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A complete set of boundary conditions for a superfluid-vapor interface is phenomenologically 
derived. The simplification of the boundary conditions for the calculation of the limiting values 
of the acoustic coefficients (i.e., the reflection, transmission, and conversion coefficients of the 
first and second sound) are considered for low frequencies. All the acoustic coefficients are 
calculated for the case of oblique incidence of the sound on the interface at arbitrary angle. 

1. INTRODUCTION 

Knowledge of the boundary conditions on the interface 
between a superfluid liquid and its vapor is needed for the 
analysis of a large number of phenomena, such as propaga- 
tion of surface waves and of third and fifth sound, and also 
the reflection, refraction, and conversion of the sounds. The 
acoustic coefficients (the reflection, transmission, and con- 
version coefficients of first and second sound) on an He II- 
vapor interface were obtained for nondissipative boundary 
conditions by Chernikova. The experiments of Hunter and 
Osborne on the reflection of second sound2 and subsequent 
experimental investigations of the acoustic  coefficient^^-^ 
have demonstrated, however, that such an approach is insuf- 
ficient. Boundary conditions that take into account dissipa- 
tive processes on an He 11-vapor interface were deduced 
both a phenomenologica17-9 and by a microscopic descrip- 
tion of the evaporation process.2~10-13 Although various 
studies devoted to a phenomenological analysis did indeed 
take into account various significant factors, such as dissipa- 
tive mass and heat fluxes through the interface,',' dissipative 
fluxes in both media,9 and the hydrodynamics of the surface 
variables,I4 no simultaneous account of all these factors was 
taken in the analysis. This gap is filled in Sec. 2 of the present 
paper, where a complete set of boundary conditions for the 
He 11-vapor interface is derived phenomenologically. 

The complete set of boundary conditions contains a 
large number of kinetic coefficients, not all of which are es- 
sential when some specific problem is solved. It is shown in 
Sec. 3 that the equations for the calculation of the limiting 
values of the acoustic coefficients at zero frequency contain 
only one independent combination of kinetic coefficients 
(i.e., one kinetic coefficient). This simple circumstance es- 
caped the attention of Wiechert and Buchholz, the authors 
of the most comprehensive paper devoted to the calculation 
of the acoustic coefficient on an He 11-vapor interface,I5 
since they used in their numerical solution of the obtained 
equations boundary conditions with three different kinetic 
coefficients. The boundary conditions obtained in the pres- 
ent paper are used in Sec. 4 to calculate the acoustic coeffi- 
cients for oblique incidence of sound on the interface at arbi- 
trary angle. Since the answers contain only one unknown, 
the kinetic coefficient that determines the evaporation rate, 
the results extend substantially the possibilities of experi- 
mentally verifying the predictions of the theory. 

2. PHENOMENOLOGICAL DERIVATION OF THE BOUNDARY 
CONDITIONS 

The interface is defined as a region with zero surface 
mass density. We introduce on the surface the coordinates 

( a  = 1,2), i.e., we assume the positions of the surface 
points are specified by the function r ( p  ,t). Since the coordi- 
nates p are curvilinear, a distinction must be made between 
superscripts and subscripts, which denote respectively con- 
travariant and covariant components of vectors (tensors). 
We shall use also the following notation: Va-covariant dif- 
ferentiation; v-unit normal to the surface directed from the 
vapor; w = (dr/dt);--surface velocity; 

is the metric tensor of the surface; 

is the surface curvature tensor; 

is the invariant operation of differentiation of surface quanti- 
ties with respect to time: K = gaBKap is the total curvature. 

We denote by the indices v and t the normal and tangen- 
tial components of three-dimensional vectors: a = a" 
v + a', at v = 0. We shall omit the index t in expressions for 
components of tangential vectors in terms of the surface co- 
ordinates p : a' = a" ( d r / d r  ) . 

The invariant form of the surface conservation law, 
which is valid for any choice of coordinatesr , was obtained 
in Ref. 16. In particular, the energy conservation law is 

The subscripts V, L, and S label here and below quantities 
pertaining to vapor, liquid, and the interface; E is the energy 
density (in particular, E, is the surface density per unit 
area), and Q is the energy flux. The last term in ( 1 ) is con- 
nected with the local change of the surface area. 

