rise to a shear modulus which distin- 
guishes a glass from a liquid. 

A system of equations describing the dynamics of fluc- 
tuations in such a medium includes the Navier-Stokes equa- 
tion, the equation of continuity, the heat conduction equa- 
tion, and a set of equations describing relaxation parameters. 
Symbolically the system can be represented in the form 

h 

where Lq is the operator matrix correspznding to the hydro- 
dynamic and relaxation equations, i.e., Lu represents opera- 
tors which are linear in time t and in the coordinatesx, y, and 
z; pi are the macroscopic variables; fy' are the Langevin 
fluctuation forces. The system ( 1 ) is complete if it is supple- 
mented by the equation of state, i.e., by the dependence of 
the free energy of the medium on the investigated macro- 
scopic variables. 

The system of equations ( 1 ) allows us to express nonsi- 
multaneous correlation functions of the variables 
(pi  ( t )p j  ( t  ' ) ) in terms of hydrodynamic responses and cor- 
relation functions of the fluctuation forces, which in turn 
(according to the fluctuation-dissipation theorem) are pro- 
portional to k, T and to the corresponding transport coeffi- 
cients (k, and Tare the Boltzmann constant and the aver- - 

age temperature of the system). 
Fluctuations of the permittivity cap can be expressed 

linearly in terms of deviations of macroscopic variables from 
their equilibrium values. In the spectral representation, i.e., 
as a result of the Fourier transformation with respect tox, y, 
z, and t ,  we find that E , ~  ( q , ~ )  can be described as follows in 
terms by the spectral amplitudes of these variables: 

Here, X ,  and Y, are the mechano-optic coefficients of 
spectral amplitudes of shear strains (iiaB) and of fluctu- 
ations of isotropic compression ( u  = - Sp/po,po and& are 
the average value and fluctuations of the density); Z ,  is the 
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thermo-optic coefficient in the case of temperature fluctu- 
ations (T I ) ;  gti' and f $ are the sets of scalar and tensor 
relaxation parameters. The correlation function ( E , ~ E ; ~  ), 
governing the light scattering coefficient is then [see Eq. 
(22) in Ref. 1] 

Equation (3) contains five independent tensors composed of 
the components of the wave vector q and of the Kronecker 
deltas. The tensor structure of the correlation function (3) 
follows directly from the symmetry  consideration^.'^ The 
coefficients Mi(q,w) are combinations of the correlation 
functions of macroscopic variables. The use of the equations 
of hydrodynamics and of the fluctuation-dissipation 
theorem makes it possible to determine the explicit form of 
Mi (q,w) and, in particular, the dependence on the param- 
eters of the scattering medium. For example, the expression 
for MI  (q,w ) has the form' 

M,(q,o)=-  k ~ T  { X2(a)  
- C.C. 

( 2 ~ ) ~ i w  p (a) q2--poo2 

where X(w ) and p (w) are the values of the mechano-optic 
coefficient and of the shear modulus at the frequency w. 

Considered as a function of q and w, the coefficients 
Mi (q,w) represent the ratios of polynomials. Vanishing of 
the denominators, i.e., the complex poles Mi (q,w) deter- 
mine the positions of the components of the spectrum of the 
scattered light (Brillouin doublet, wings due to compres- 
sion, shear, etc. ) . 

The light-scattering coefficient R :. (q,w) is related di- 
rectly to the correlation function of Eq. (3) :  

whereR is the wavelength ofthe incident light. Therefore, we 
are interested only in the convslutions of the tensors that 
occur in Eq. (3) and have the polarization unit vectors of the 
incident (p) and scattered (p') light: 

1 1 + cos 6 
- - - ( ¶ P ) ' ( ~ P ' ) ~ =  8 sin2 ( c p + ~ )  

Q " 

where 

a=sin cp sin I, b=cos cp cos I. (6a) 

The angles 8 ,  p, and $ occurring in Eqs. (6 )  and (6a) 
are related in the following way to the experimental geome- 
try used in Ref. 5: the wave vector of the incident wave K is 
directed along the x axis and the corresponding vector of the 

scattered wave K t  lies in the xy plane making a scattering 
angle 9 with the x axis. The directions of the unit vectors p 
and p' are described by the angles p and $ relative to the 
vertical axis z.  The components are therefore described by 

q=K'-K= {K(cos 6 - I ) ,  K sin 8, 01, 

p= (0, sin cp, cos cp), 

p'= {-sin I$ sin 6. sin I$ cos 6, cos $1. 

