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Simple recurrence relationships are obtained for a time-independent effective Hamiltonian 
governing the behavior of spin systems in rapidly oscillating magnetic fields. A geometric 
representation is proposed for multipulse sequences which average the dipole-dipole 
interaction between nuclear spins. New classes of multipulse sequences performing such 
averaging are proposed. Geometric "images" of sequences are used to estimate the resolution 
attainable with their aid in NMR spectra of solids. 

An increase in the resolution of NMR in solids attained 
re~ent ly ' .~  by the development of multipulse methods1 has 
provided means of obtaining valuable information on the 
structure of solids,' and on the nature of hydrogen bonds4 or 
protons5 in solids, on the composition, degree of crystallin- 
ity, and motion in  polymer^,^ and so on (see Ref. 2).  

High-resolution multipulse NMR spectroscopy of sol- 
ids is based on the simple physical idea of averaging the an- 
isotropic dipole-dipole (DD) interactions of nuclear spins 
by a periodic sequence of high-power resonance hf pulses. 
Interaction of a spin system with such a pulse sequence in- 
duces periodic changes in the spin orientations relative to the 
z axis, along which a static field H,  is applied. Although 
there is no change in the relative orientation of the spins, the 
secular part of the DD interactions varies (relative to the z 
axis) and these interactions rapidly oscillate in tim: if the 
puls: repetition nfrequency obeys B w,,, = T r ( Z d z  ')/ 
Sp(S, 2 ) ,  where ZdZ is the Hamiltonian of the secular part 
of the DD interactions and S, is the operator representing 
the projection of the total spin along the z axis). The degree 
of averaging of the DD interactions increases on reduction in 
the parameter E = aloc/fl ,  which however cannot be small 
under multipulse experimental conditions (values E = 0.1- 
0.5 are reported in Refs. 1, 2, and 7).  Therefore, a sequence 
of pulses should be organized so that the residual (nonaver- 
aged) DD interactions are of the order of ck, where k is an 
integer (k  > 1 ). For example, in the case of the first sequence 
used for the averaging of the DD interactions and known as 
WHH-4 (Ref. 1)  this integer is k = 2, and for one of the 
most effective averaging sequences called BR-52 (Ref. 8), 
we have k = 4. 

A BR-52 pulse sequence applied to a CaF, single crys- 
tal (H, 1 1  11 1 ) made it possible to reduces the DD interac- 
tions of the spins of the I9Fnuclei by a factor of about 1000, 
whereas in other experiments the resolution was sufficient 
for the tasks mentioned a b ~ v e . ~ . . ~  

The resolution attainable in NMR spectra of solids is 
much poorer than that attainable for liquids, which limits 
applications of NMR spectroscopy in studies of the struc- 
ture and dynamic processes in solids. Considerable progress 
in improving the resolution of NMR spectra has been made 
recently by the development of combined methods in which 
a multipulse sequence is used jointly with rotation of a sam- 
ple at a "magic" angle,9s10 with two-dimensional1' and mul- 

tiphotonI2 spectroscopy, and with heteronuclear correlation 
spectroscopy.13 Nevertheless, improvement of the resolu- 
tion of NMR spectroscopy of solids is still an urgent task. 

It should be pointed out that nonaveraged DD interac- 
tions are not the only factor which limits the resolution of the 
spectra. Other factors which affect the resolution include 
imperfections of multipulse sequences,, inhomogeneity and 
instability of the magnetic field H,, shape of the sample, etc. 
(see, for example, Ref. 7).  However, whereas these factors 
can be eliminated or reduced considerably by improving the 
apparatus and the method used in the experiments, the resid- 
ual DD interactions governed largely by the properties of the 
investigated substance are the fundamental cause which lim- 
its the resolution of NMR spectra in a solid. 

In the case of multipulse experiments the residual DD 
interactions are governed by a time-independent effective 
Hamiltonian which describes completely the dynamics of 
spin systems in rapidly oscillating magnetic fields.14 This 
Hamiltonian is expanded as a series in terms of the param- 
eter E mentioned aboveI4 and the smaller the magnitude of 
the first nonvanishing term of this series, the smaller are the 
residual DD interactions. Therefore, in selecting multipulse 
sequences which average the DD interactions it is necessary 
to ensure vanishing of as many as possible of the initial terms 
of the effective Hamiltonian by a suitable selection of the 
pulse sequence parameters. It is necessary to analyze terms 
of higher orders in E and this can be done only by recurrence 
formulas describing the effective Hamiltonian terms of a giv- 
en order in E as functions of lower-order terms. 