We can write down analogously a mass-conservation 
law 

in which account is taken of the zero surface mass; the mo- 
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mentum conservation law is 

a - isk+ vanska+ ( ~ ~ ~ ~ " - j ~ ~ w \ ' )  - (nLkv-jLkw") -jskKwv=O 
a t  

(3) 

and the entropy production equation is 

(4) 

with a positive-definite surface dissipative function Rs in the 
right-hand side. Herep is the material denisty, jk the mass 
flux (the momentum density), IIk' the momentum flux, S 
the entropy density, and F the entropy flux. 

In Eq. (3)  the surface momentum flux tensor is project- 
ed on the surface and only the second index labels a quantity 
in the curvilinear frame. Projecting this equation on the nor- 
mal and on the tangential plane and recognizing that IIga 
= j:wv (Ref. 16), we get 

The expressions for the volume fluxes in the superfluid 
liquid take the form1' 

where q, is the dissipative part of the heat flux, T;' is the 
viscous-stress tensor, p, is the chemical potential, and h is 
the dissipative term in the hydrodynamic equation for the 
superfluid velocity: 

The expressions for the bulk fluxes in the vapor are the 
same as in the normal liquid: 

jv=pvv,, F,-=Svvv+qv/Tv, ~ v k ' = p v 6 k ' + p v ~ y k u v ' + ~ L k ' ,  

Qvk= (pv+vv2/2) jvk+tvk1vV'+qvk. (9)  

It is convenient to write down first the thermodynamic 
identity (the expression for the differential of the surface 
energy density in a reference frame that moves with velocity 
vf . In this frame the energy depends not on the velocities but 
on their invariant difference 

Expression ( 10) can be regarded as the definition of the nor- 
mal surface velocity V (the drift velocity of the surface exita- 
tions). Using the Galilean transformation Es = E; + v:.js, 
we easily obtain the form of the thermodynamic identity in 
the lab: 

The difference between ( 11 ) and the equation used in Ref. 
14 is that we do not assume beforehand that the surface nor- 
mal velocity V coincides with v i .  

Differentiating E, in ( 1 ) with the aid of ( 1 1 ), express- 
ing the time derivatives with the aid of (4),  (6 ) ,  and (8),  and 
using (2),  (5) ,  (7),  (9) ,  and the fact that the superfluid 
velocity is potential, we can reduce the expression for 
V, Q + R, to a form from which follow uniquely the non- 
dissipative parts of the surface momentum flux 

and of the surface entropy flux 

as well as the surface energy flux 

and the surface dissipative function 

HereA = E, - TsSs - V.js is the surface tension (the sur- 
face free energy). We have neglected in ( 15) the difference 
between the entropy flux F l  in the superfluid liquid and its 
nondissipative part. If the finite quantity qf: is to be taken 
into account, the use of the dissipative function Rs in closed 
form would make it necessary to take into account terms of 
second order in the reciprocal of the mean free path, which 
would be outside the framework of the thermodynamic 
equations used by us. 

The dissipative function ( 15) determines the form of 
the boundary conditions. The absence of dissipation on the 
interface corresponds to vanishing of the second factors in 
each of the seven terms of ( 15). If dissipation is taken into 
account, the boundary conditions can be obtained by start- 
ing from the condition that the dissipative function must be 
non-negative. In the lowest (linear) order in the deviations 
from equilibrium we have for scalar quantities 

and for vector quantities 

Tvva=-CIi' ( u V a -  va) -c12' ( v a - u n a ) ,  
(17) 

TLva=-C,2r(vVa-Va) -C2zr( Va-vna). 

The matrices of the coefficients C and C ' are symmetric and 
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positive-definite. We do not include in the boundary condi- 
tions ( 16) and ( 17) terms connected with the dissipative 
surface fluxes 7:l3 and f ". As indicated in Ref. 14, these 
quantities enter in the surface conservation laws with an ex- 
tra derivative compared with the dissipative fluxes in both 
media, so that inclusion of these quantities in the general 
case is an exaggeration of the accuracy. These terms must be 
taken into account only at low temperatures, when the exci- 
tations in the volume "freeze out" compared with the softer 
surface excitations. The ensuing changes in the boundary 
conditions can be easily understood. 