Below we shall replace the vectors q, p, and p' with the angu- 
lar variables 8 ,  p ,  and $. 

In the experiments under discussion the quantities 
which were measured directly were the integrated values of 
the scattering coefficient related to Eq. (4)  by 

OD 

R?(B) = J R ~ ( B ,  o)ao. ( 7 )  
- m 

Using Eqs. (3)-(6) and the explicit form of the coefficients 
Mi (q,w) given in Ref. 1, we obtain the integrated scattering 
coefficient 

The quantities Xo and Yo in Eq. (9)  are the coefficients of the 
expansion of E , ~  in terms of ii, and u in the case when all 
the other variables reach equilibrium at fluctuations iia8 and 
u (static values). However, X, and Y, in Eq. ( 2 )  are the 
coefficients in the expansion of the permittivity in terms of 
ii, and u for fixed values of the remaining variable, i.e., they 
correspond to the case when the other variables do not reach 
equilibrium with fluctuations of the density and shear (high- 
frequency values). The quantities KO and uo are the static 
values of the bulk and shear moduli; A = r 2 k ,  /A 4. There- 
fore, the integrated scattering coefficient of an isotropic me- 
dium can be expressed in terms of the set of angular func- 
tions Y,  112, rI6, M, and 6' [Eqs. (6)  and (6a) ] and a set of 
five invariants Ni, which are described by equilibrium prop- 
erties of matter. The expressions for the integrated scatter- 
ing coefficients of Eqs. (8)  and (9)  can be obtained also 
directly from thermodynamics allowing for the symmetry of 
the fluctuating parameters. In other words, these relation- 
ships do not depend on the actual system of the dynamic 
equations ( 1 ) . 

Liquids do not support static shear stresses, so that pa, 
KO, and X :/pa vanish1 and of all the nonzero invariants only 
two remain: N, and N,. Equation (8) then reduces to the 
familiar Einstein-Cabannes formula5 and the scattering co- 
efficient depends only on 6, i.e., it depends only on the angle 
between the unit vectors p and p' [see Eq. (6)  1. 

In the case of a solid all the invariants Ni are generally 
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different from zero, so that a comprehensive experimental 
investigation of the Rayleigh scattering in an isotropic solid 
should include determination of all these invariants. Equa- 
tion (8)  allows us, if we know a sufficient number of the 
measured scattering coefficients, to determine the whole set 
Nl-N,. If the number of measured values R $ ( 6 )  is greater 
than five, we can then check the self-consistency of the main 
theoretical result, which is Eq. (8).  On the other hand, some 
of the invariants N, can be found independently from the 
data on elastic and elasto-optic properties of the investigated 
substance, which makes it possible to check the quantitative 
predictions of the theory. 

Selection of the method of carrying out a comprehen- 
sive series of experiments is to some extent arbitrary. For 
example, we can determine five values of the scattering coef- 
ficient [the sets of angles that give a nondegenerate system of 
equations can be deduced from Eq. (6) 1 .  However, this ap- 
proach is subject to the influence of various distorting fac- 
tors (glints, surface defects, etc.). It seems to us it is more 
reliable to determine the angular dependences of the scatter- 
ing coefficient and to find the invariants N, by approxima- 
tion of the results obtained with Eq. (6) .  We shall use the 
following set of the angular dependences 

The first equation gives N, and N4; the second gives N, 
and the ability to check the values of N, and N4 by adding 
them; the third gives N, and the fourth gives N,. The indices 
Vand H in Eq. ( 10) correspond to the polarization angles of 
0 and 90", respectively. The second of the equations in the 
system ( 10) is derived on the assumption that either g, = a 
or $ = a. 

The scattering of light in a solid described by Eq. (8)  
has the following qualitative features. 

1. The indicatrix of the depolarized scattering R ; (9) is 
extended in the forward direction [R F (0)  > R :( 180") 1. 
This follows directly from the positive definite nature of the 
invariant N, and the explicit form of the angular function v. 

2. The Krishnan ratio obeys ph  = R ;(90")/R :: (90") 
> 1. This condition can be obtained by substituting, in the 
determination of the values ofp, , the explicit expressions for 
the scattering coefficients R F(90") and R (90") and using 
the fact that the Poisson ratio is O ( o <  1/2. Hence, we find 
that N, - 2N2>,0. 