Methods suitable for the derivation of such formulas 
are given in Refs. 15 and 16, but the recurrence relationships 
for the terms of the effective Hamiltonian are not derived. 
These relationships are given in a recent paper. I' However, 
the absence of the commutator structure in the case of the 
effective Hamiltonian terms in Ref. 17 makes it difficult to 
use the formulas given there in many-body problems. 

We shall propose simple recurrence relationships 
which link the effective Hamiltonian terms and describe the 
behavior of spin systems in rapidly oscillating magnetic 
fields. Such recurrence formulas and the symmetry proper- 
ties will be used to develop a geometric approach to the de- 
sign of multipulse sequences which average the DD interac- 
tions by six orders in respect of the parameter E .  The 
geometric approach will be used to analyze the main multi- 
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pulse sequences used to obtain high-resolution NMR spectra 
of solids and new multipulse sequences averaging the DD 
interactions and reducing them by four to six orders of mag- 
nitude in respect of the parameter E will be proposed. Geo- 
metric "images" of multipulse sequences will be used in a 
comparative estimate of the resolution of NMR spectra ob- 
tained using various multipulse methods. 

1. RECURRENCE FORMULAS FOR THE EFFECTIVE 
HAMlLTONlAN OF A SYSTEM OF INTERACTING SPINS IN A 
RAPIDLY OSCILLATING MAGNETIC FIELD 

We shall consider a system of nuclear spins (s = 1/2) 
and describe the interaction between them by a Hamiltonian 

In a coordinate system rotating at the Larmor frequen- 
cy the spins experience a rapidly oscillating field of frequen- 
cy R$-w,,, and the local field wl0,/y ( y  is the gyromagnetic 
ratio) is governed by the interaction 9,. The equation for 
the density matrixp of the spin system considered using ro- 
tating coordinates can be written as follows (for A = 1 ) 14: 

where the dimensionless time is: = tw,,, ( t  is the real time), 
E = 0,,, /R 4 1, and & ( : / E )  is the Hamiltonian 9, con- 
sidered in the interaction representation in respect of the 
alternating field. l 4  We shall drop the barpver the dimension- 
less time. The effective Hamiltonian *" independent of 
time and accurate to within terms of the order 9f E~ (k  = 0, 
1,2, ...) can be obtainedI4 by the transformation Fk = kk ( t  / 
E, E )  of the density matrix 

which conserves the form of Eq. ( 1 ) and reduces it to 
k 

where 

and the Hermitian operators&,,, (rn = 0, 1, ... , k )  are inde- 
pendent of time and DCk'  ( t  /E, E ) ~  are rapidly oscillating 
terms of order E,. To find and R, ( k  = 0, 1, 2, ...), we 
shall first carry out" the <. > operation as follows: 

t t 

<v)=( ( T J - F ) ~ ~  - ( (v -q)d% (4) 

?here is the time-average value. It should be noted that 
D',' ( t  /E, E)  can be represented in the form 

and 2, ( t  /E, E )  has the following structure: 

where 2 = 0. It follows from Eq. (4)  that the structure of 
(2, ) is as follows: 

The recurrentprocess governing the termsin the effec- 
tive Hamiltonian P" and the transformation F,  (k  = 0, 1, 
2, ... ) can now be described as follows: 

( E  is a unit operator), 

= exp (i (zo)), &I= ( i / 2 ~ )  [<&), 201, 
& = i [ ( ~ ) , $ ? ~ ] + ~ / ~ i ( [ ( d ~ ) , d ^ o ] - [ ( L ? o ) , ~ o ] ) .  ( 9 )  

We shall assume that kk and &, are already known 
and then, applying the formula for D',' ( t  /E, E )  (Ref. 14) 
which can be written in the form 

we obtain 
- 

~ k - i = e x ~ ( i ( c i k > ) ~ ~ ,  c%~+~=;,, k=1, 2, . . . . ( 11 ) 