It is known that the linearized equations of dissipative 
hydrodynamics of He I1 have also a stationary solution in 
the form of a "boundary thermal wave," in which the devia- 
tions of the temperature and of other quantities from their 
equilibrium values attenuate exponentially with increasing 
distance from the surface. P ~ t t e r m a n ' ~  is of the opinion that 
the existence of this solution complicates the problem of the 
boundary conditions and makes it necessary to invoke the 
principle of minimum entropy production. Note that the 
combination T, + (iry -p,h)/S, in the left-hand side of 
( 16b) is independent of the thermal-wave amplitude and has 
on the interface itself the same value as at a certain distance, 
where the thermal wave had already attenuated, i.e., our 
macroscopic boundary conditions fortunately do not 
"sense" such a formation as a boundary thermal wave, 
which is in no way macroscopic, since its attenuation depth 
is proportional to the mean free path. 

3. SIMPLIFICATIONS OF BOUNDARY CONDITIONS IN THE 
PROBLEM OF ACOUSTIC COEFFICIENTS 

In the calculation of the limiting low-frequency values 
of the acoustic coefficients on a plane interface, the bound- 
ary conditions can be greatly simplified. We must in this case 
not only use linearized boundary conditions, but also omit 
from them all terms except those of leading order in the de- 
rivatives (transition to the low-temperature limit). The sur- 
face mass, momentum, and entropy conservation laws (en- 
tropy is also conserved in the linear approximation) take 
then the very simple forms 

The boundary conditions ( 17) yield in the low-temperature 
limit 

It must be noted that in the presence of any of the sound 
waves on the interface, the hydrodynamic equations allow 
the onset of not only sound waves that propagate away from 
the boundary, but also of a temperature wave in the vapor 
and of transverse viscous waves whose amplitude decreases 
rapidly with increasing distance from the interface. In sound 
waves, the first-order quantities are the oscillation ampli- 
tudes of the pressure Sp, of the temperature ST, and of the 
velocities. For a viscous wave in the vapor and having a fre- 
quency and wave-vector component parallel to the surface 
that are the same as in the incident sound wave (i.e., propor- 
tional to one another), the leading quantity is only the am- 
plitude of the v: oscillations. The amplitude of the v; oscilla- 

tions is of higher order in frequency: 

while the pressure and temperature do not change at all in 
the linear approximation. In exactly the same way, for a vis- 
cous transverse wave in a liquid the only quantity of leading 
order is the amplitude of the v z  oscillations. Since the quanti- 
ties v-nd v: do not enter in the remaining linearized 
boundary conditions, the boundary conditions (21) [or 
( 17) 1 can be discarded, since they are automatically satis- 
fied by the onset of viscous waves of the required amplitude. 

Summation of ( 16a) and ( 16b) permits the surface 
temperature Ts to be excluded from the boundary condi- 
tions. We must further recognize that if terms of higher or- 
der in the derivatives are neglected, the normal entropy 
fluxes in the liquid 

and in the vapor 

coincide and are proportional to the normal mass flow: 

Recognizing also that in the approximation of interest to us 
the left-hand side of ( l6c) can be written in the form 

!.lv- yL=-As6TL+Ap-'6pL- (Svlpv) ( 6 T v - ~ T L )  

and the boundary conditions ( 16) can be transformed into 

One of these boundary conditions [namely, (24) ] has been 
specially reduced to this form to eliminate from it the vapor 
temperature T,. Since the only quantity of leading order in 
the temperature and in the vapor is the deviation of T ,  from 
equilibrium, and T ,  is likewise not contained in the bound- 
ary conditions (18)-(20), the use of (24) allows us to study 
the relations between the sound-wave amplitudes, and disre- 
gard the presence of the temperature wave. Its amplitude can 
be obtained if desired from the boundary condition (23), 
which turns out to be unnecessary for the calculation of the 
acoustic coefficients. 