1. The indicatrix of the depolarized scattering R ;(it) is 
extended in the forward direction [R ;(O) > R ;( 180") 1. 
This follows directly from the positive definite nature of the 
invariant N, and the explicit form of the angular function v. 

2. The Krishnan ratio obeys ph  = R ;(90")/R (90") 
> 1. This condition can be obtained by substituting, in the 
determination of the values ofp, , the explicit expressions for 
the scattering coefficients R F(90") and R :: (90") and using 
the fact that the Poisson ratio is O < a <  1/2. Hence, we find 
that N, - 2N2>0. 

3. All the invariants N,, with the exception of N3, are 
nonnegative. 

We shall below that a comparison of the experimental 

results with just these qualitative features makes it necessary 
to modify the theory and, consequently, the expressions for 
the scattering invariants. 

EXPERIMENTS 

We investigated experimentally the Rayleigh scattering 
in fused quartz, which was selected for the following rea- 
sons. Samples of this glass can be of high optical quality with 
weak stray scattering by foreign inclusions.536 Fused quartz 
is characterized by high values of the ratio Xo/Yo (Ref. 11 ), 
which results in a major relative contribution of the invar- 
iants N,, N,, and N3 to the overall scattering and this in turn 
provides an opportunity for the experimental determination 
of these invariants at the precision level feasible at present. 
Finally, fused quartz has been investigated thoroughly: a 
sufficiently full set of data is available for this material when 
calculations and comparisons are made. 

Our measurements were carried out on four samples of 
fused quartz of the KV grade both immersed in carbon te- 
trachloride and without such immersion. Measurements 
were made at wavelengths of 488 and 515 nm of an argon 
laser. An FEU-79 photomultiplier, operating in the photon- 
counting regime, was used as the photodetector.12 Appara- 
tus was calibrated by scattering in benzene and the values of 
the scattering coefficient of this substance R,=R 
(90") + R ;(90") = 28.8 X cm-' (A = 515 nm) and 
36.7x lop6 cm-' (A = 488 nm) were taken from Ref. 3. 
Possible distortions due to luminescence and Raman scatter- 
ing were avoided by the use of an interference filter. A con- 
tribution of stray scattering by the cell walls and the sample 
could reach 15% of the measured value. Such scattering was 
eliminated by a method similar to that described in Ref. 13 
and based on the fact that the useful signal represented single 
scattering and the stray scattering was multiple. Measure- 
ments were made at room temperature of 20 + 2°C. 

In accordance with the system ( lo ) ,  we measured the 
dependences R ;(it), R ;(it), R ; (a ) ,  R *, (90°), R :(90"), 
and R (90"). The results of the measurements on all four 
samples in the range of scattering angles 9250" agreed with 
one another to within 5%. The value of the scattering coeffi- 
cient R v  at A=515 nm was (0.104+0.005)Rb, 
= (3.0 + 0.15) X lop6 cm-', where R b, is the scattering 

coefficient of benzene; the value of the depolarization coeffi- 
cient was A, =R ;(9Oo)/R L(90") = (4.2 f 0.2).  10p2. 
These values agreed with those reported elsewhere, namely 
with R v  = (2.5-2.9) X lopb  cm-' given in Refs. 5-7, 14, 
and 15 (reduced to the wavelength A = 5 15 nm) and A ,  
= 0.04-0.05 given in Refs. 5-7. 

Our experimental results are plotted in Figs. 1-4. The 
graph R L (9) in Fig. 1 shows that for the scattering angles 
9 < 50" the scattering coefficient is independent of 9 to with- 
in - 5%, which is in agreement with Eq. (8).  Some increase 
in R L(9) in the range 9 < 50", observed also in Ref. 6, is 
possible due to the large-scale structure of fused quartz ob- 
served earlier.16 An estimate of the characteristic size of the 
homogeneities deduced from the scattering angles at which 
the effect was observed gave a value of - 1000 A, in agree- 
ment with the results obtained in Ref. 16. Therefore, in the 
theoretical interpretation we decided to ignore the data for 
the scattering at angles 9 < 50". 