We shall also give a recurrence formula convenient in the 
subsequent calculations: 

The formulas (8)-(! 1 ) allow us to find successively the op- 
erators k0, &I,  X2,  ... and thus to determine the time- 
independent effective Hamiltonian *" which will be used 
later to study multipulse sequences that average the DD in- 
teractions. The proof of the recurrence relationships (8)- 
( 1 i )  is given in the Appendix 1. Using Eqs. (8)_( 11 ), we 
obtain expressions for some of the first terms in &Ipeff taking 
from each term the time average (the bar is omitted): 
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The method used in calculations which give Eqs. ( 13)- 
( 17) is described in the Appendix 2. It should be pointed out 
that none of the methods used previously L3'4L7 has succeed- 
ed in deriving terms of the effective Hamiltonian higher than 
of the fourth order in E.  The recurrence relationships (!)- 
( 1 1 ) make it possible to calculate quite simply also X7, X8, 
etc. 

2. DESIGN OF MULTIPULSE SEQUENCES FOR AVERAGING 
THE DIPOLE-DIPOLE INTERACTIONS OF NUCLEAR SPINS 

We shall now consider a system of nuclear spins 
(S = 1/2) linked by the dipole-dipole interactions and sub- 
jected to a periodic (with a period t, = 2a/fl) sequence of 

FIG. 2. Sequence of 120' pulses applied along the magic axis n in the 
process of averaging of dipole-dipole interactions ( a ,  = f 1, 
i = 1, 2, ... ) .  

resonance hf 6 pulses which rotate the spins by f 90" about 
the axes x and y in a rotating system of coordinates. Our task 
is to select the relative phases of the pulses and the time 
intervals between them so as to ensure vanishing of the larg- 
est possible number N of th%initial terms of the expansion of 
the effective Hamiltonian P" in terms of E,  i.e., to ensure 
that &Pi = 0 ( i  = 1, 2, ... , N) .  Since the only interaction 
between spins is assumed to be of the DD nature, it follows 
that rotations by + 90" and - 90" about thex (ory ) axis are 
equivalent. We can therefore assume that the investigated 
sequences consist of pulses rotating the spins by * 120" 
about the "magic" axis n (Ref. 1 ) that makes the same an- 
gles with the semiaxes x ,  y, and z (Fig. 1 ). Such pulse se- 
quences can be realized experimentally l9 and, therefore, the 
solution of the problem facing us should make it possible 
also to find sequences of 120" pulses which rotate the spins 
about the n axis in a rotating coordinate system and which 
average effectively the DD interactions. We shall assume 
that during each period t ,  such a system is acted upon by m 
pulses which arrive at moments ti (i = 1,2, ... , m) and each 
ofthem rotates the spinsby 120°ai, whereai = f 1, i = 1,2, 
... , m (sene Fig. 2) .  In tkis case the interaction Hamiltonian is 
&, = Zdz, where XdZ is the secular (relative to tke z 
axis) part ofthe DD interactions. Since the secular part &Pdz 
vanishes along the magic axis n', we can write down 

where 2%'" * 1 and &, * 2 are the nonsecular part of the DD 
interactions relative to the n axis and we obtain the relation- 
ships 

here, is the operator representing the projection of the 
total spin along the n axis. Adopting the representation of 
the interaction of pulses,14 we find that the Hamiltonian 
&(t /E)  in Eq. ( 1 ) can be described by 

where 

whereas r ( t  /E) is the number of pulses which reach the sys- 
tem in a time interval t. It follow: from Eq. (2 1 ) that a ( t  / 
E )  = {a2 ( t  /E)) and, therefore, Z ( t  /E) can be represented 
in the form 

FIG. 1. Axes x, y, and z of a rotating coordinate system; n is the "magic" 
axis. where 
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It should be pointed out that if we use the above geometric 
representation, we find that the Hamiltonian in the problem 
of derivation of pulse sequences which average the D D  inter- 
action can be obtained also in the form of Eq. (22) which is 
simpler than for the simplest pulse sequence representing 
multipulse spin locking.' We have to find now such a func- 
tion a ( r  = t / ~ )  that all the terms in the expansion of the 
effective Hamiltonian vanish up to a selected order N. 

