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A new method of computing the coefficient of light absorption in a heavily doped 
semiconductor is proposed. The method is based on a power series expansion in a found small 
parameter, which is the ratio of the localization length of the charge-carrier wave function to 
the correlation length of the random field. It is shown that in the deep tail region, where a 
significant role is played by the transitions between the highly localized states, the absorption 
coefficient does not reproduce the density of states, as has been erroneously asserted by 
Shklovskii and Efros [Sov. Phys. JETP 32,733 ( 1971 ); Sov. Phys. Usp. 16, No. 6 ( 1974); 
Electronic Properties of Doped Semiconductors [in Russian], Nauka, Moscow, 1979, p. 3641. 
The first three terms of the asymptotic series for the absorption coefficient are obtained in their 
explicit form. 

1. INTRODUCTION. FORMULATION OF THE PROBLEM esp [-(A&)" icsp [-(A/2y)2]=exp [-A2/2y2], 

As is well known, the occurrence of a light-absorption 
coefficient tail in a heavily doped semiconductor at low tem- 
peratures is due to the transitions of the carriers between the 
fluctuational levels in the forbidden band. Such transitions 
are usually described with the use of a model according to 
which the electron moves in the random field produced by 
the impurity atoms, which are randomly distributed in the 

The interaction of the electrons with the phonons 
is ignored, and the electron-electron interaction is taken into 
account only partially, specifically, with the aid of a 
screened potential. The magnitude of the absorption coeffi- 
cient is determined by the probability for the appearance of 
the appropriate fluctuation in the impurity disposition and 
the tunneling probability. The problem formulated in the 
title of the present paper is solved for the Gaussian random 
field within the framework of such a model in Refs. 1-3, 
where it is found that, in the deep-tail region, the tunneling is 
insignificant, and the absorption coefficient is virtually de- 
termined by only the probability for formation in the semi- 
conductor of a potential well of depth A = E, - h, where 
Eg is the forbidden band width and w is the frequency of the 
absorbed light. This probability turns out to be proportional 
to the quantity exp [ - A2/y2], where y2 is the doubled 
mean square of the potential energy of the charged carrier. 
On this basis, it is asserted in the indicated papers that, at 
large positive values of the photon energy deficit A, the index 
of the exponential light-absorption coefficient function coin- 
cides with that of the density-of-states exponential function. 
This result is, as will be shown in the present paper, errone- 
ous. Using the very arguments adduced in these papers, we 
can easily show that in the deep-tail region, where the tun- 
neling is insignificant, a much greater contribution to the 
absorption is made by such a fluctuation, as a result of which 
there is formed in one part of the semiconductor a potential 
well of depth A/2 for the electron, and in the other part a 
similar well for the hole. In the deep-tail region, where the 
distance between the wells is greater than the correlation 
length of the random field, the probabilities for their forma- 
tion can be considered to be independent of each other; 
therefore, the resulting probability for such a fluctuation 
turns out to be proportional to the quantity 

which, for A % y, is exponentially large in comparison with 
the probability for the appearance of the fluctuation consid- 
ered in Refs. 1-3. Naturally, these are all just qualitative 
arguments, which need to be more rigorously substantiated. 

In the present paper we propose a new method of com- 
puting the coefficient of interband absorption of light in 
heavily doped semiconductors in the region of photon ener- 
gies h smaller than the forbidden band width Eg . We con- 
sider semiconductors with a sufficiently large forbidden 
band width E, % A .  This allows us to use the effective mass 
method. The bare dispersion law is chosen in the simplest 
form 

where the m , ,  are the effective masses of the carriers in the 
conduction and valence bands. The temperature of the semi- 
conductor is assumed to be equal to zero. It is assumed that 
the random field is described by the Gaussian statistics. 