The curves plotted in Figs. 2 and 3 are in conflict with 
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FIG. 1. 

the above qualitative characteristics of the scattering in equi- 
librium solids in the following respects. 

1. The indicatrix of the depolarized scattering is ex- 
tended in the backward direction (Fig. 2),  which is possible 
only in the case of a negative value of the invariant N,. 

2. The Krishnan ratio is less than unity (Fig. 3).  
3. The invariant N, deduced from the experimental data 

is also negative. 
It is clear from just these results that it is pointless to try 

to compare quantitatively the experimental results with the 
theory of Ref. 1. 

MODIFICATION OF THE THEORY OF THE RAYLEIGH 
SCATTERING AND INTERPRETATION OF THE 
EXPERIMENTAL RESULTS 

We shall assume that the most important property of 
glass samples resulting in such a major disagreement 
between the experimental data and the theory of Ref. 1 is the 
anomalous slowing down of the processes of establishment 
of an equilibrium on approach to the glass-formation region 
(see, for example, Refs. 8 and 9).  The times needed to estab- 
lish an equilibrium increase as a result of cooling in accor- 
dance with a nearly exponential law and in a narrow range of 
temperatures AT< T the values of these times may change 
from negligible, compared with the measurement time t, , to 
values many times greater than a reasonable t ,  . The glass- 
transition temperature is essentially the temperature at 

FIG. 3. 

which the relaxation time of the system is of the same order 
of magnitude as the observation time. We can understand 
better the sense of the changes which we shall have to make 
in the equilibrium theory by considering, by way of illustra- 
tion, the simplest model of a liquid, for which one relaxation 
time can be considerably greater not only than all the other 
characteristic times of the system but also than t ,  . 

For sin~plicity, we shall assume that the thermodynam- 
ic state of such a liquid is described by just two variables: the 
density p and the scalar relaxation parameter 6, character- 
ized by a relaxation time which rises anomalously. Follow- 
ing the general approach presented at the beginning of this 
paper, we shall write down the explicit system of equations 
( 1 ) for this case: 

where Sp and SP are the deviations of the density and pres- 
sure from the equilibrium values; 6 is the total viscosity of 
the liquid; a is a transport coefficient; 2, is the tensor of 
fluctuation stresses; Z is a fluctuation force with is the conju- 
gate of {; \I! is the free energy of the system. 

The pressure Pand the quantity h = d\I!/df considered 
in an approximation linear in fluctuations are 

where Pic' = (dP /dp ) c  etc. Substituting Eq. ( 12) into Eq. 

FIG. 2. 
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( 11 ) and going over to the Fourier representation, we obtain 
a system of two linear algebraic equations: 

(0) 

- i a ( P ~  / p a )  6p (q, o) +GEE (q, o) =-iaE, 

where 

The solution of this system is 

where A (q,w) = G,, Gc - i a P ~ ) 2 q 2 / p ~  is the determinant 
of the system ( 13). 

The expressions in Eq. ( 14) allow us to find the spectral 
densities of macroscopic variables. For example, the spectral 
density of fluctuations Sp is given by 

where 

Equation (15) is derived on the assumption that 
(I;, Z*) is obeyed in the thermodynamic equilibrium state 
of a medium in the presence of random forces. 

In a medium at equilibrium the mean-square value of 
fluctuations of the density is equal to the integral of Eq. ( 15) 
with respect to all the frequencies. An equilibrium then oc- 
curs when all the times for establishment of the equilibrium 
values are much shorter than the measurement time t, . The 
time for the establishment of an equilibrium is governed by 
the imaginary parts of the roots of the equation A(q,w) = 0. 
This equation has three roots: two acoustic roots o,,, 
= f w,, + iy, and one relaxation root w, = iw,ir-' (we 

shall assume that the absorption of sound is weak, w,, $ y, 
which is normally true in the case of real systems). In the 
case of slow relaxation characterized by y >r- ' ,  the quanti- 
ties governing the roots of the equation A(q,w) = 0 are as 
follows 

( 5 )  l h )  ( I )  (P) 

o:,=Pp g2, y=%g2/2po, o,=t-'P, lP, =ah; . 