3. GEOMETRIC REPRESENTATION OF MULTIPULSE 
SEQUENCES FOR AVERAGING THE DIPOLE-DIPOLE 
INTERACTIONS 

Design of multipulse sequences averaging the D D  inter- 
actions may be simplified greatly by the geometric approach 
described below. We shall establish the relationship between 
multipulse sequences and contours in a complex plane. We 
shall assume that the period of the function a (T) is T(  T>t, ) . 
We shall consider multipulse sequences satisfying the condi- 
tion 

T 

j a ( r f  ) ~ T ? = O .  (24) 
0 

Then, the function 

represents in the plane of a complex variable z a closed ori- 
ented broken line [z(O) = z ( T )  = 01, which we shall call 
the contour. The segments of this broken line meet at angles 
of 120" and the lengths of the segments are equal to the 
intervals between the pulses. Conversely, each oriented 
broken line with neighboring segments meeting at angles of 
+ 120" corresponds to a multipulse sequence which can be 

reconstructed as follows. The kinks correspond to the pulses 
and a pulse rotates spins about the magic axis n by an angle 
- 120" (a, = - 1 ) if the segment of the broken line rotates 

by 120" anticlockwise (Fig. 3a); the ratio of the lengths of 
the segments of the broken line is equal to the ratio of the 
lengths of the intervals between the pulses. We can then 
readily use hf pulses which rotate the spins about the axes x 
and y in a rotating coordinate system. We shall select the 
required contours to solve the problem because they can be 
explained geometrically, and then use these contours to re- 
construct multipulse sequences. 

We shall now show that for any sequence averaging the 
D D  interactions in zeroth order in E because of the condition 
(24) we can obtain a sequence averaging the D D  interac- 
tions up to terms of the order of E~ inclusive. We shall do this 
by considering the contour W ( r )  [ W(0) = W ( T )  = 01 cor- 
responding to an arbitrary sequence which satisfies Eq. 
(24).  We shall now plot W(T) with its central symmetry 
relative to the point 0 (Figs. 3a and 3b) and reverse the 
direction of travel along the contour. We shall take the new 
contour to be a combination of two contours (initial and 
transformed) with the following sequenc of travel along the 
contour: first, the initial contour is traversed and then its 
image. We shall call this operation the antisymmetric imag- 
ing and we shall denote it by S.  Then, the contour 
~ ( r )  = S W ( r )  satisfies the condition 

90." SO," 90; So,. 

I I 

FIG. 3. Contours in the complex plane and multipulse sequences averag- 
ing the dipole-dipole interactions. The arrows indicate the direction of 
traverse of the contours. a )  Contour W(T) and two-pulse sequence aver- 
aging FDA; b)  contour z ( r )  = S W ( r )  and four-pulse sequence causing 
<T(, and X ,  to vanish; c )  sequence b but with 90" x and y pulses. 

Continuing the function a ( r )  = i(r)  periodically with a pe- 
riod p = 2T, we find from Eq. (26) that a (T)  is an even 
function. Applying the Wang-Ramshaw t h e ~ r e m , ~ '  we ob- 
tain 

In particular, if the initial contour W(T) is a regular triangle' 
(Fig. 3a),  then the c o n t o u r z ( ~ )  = SW(T) (Fig. 3b) corre- 
sponds to a sequence of pulses which averages the D D  inter- 
action to within terms of order E inclusive. If we consider 
pulses that rotate the spins about the x and y axes in a rotat- 
ing coordinate system, we find that the contour of Fig. 3b 
corresponds to the sequence known as WHH-4 (Ref. 1 )- 
see Fig. 3c. 