2. BASIC RELATIONS 

As is well known,4 the coefficient of light absorption in 
disordered semiconductors is given by the relation 

3 2 d e 2 r  j j , j 
a ( a )  = dx, dx dor[n,(o)'-o) -n,(w') I 

oce,"~V, 

X (Im GrU(x,, x,; o f -o )  Im GrC(x2, s , :  o') ), (1 ) 

where 

U, ( x )  and U, ( x )  are the periodic parts of the Bloch func- 
tions, c is the velocity of light, E ,  is the real part of the permit- 
tivity, n, ( w )  is the Fermi function, and e and m, are the 
electron charge and mass. The integration over the coordi- 
nates x,  and x, is over the entire volume V, of the semicon- 
ductor. The angle brackets denote averaging over the ran- 
dom field. Here and below we use the system of units in 
which f i  = 1. By going over to the time representation for the 
anticommutator retarded Green functions G ,  (x, ,  x,; w ) ,  
and using the path-integral t e ~ h n i q u e , ~  we can show that, 
under the conditions of our problem, the expression ( 1 ) is 
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equivalent to the following representation for the absorption 
coefficient: 

i m + 6  

where 

r = x, - x,, and D (x, - x,) is the random field's correla- 
tion function, which in heavily doped semiconductors has 
the form6 

Here x- '  is the correlation length of the random field. 
Let us note that the function Z ( t )  is analytic in the right 

half-plane of the complex variable t. We can verify this by 
expanding the exponential function in the integral over the 
trajectories in ( 3 )  in a series in powers of the correlation 
function. It turns out here that, if the correlation function is 
bounded, then this series converges uniformly in the region 
Re t > 0 and each one of its terms is an analytic function in 
the indicated region. Thus, the function Z ( t )  does not pos- 
sess singularities in a finite region of the half-plane Re t > 0, 
and, consequently, the behavior of the coefficient of inter- 
band absorption of light at large positive values of the energy 
deficit A is determined by the asymptotic form of Z ( t )  for 
t +  02. 

3. ASYMPTOTIC FORM OF THE AVERAGED DENSITY 
MATRIX 

Let us now show how we can obtain the asymptotic 
representation of Z ( t )  for large values of t .  Let us use the 
canonical expansion 

of the correlation function in terms of some set of functions7 
a, (x) ,  the specific form of which will not be required below. 
By introducing an additional integration over the variables 
6, , we can represent the expression (3)  in the form 

Here we have introduced the self-consistent potential 

where Po, (x)  is the normalized wave function of the ground 
state in the potential Val (x) .  Below we shall show that the 
last integral in the index of the exponential function makes a 
small contribution to the light absorption, and it can be tak- 
en into account with the aid of perturbation theory. The 
remaining integral over the trajectories is a product of den- 
sity matrices for the particles located in the potentials V,, 
(x )  and V,, ( y  1. The asymptotic form of the density matrix 
for large values oft can be expressed in a certain way in terms 
of the ground-state energy and the corresponding wave func- 
t i o n ~ , ~  which should be determined from the Schrodinger 
equation 

X Jdy{2e-x1x-J1--l} 1 Yol (y) 1 2 = E o ~ Y ~ ~  (x). (6) 

Let us introduce the dimensionless coordinates z = A,x, 
where A, = (m, y2tx)1'3, the energy a= (4m,Eo, 
+ y2tml )/2y1 and the wave functions f(z) = A ; 3'2 

Yo, (z ) .  At large t values the problem contains the small 
parameter %/Al, and Eq. (6)  can be reduced to the dimen- 
sionless form 

- ~ f ( z ) + f ( ~ )  jdyiz-YI I ~ ( Y ) I ~ = Q ~ ( ~ ) ,  (7) 

if we drop the terms of order %/A,. From this it follows that 

where C? is a number of the order of unity, being the smallest 
eigenvalue of Eq. (7).  

The corrections to the ground-state energy that stem 
from the terms discarded in (7 )  and (4)  can be found with 
the aid of standard perturbation theorys: 

E:;)=*<Y,,(~) I z Z n a n  (X*+)~y IYOL(X)) 
n 

Here the upper signs correspond to the value I = c; the lower 
signs, to I = v. As long as we are interested in the exponential 
terms in the asymptotic form of the absorption coefficient, 
the corrections to the wave functions can be ignored, since 
they affect only the value of the preexponential factor. 
Therefore, taking account of the first-order correction to the 
ground-state energy, we obtain 

Z(t) = 1 dr exp[-D (r) tz-Eo.t-Eolt] 

x Y ,, (0 )  Y 0, (-r) Y 0, (0) You (r) 

{ "t2 
x e x p  -(Yoc(x)~oc(~)II-ex~(-~Ix-~l) 

4 
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Let us evaluate the integral over the coordinates r, using the 
asymptotic wave functions, the form of which can be deter- 
mined from Eq. ( 6 ) .  The important Ir 1 values that enter into 
the integral turn out to be of the order of 

and the asymptotic form of the function Z ( t )  at large t has 
the form 

where C and II are certain numbers that can be determined 
from the relations 

In finding the asymptotic form of Z ( t ) ,  we limited ourselves 
to the computation of only the first-order correction to the 
ground-state energy. It can be shown that allowance for the 
next orders of the perturbation theory does not change the 
terms written out in explicit form in ( 11 ). 