If the inequalities w,, % y% r- ' are obeyed, Eq. ( 15 ) 
simplifies greatly. In the main approximation with respect to 
the parameters l/w,, r and l/yr, it reduces to the following 
expression: 

The structure of Eq. ( 16), obtained from the theory of 
the equilibrium case, corresponds to the separation of fluctu- 
ations of macroscopic variables into two subsystems. The 
first subsystem, associated with a rapidly relaxing acoustic 
wave [or in the more general case, associated with all the 
modes of frequencies obeying Im(wi ) % r- ' is represented in 

Eq. ( 16) by a term proportional to ( 12 1 2). We shall call it 
the fast subsystem. The second (slow) subsystem is associat- 
ed with a relaxation mode of frequency of the order of 7- '. It 
is represented in Eq. ( 16) by the term with (1 2 1'). If fluctu- 
ations of the density are written down as the sum of the 
rapidly relaxing (Sp,) and slowly relaxing (Sp,) parts, then 
the spectral density Sp, is equal to the first term in Eq. ( 15), 
whereas Sp, is equal to the second term. In accordance with 
Eq. (16), the fast and slow contributions are uncorrelated, 
(Sp,Sp:), = 0, and this means that their fluctuations can be 
calculated independently. 

In our model the fast subsystem is always in equilibrium 
(t, > y-') ,  so that the mean-square value of the fluctu- 
ations in the fast subsystem can be found by integration of 
the first term in Eq. ( 16) with respect to all the frequencies: 

As long as the slow subsystem is also in equilibrium 
with the thermostat, the mean-square value of Sp, can also 
be found in a similar manner: 

[in the derivation of Eqs. ( 17) and ( 18) we have allowed for 
the fact that, in accordance with the fluctuation-dissipation 
theorem, we have ( /E l2)  = <kBT/ r  and (1=l2) = k,T/ 
r~ 1. The mean-square values of the density fluctuations 
can be described, as expected, by the thermodynamic expres- 
sion 

However, if the relaxation timer rises without limit, we 
unavoidably reach a situation described by w; '$ t, . We 
shall show later that this corresponds to the transition from 
the liquid to the glassy state. The slow subsystem cannot 
then attain equilibrium during the measurement time and 
the corresponding part of the density fluctuations 6p, is 
found to be static (freezes), so that this part is not in equilib- 
rium at lower temperatures. 

Integration of the second term in Eq. ( 16) with respect 
to the frequency (equivalent to averaging with respect to 
time) does not, because the resultant nonergodicity, neces- 
sarily give the same result as averaging over an ensemble. 
Therefore, we cannot calculate ( ISp 1 ,) rigorou~ly.~' How- 
ever, in view of the anomalous increase in the relaxation time 
as a result of cooling, we can assume that this quantity re- 
mains constant throughout the range T <  T, and equal to its 
value at the glass-transition temperature T = Tg , i.e., 

The glass-transition temperature T, is found from w, ( Tg ) 
=t; '  (Ref.9).  WethusseethatifT<T,, then 

We stress once again that if t, <r ,  then the rapidly re- 
laxing subsystem remains in equilibrium. The thermody- 
namic description is valid for this system and the usual rela- 
tionships between thermodynamic derivatives apply. The 
frozen subsystem makes no contribution to the thermody- 
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namic derivatives because it is static. When such a divisionof 
the time scales is made, then Eqs. ( 17) and ( 18), like Eqs. 
(8)  and (9 ) ,  follow directly from thermodynamics and are 
independent of the nature of the system of equations ( 11) or 
the spectral representation ( 16). Equation ( 19) follows 
from Eqs. ( 17) and ( 18) if we additionally assume that the 
slow subsystem freezes and, therefore, it is also independent 
of the actual form of the initial system of equations ( 1 1 ) . In 
the liquid range the low-frequency bulk modulus measured 
in a static experiment K A') is governed by the thermodynam- 
ic derivative Pih': K;') In the case of a glass the 
low-frequency bulk modulus K Ag' measured in a similar ex- 
periment is now governed by the derivative Pic': KAg' 
=p&';". On the other hand, the derivative Pic' gives the 

high-frequency value of the bulk modulus of a liquid ( K  :' ), 

i.e., 

Similar relationships apply also to the other parameters 
of the system. The relationship between the high-frequency 
characteristics of a liquid and the low-frequency characteris- 
tics of a glass is necessary in the interpretation of the experi- 
mental results. 