We shall consider another transformation of the initial 
contour. We shall rotate it twice about the point 0 (Fig. 4a) 
by an angle of 120" ( - 120"). Then, we shall combine three 
contours [initial, that rotated by 120" ( - 120") and by 240" 
( - 240") relative to the initial one] which will be traversed 
in the order just indicated. We shall call this the rotation 
operator and denote it by P,. Then the new contour 
Z(T)  = Po W(T) will satisfy the conditions 

FIG 4 Contours a )  P, W(T), b) SP,, W(T) [ W(T) IS the contour from 
Flg 3a] The arrows and numbers ~ndtcate the d ~ r e c t ~ o n  of traverse of 
contours c )  Twelve-pu1:e sequence of Burum and RhlmX whlch causes 
vanlshlng of Po,  #,, 2',, and Z", 
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The corresponding function a (T)  z ( r )  continued periodi- 
cally with a period T = 3 T  gives 2Y2 = 0, which follows di- 
rectly from Eq. ( 13). Applying now the principle of decou- 
pling of the pulse cycles,' we find that the contour 
Z(T)  SP, W( r)  corresponds to a pulse sequence ensuring 
that 2Yt = 0 ( i  = 1,2,3).  The same result is obtained for the 
contou: z ( r )  = PgSWO(r ) .  Therefore, using any sequence 
with Xo = 0 we can design multipulse sequences which 
average the DD interaction to within terms of the order of&' 
inclusive. In particular, when the contour W ( r )  is a regular 
triangle, the contour z ( r )  = SP, W ( r )  (Fig. 4b) corre- 
sponds to a 12-pulse sequence of Burum and Rhim' (Fig. 
4c) for which we have ki = 0 ( i  = 0,1 ,2 ,3) .  This sequence 
can be used as the basis of 24- and 52-pulse sequences8 which 
average effectively the DD interaction when inhomogene- 
ities of magnetic fields and imperfections of the pulses are 
important.' The contourz(r)  = P,SW(r)  (Fig. 5a) differs 
in this case from the contour of Fig. 4b only by the direction 
of traverse and it corresponds to a new five-pulse sequence 
(Fig. 5b). 

A condition analogous to those given in Eq. (28) has 
been used in the design of sequences described in Ref. 8, 
where it is shown',' that combination of three WHH-4 se- 
quences can cause vanishing of &,. The above analysis al- 
lows us to conclude that this result applies to a wide class of 
multipulse sequences with 90" pulses. 

The above method of design of multipulse sequences is 
of general validity, but it is of course not the only one possi- 
ble. By way of example, we shall consider a contour W(T) 
satisfying not only the conditions of Eq. (24),  but also 

Then, we can use Eq. (13) to show readily that p, = 0. 
Now, allowing for Eqs. (24),  (27),  and (29) and for the 
principle of decoupling of pulse cycles,%e find that the se- 
quence corresp!ndin~ to the contour z ( r )  = S W ( r )  causes 
vanishing of R,, X, , X 2 ,  and R, . The condition of Eq. 

FIG. 5. a )  Contour P,SW(T) [ W(T) is the contour from Fig. 3a]. The 
arrows and numbers show the direction of traverse. b )  Five-pulse se- 
quence causing vanishing of ;Yo, X I ,  Z,, and R, . 

FIG. 6 .  a )  Contour W(T) f o r 1  = 1/2 and Evans cycle1. b )  Contour W(T) 
for 1 = \15 - 1 and five-pulse cycle which ensures that &', = 9, = 0. 

(29) is satisfied, for example, by the contours in Figs. 6a and 
6b consisting of equilateral triangles with lengths of the sides 
equal to unity and different values ofil. The sequence in Fig. 
6a is the Evans cycle' representing the main element of a 16- 
pulse sequence2' which averages the DD interactions under 
the same conditions as the sequences described in Ref. 8. The 
five-pulse sequence of Fig. 6b is suggested for the first time. 

We have considered so far multipulse sequences which 
average the DD interactions by no more than four orders of 
E.  The difficulty encountered in the design of sequences aver- 
aging the DD interactions to within terms of the order of .c4 
or higher is the fact that we can no longer use the principle of 
pulse decoupling.' However, an analysis based on the use of 
Eq. ( 15) allows us to conclude that if the contour W(T) of 
Fig. 6a satisfies the condition 

which is obeyed ifil (Fig. 6a) is a root of the equation 

then the contour z ( r )  = SP, W ( r )  corresponds to a T8- 
pulse sequence (Figs. 7a and 7b) which ensures that X,, 
pl, k2, &, , p4, and &, all vanish. 