4. THE ABSORPTION COEFFICIENT 

Substituting ( 1 1  ) into ( 2 ) ,  and evaluating the integral 
by the method of steepest descent, we obtain for the absorp- 
tion coefficient the expression 

where E , ,  = lt2/mc,, . The important t values that enter into 
the integral turn out to be of the order of t z A / y 2 .  

We assumed in our derivation that the parameter x/Af 
is small. Using the above-presented estimate for t, we easily 
find that this assumption is justified when 

Let us note that the condition for the existence of bound 
states in the potential ( 5 )  leads to the same inequality. In 
finding the asymptotic form of the density matrix, we ne- 
glected the contributions from the excited states, and this is 
justified when 

Furthermore, perturbation theory was used to compute the 

corrections to the ground state energy. The condition for its 
applicability in the present case has the form 

And finally, the integral over the coordinates in (10)  was 
evaluated with the asymptotic wave functions. Their use can 
be justified in the following manner. The integrand in ( 10) 
contains wave functions whose radius of localization is of the 
order of l/A, and the distance between the centers of local- 
ization is equal to Ir 1 .  At large values of the photon energy 
deficit, specifically, for A $  y, the probability for the forma- 
tion of wells of depth of the order of A is small, and the wells 
occur with characteristic spacing greater than the correla- 
tion length l / x  of the random field. Since in the deep-tail 
region the ratio %/A, < 1 ,  the dominant contribution to the 
integral over the coordinates, the value of which is deter- 
mined by both the probability for the appearance of potential 
wells at distances I r I from each other and the overlap of the 
wave functions, is made by the region of large Irl values, 
where the asymptotic representation for \V,, ( r )  is valid. 
Evaluation of the integrals over the coordinates with the ex- 
act and the asymptotic wave functions shows that the use of 
the asymptotic form for \V,, ( r )  is justified when 

It can be seen from the expression ( 12) that, in the re- 
gion of the deep tail defined by the inequalities ( 13)-( 16), 
the asymptotic series for the absorption coefficient is con- 
structed in the index of the exponential function, and the 
expansion is in powers of (E,  - w ) - ' I 3 .  Although the sub- 
sequent terms of the expansion are smaller than the preced- 
ing ones, it is necessary to take them into consideration in the 
index of the exponential function, since they are much 
greater than unity. Notice that the expression ( 1 1 ) coincides 
up to terms of the order of x2t /mc,, with the product of the 
averaged single-particle density mat rice^,^ and, as follows 
from the expression (2 ) ,  the absorption coefficient in the 
indicated region is proportional to the convolution of the 
density of states. This result is explained by the fact that 
tunneling is unimportant in the present problem, since the 
terms connected with it make in the index of the exponential 
function a contribution of the order of ( m , ,  A) "21rI. Conse- 
quently, the probability for absorption of a photon is deter- 
mined only by the probability for the appearance of the req- 
uisite fluctuational wells, contributions to the absorption 
being made by all the transitions between the states on the 
density-of-states tails whose spacing in energy terms is equal 
to A. But, as follows from the above-presented estimates fort 
and Irl, the most probable transitions are those between the 
ground states in the fluctuational wells with depth A/2 and 
characteristic spacing much greater than the correlation 
length x - '  of the random field. Let us note that the expres- 
sion relating the absorption coefficient with the convolution 
of the densities of states has been used in a number of papers 
(see, for example, Ref. l o ) ,  but as pointed out in Ref. 1 1 ,  it 
has to date not been rigorously proved. 

In conclusion, let us point out that the small parameter 
that allowed us to construct the asymptotic expansion for 
the absorption coefficient is the ratio of the radius of local- 
ization of the wave function to the correlation length of the 
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random field. It is natural that the existence of this param- 
eter is not connected with the specific nature of the random 
impurity field considered by us; therefore, the method pro- 
posed in the present paper can find application in the solu- 
tion of other problems. 
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