We shall now turn from the above example to the more 
general situation when the state of a system is described by 
the full set of variables of Eq. (2) .  Once again, we shall make 
the separation into rapidly and slowly relaxing subsystems. 
The only thing that we need is a considerable difference 
between the scale of the characteristic times. Then, the ex- 
pressions for the coefficients Mi  (q ,u)  in Eq. ( 3 )  [see also 
Eq. (22) in Ref. 1 ] split into two parts, one of which is asso- 
ciated only the fast subsystem and the other with the slow 
subsystem. The contribution of the fast subsystem to the in- 
tegrated scattering intensity of Eq. ( 7 )  is governed, as point- 
ed out above, by modes of frequencies which obey Im(w, ) 
>) 7- l. The contribution of the slow subsystem is related to 
the modes of frequencies w, a 7-', i.e., the expressions for 
the coefficient M, (q,w) have a structure similar to that of 
Eq. ( 16). For example, the quantity M I  (q,w) [see Eq. (4)  ] 
considered in the same approximation as that used to derive 
Eq. (16) is 

where ( 18'12) = kg  Tr]/n-and ( IZ 12) = k ,  TT/T are quanti- 
ties obtained from the correlations of the fluctuation forces 
2, and gik,  which are the conjugates of the strain tensor 
and of the slowly relaxing tensor parameter'; r ]  is the shear 
viscosity; 

w, = ~-~p, /p ,  . As in Ref. 15, the term with (12'12) repre- 
sents the contribution of the fast subsystem and the term 
with ( IZ  12) represents the contribution of the slow system 
M,(q,m). 

The equilibrium values of the fast ( N i l '  and slow 
( N  12') contributions to the invariant N, can be found by 

integration of the relevant terms in Eq. (20) with respect to 
all the frequencies: 

N,'" =ATXm2/p , ,  

+ --- 
I L - p o  ( l ~ ~ - p o )  pop ,  

hence, in full agreement with Eq. (9 ) ,  we obtain 

If t ,  < T  and the assumptions of the simplified model 
apply, we obtain 

We must bear in mind that in the frozen contribution of the 
slow subsystem N 12'(Tg) we have to include not only an 
explicit temperature dependence in the form of the factor 
k ,  T, which originates from the correlation function of the 
fluctuation forces, but also contributions due to possible 
temperature dependences of X,, X, , p,, and p , . 

In this way we obtain expressions also for the other in- 
variants: 

Since a system in the equilibrium region at  tempera- 
tures T >  Tg represents a liquid for which the first three in- 
variants vanish, it follows that in the glassy region, (i.e., at  
temperatures T <  T, ), these invariants are of the form 

Neglecting temperature dependences of X _  , Y ,  , KO, K _  , 
and p , , we obtain 

Therefore, the sign of the first three invariants for glass is 
opposite to the sign of the invariant for the fast subsystem. 
Since in the case of the fast subsystem we find that the equi- 
librium expressions of Eq. (8 )  are valid, it follows that both 
N I" and N I*) GO. Consequently, in the case of a glass the 
two invariants are N, and N,>O. We can readily show that 
the inequalities governing the values of N ,  - 2N2 and ph in 
the case of a glass are also opposite to those in the case of an 
equilibrium isotropic solid. These qualitative features of 
glasses, liquids, and equilibrium isotropic solids are listed in 
Table I. 

In considering the general case corresponding to Eq. 
( 1 ) with the full set of variables of Eq. ( 2 ) ,  we were assum- 
ing that the slow variable is a tensor relaxation parameter of 
an arbitrary form. Relaxation of just this tensor parameter 
results, as is demonstrated by the equations of hydrodyna- 
mics ( 1 ), in the appearance of dynamic shear stresses in a 
system (representing high-frequency shear sound"). How- 

TABLE I 

I ETilibrium I Liquid / Glass 
solid 
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i 

N$').IO' I Ni,108 cm 

ever, if t, <T, these shear stresses are retained throughout 
the measurement period, i.e., a finite static shear modulus 
appears in the system. However, this implies the transition 
from a liquid to a solid (glass). 

The relationship between the shear stresses and the 
slow tensor relaxation parameter gives the following rela- 
tionship between the invariants N, and N,: 

(the contributions of the slow subsystem balance out in this 
expression). 