4. GEOMETRIC APPROACH TO ESTIMATION OF THE 
RESOLUTION OF MULTIPULSE NMR EXPERIMENTS 

How many terms of the effective Hamiltonian kR can 
be made to vanish by multipulse sequences derived by meth- 
ods developed in the preceding section? We can answer this 
question by assuming that we have been able to design a 
sequence corresponding to a contour W ( r )  defined as fol- 
lows (Fig. 8 )  : 

I t  then follows from Eqs. (22) and (25) that the contour 
W(r )  corresponds to a sequence which is described by a 
Hamiltonian with the following property 

It is clear from Eq. (33) that at the moments 2Tn (n is a 
natural number) the initial state of the system is restored 
completely (spin echo) and the envelope of response of the 
system to a multipulse interactjon is completely independent 
of the DD interactions, i.e., P f f - 0 .  Therefore, our hypo- 
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-120" 170°120" -120"1Wo-12Uo 120°120" -1~0"120"-lPOo 120"121J~ -720'' 

I 
1 
I 
I 

r / 2  (/+A)? ~r [ t + ~ : z  1/2 t /Z  (/+A)? /IF (l+AJr 512 1/2 fr+A)t 8.r jl+i:; t/Z FIG. 7.  Twenty;eight-pulse sequences causing vanishing of &,, 
a R, , R2, X3,  R4, and R, : sequence of 120" pulses; b) sequence 

thetical sequence averages the DD interactions in all orders 
of the parameter E.  We now note that the broken line with 
neighboring segments meeting at angles of 120" can be 
used to approximate the contour W ( T )  of Fig. 8 with any 
desired accuracy. Therefore, we can design multipulse se- 
quences of 120" pulses rotating the spins about the magic axis 
and causing vanishing o!any finite number m of terms in the 
effective Hamiltonian Pff. However, we can then estimate 
the resolution attainable using such sequences by estimating 
the residual term ~ ( " ' ( 7 ,  E )  [see Eq. ( 5 )  1. In general, such 
an estimate is difficult to obtain, so that we shall limit our- 
selves to the following qualitative discussion. We !hall as- 
sume that we can find the average Hamiltonian %,. The 
residue D"' ( 7 , ~ )  = do may be of the same order of magni- 
tude as k0, but do is a rapidly oscillating function of time so 
that the maximum value of (2, ) should be small. In other 
words, the smaller the amplitude of the spin echo which is 
governed by the value of (do ), the closer is the average mo- 
tion described by the Hamiltonian k0 to the motion of the 
system of spins described by the initial Hamiltonian 2 ( r )  
in Eq. ( 1 ). It follows from Eq. (7 )  that (2,) -E,  so that in 
the limit E+O the effective Hamiltonian pff can describe as 
accurately as necessary the dynamics of the investigated sys- 
tem.I8 However, there is in practice always a minimum time 
r,,,,, between the successive pulses, which limits the value of 
E. Consequently, the Hamiltonian *ff describes the evolu- 
tion of the system only approximately and it can be used to 
estimate the resolution of multipul~e experiments by a more 
careful analysis of the quantity (d, ). Although we have 
(2,) = 0 [see Eq. ( 4 )  1, at certain moments the value of (2, ) 
can be quite large. We shall estimate (2, ) from the maxi- 
mum value of the function 1 (a ( 7 ) )  / [maxJ (a ( r ) )  1 ]. How- 

of 90' xand y pulses. Half the sequence periods are shown. The 
second halves are obtained by changing the phases of all the pulses 

90. 90, 5'0, Si$ Sg,, 90,94 S& 90, YQS 94 gQY YLlx by 180'. Sequences a and b correspond to the contour SP, W(T) 

ever, maxi ( a ( r ) )  I is the "diameter" of the figure described 
by the contour corresponding to the pulse sequence in ques- 
tion. Therefore, the more compact the figure bounded by the 
contour used to reconstruct the sequence, the greater the 
resolution which can be achieved using this sequence. For 
example, the value of max/ ( a ( ~ ) )  / for the contours in Figs. 
4b and 5a is less than for the contours S W ( r ) ,  where W ( r )  
are the contours in Figs. 6a and 6b. Therefore, the sequences 
in Figs. 4c and 5b can in principle ensure a higher resolution 
of NMR spectra than the sequences in Figs. 6a and 6b, in 
spite of the fact that all these sequences cause vanishing of 
the same terms in the Hamiltonian Pff. 