It follows from the experimental results that qualitative 
characteristics of the scattering in fused quartz agree with 
those of glass obtained in our modified theory. We shall now 
carry out a quantitative comparison. Table I1 gives the ex- 
perimental and calculated values of the invariants for fused 
quartz. The experimental values are obtained by approxima- 
tion of the data (Figs. 1-4) with the dependences in Eq. 
(10). The errors listed in Table I1 include the confidence 
limit of the approximation as well as the error in the deter- 
mination of the absolute values of the scattering coefficient 
using the selected apparatus. The contributions of the fast 
subsystem were calculated using the following values of the 
elastic and elasto-optic characteristics: Xo = 0.66 + 0.04; 
Yo = - 1.01 + 0.06; &' = (3.0 + 0.2) x 101° J/m3; K Ag' 
= (3.7 f 0.4) x 10" J/m3. These values were obtained 

from the Pockels constants p,, = 0.27 + 0.01 and p,, 
= - 0.072 + 0.004 (Refs. 11 and 18), from the refractive 

index n = E' /*  = 1.462 (Ref. 19), from the velocities of lon- 
gitudinal V, = 5900 50 m/sec and transverse V ,  = 3700 
+ 100 m/sec s o ~ n d , ~ ~ ' ~ ' ~  and from the density po = 2.206 
g/cm3 (Ref. 19). All the values apply at room temperature 
T = 293 K at the wavelength of A = 5 15 nm. The relation- 
ships between the initial values and those in Eq. (8)  are as 
follows: 

Since the data on the contribution of rapidly relaxing 
parameters were not available in the interval corresponding 
to N:" and Xi1), only the inequalities could be given for 
these invariants. 

In calculating the total values of the invariants we need- 
ed the values of the moduli and the glass-transition tempera- 
ture and the temperature itself. Following the data presented 
in Fig. 7 of Ref. 20, we assumed that the elastic moduli in- 
creased in the interval between T = 293 K and Tg = 1400 K 
by 10%. This was in agreement with the studies of the hyper- 
sonic properties reported in Ref. 21. The glass-transition 
temperature T, was taken to be the average value of those 

listed in various handbooks, namely 1350 f 100 K (Refs. 7, 
20, and 22). 

Since in the liquid state (when T >  T, ) the value of the 
invariant N, does not vanish (in contrast to N,, N,, N,), we 
had to know the value of the modulus K A') at temperatures 
T Z  T,. We took the value found by x-ray diffraction mea- 
surementsZ3: KA" ( T  2 T, ) = ( 1.5 f 0.15) X 10'' J/m3. 

It is clear from Table I1 that, within the limits of the 
total experimental error, the calculated and experimental 
values of the invariants are in agreement. ~ a t u r a l l ~ ,  our 
modified theory is not based on general principles of statisti- 
cal physics, but simply on physically reasonable assump- 
tions. However, we must stress that the good (not only quali- 
tative but also quantitative) agreement between our 
formulas and the experimental data, achieved without any 
fitting, supports strongly the assumptions and our descrip- 
tion of the Rayleigh scattering of light in glasses. 

It is worth pointing out an interesting observation 
which applies directly to fused quartz. It is clear from Table 
I1 that the inequality for N, can be replaced (within the 
limits of the experimental error) by the equality. This means 
that the only tensor parameter of fused quartz which experi- 
ences relaxation is that which is responsible for the forma- 
tion of a glass. In this sense we can regard fused quartz as the 
"minimal" model of a glass. 

The authors are grateful to N. V. Andreev and N. A. 
Bokov for valuable discussions, and to M. M. Mazur and N. 
V. Orekhova for their technical help. 

"The term with 22, in N, was omitted in Ref. 1 because of the incorrect 
statement that "for all the intensities of Eq. (24) we have g ( m ) /  
f( m ) = 0." In fact, the term with 22, which is a coefficient of (T,T:) ,  
[see Eqs. ( 19) and (24) in Ref. 1] differs from zero in the limit 0-0. 

"If T< T,, we have a time-independent field of frozen inhomogeneities 
6p2(r) ,  which contribute to the intensity of the unshifted component in 
the spectrum of scattered light in the form of the S function of the fre- 
quency o. The time averaging of this field simply does not alter anything. 
In this case it would have been natural to assume the existence of spatial 
ergodicity at which the statistical average is equal to the volume average. 
However, we cannot carry out the correct averaging of the volume, be- 
cause we do not know the statistics of the field 6p2(r) .  
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