If the diameters of the figures bounding the contours 
corresponding to two different sequences are the same, then 
the resolution of the corresponding multipulse experiments 
can be found by considering the terms in the effective Hamil- 
tonian &', and the residues 2, of higher orders. 

In the introductory part of this paper we pointed out 
that, in addition to the residual DD interactions, the resolu- 
tion of NMR spectra is influenced also by other factors. Al- 
though their influence on the resolution in NMR spectrosco- 
py of solids is not discussed above, it can be investigated by 
methods described here together with methods given in 
Refs. 1 and 8. 

I 

APPENDIX 1 

We shall show that the recurrence relationships (8)-  
( 11) ensure consecutive generation of terms of the effective 
Hamiltonian PR. We shall do this by showing that rapidly 
oscillating terms D ' ~  + " ( t  / E ,  E )  are of order E' + ' . 

Using Eqs. ( 10) and ( 11) in the case when k > I, we 
obtain 

[ W(T) is the contour from Fig. 6a with /Z = 0.21 181. 

I 
I 
I 

.. 
- %(k+i) - - exp ( i<d .>)  Ph% (t) o r p  ( - i ( i k ) )  

s/2 (l+/l)z A? (!+A)? ?/2 t /Z  (I+AJr A t  (/+A)? 2/2 r/Z (r+A)r Ar (l+A,r r / Z  

0 d .. + i- (e~p(i<d,>))csp(-i<d~>)-~(~+'); J c = I ,  2 , .  . . . 
FIG. 8. Contour W(r) described by Eq. (32) and the approximating dt 
broken line with adjacent segments &aking an angle of 120' with one 
another. 
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Separating in Eq. ( A .  1 . 1  ) the rapidly oscillating and time- 
independent terms of order E~ + ', we can establish with the 
aid of Eq. ( 1 1 )  that all the constant terms up to the 
( k  + 1)th order inclusive and all the rapidly oscillating 
terms up to the k th o@er inclusive are canceled out in the 
final expression for D ' ~  + ') in Eq. ( A .  1 . 1  ). Therefore, 
D ( ~  + ') ( t  / E ,  E )  - & I k  + I ) ,  which was the relationship that 
had to be proved. 

APPENDIX 2 

We shall illustrate the derivation of Eqs. ( 1 3 ) - (  1 7 )  by 
obtaining the expression for k4 of Eq. ( 1 5 ) ,  which requires 
determination of terms of order E~ in6 '3)  ( t  /E ,  E ) .  It follows 
from Eq. ( A .  1 . 1  ) that such terms are contained only in 

Terms of the fourth order jn Eq. ( A . 2 . 1 )  can occur only in 
D'*) ( t  / E ,  E )  and i [  (d,) ,EX, 1 .  An analysis of terms of order 
E~ contained in D ' ~ '  ( t  / E ,  E )  requires again the use of Eq. 
( A .  1 . 1  ) with k = 1. We then find that the required terms 
occur only in the expression 

esp (i (21)) [iY1) (LIE, E )  4- &(')I exp (- i <&)) 
"(1) - D ( t / ~ ,  e) + i [<dl), 6") ( t / ~ ,  E ) ]  + 9") 

+ i l )  - 1 / 1 ,  d l ,  . ( A . 2 . 2 )  

Contributions of the fourth order come from the first two 
terms and from the last term in Eq. ( A . 2 . 2 ) .  The task is 
therefore to fin? terms of the second and fourth orders in E 

that occur in D'" ( t / ~ ,  E ) .  This is a general result in the 
sense that the problem of calculation of the effective Hamil- 
tonian of any order reduces, in the final analysis, to finding 
terms of specific order in D'" ( t  / E ,  E ) .  Using Eq. (10) we 
can apply the method of complete mathematical induction 
to show readily that a term of the k-th order in D"' ( t  / E ,  E )  
is as follows: 

(The dots in the square brackets mean that the commutation 
is performed k times. ) We can derive Eq. ( 1 5 )  directly using 
Eqs. ( A . 2 . 3 )  and including the contributions mentioned 
above. Equations ( 1 3 ) ,  (14), ( 1 6 ) ,  and ( 1 7 )  can be derived 
similarly. 
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