We have thus shown that to calculate the amplitudes of 
the sound waves produced when some arbitrary sound wave 
is incident on the interface, it is necessary to use the bound- 
ary conditions (18)-(20) and (24), and disregard the tem- 
perature wave and the viscous waves. Boundary conditions 
in the form (24) were first obtained by Hunter and Osborne 
from microscopic considerations.' It has heretofore not been 
realized that from the phenomenological standpoint this 
boundary condition is the only one compatible with the dis- 
regard of the temperature wave in the vapor. Other workers 
(see Ref. 15 and the citations therein) used boundary condi- 
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tions of more general form, the use of which is impossible 
without allowance for the onset of a temperature wave. 

The kinetic coefficients are found, generally speaking, 
to be different in different microscopic models of the evapo- 
ration pro~ess .*. '~- '~  Using the data tabulated in Refs. 8 and 
15, however, we find that both the drifting-Knudsen-gas 
model12 and the Hunter-Osborne model2 yield for the coeffi- 
cient K,  in (24) the value 

where m is the helium-atom mass and a is the coefficient of 
absorption of the atom by the surface. Experiments on scat- 
tering of atomic 4He atoms by a free He I1 surface yield 
1 - a 5 hence B-, 1.77. The numerical solution ob- 
tained in Ref. 13 for the kinetic equation at a = 1 yields 
B = 1.66, or merely 8% less. 

Wiechert and Buchholz observed in their numerical 
 calculation^'^ that the discrete-Knudsen-gas models and of 
the Hunter-Osborne model lead to practically the same val- 
ues of the acoustic coefficients. They did not understand, 
however, that this was due to equality of a certain kinetic- 
coefficient combination that entered in the boundary condi- 
tion (24) in the form of the coefficient K,. 

The condition (24) determines the rate of the evapora- 
tion process. Evaporation is possible on the considered inter- 
face also in the limit of zero frequency, therefore the dissipa- 
tive coefficient K, will enter in the limiting expressions for 
the acoustic coefficient, and the coefficient of sound absorp- 
tion on the interface will have a finite value. On the interface 
of the vapor and normal liquid (for which one can assume 
p, = O), the boundary conditions ( 18) and (20) are compa- 
tible only if u; - wv = 0 and no evaporation is possible in the 
zero-frequency limit. 

The experimental-data analysis proposed in Ref. 6 
shows that the expressions obtained in the nondissipative 
approximation for the acoustic coefficients' are not valid 
anywhere. 

4. ACOUSTIC COEFFICIENTS 

We shall label quantities pertaining to first- and second- 
sound waves in a superfluid liquid by the subscripts 1 and 2, 
and the sound waves in the vapor by 0. We choose the wave 
amplitude x for first sound to be the amplitude of the pres- 
sure oscillations, and for the second sound the temperature- 
oscillation amplitude: 

The acoustic coefficients Dab are defined as the ratios of am- 
plitude of the outgoing wave xb to the amplitude of the out- 
going wave xb to the amplitude of the incident wave x:: 

The diagonal elements of the matrix D are the reflection co- 
efficients, the elements D,,  and Do, are the transmission co- 
efficients of the first sound, and the remaining are the con- 
version coefficients. 

The acoustic coefficients Dab for normal incidence of 
sound waves were obtained by Wiechert and B ~ c h h o l z * ~  not 
only numerically but also analytically. They used the bound- 

ary condition (24) of Hunter and Osborne as the most com- 
pact among those proposed by the microscopic theories, and 
neglected the thermal expansion and the thermal conductiv- 
ity of the two media, and also the fact that the ratiop,/pL is 
finite. We present below the values of the coefficients Dab at 
zero frequency for oblique incidence of sound waves, calcu- 
lated with only the thermal expansion of the liquid neglect- 
ed. As shown in Sec. 3, the use of the boundary condition 
(24) makes it automatically unnecessary to take into ac- 
count the finite thermal conductivities of the two media. 

Substituting in (18)-(20) and in (24) the relations 
between the oscillation amplitudes of the different quantities 
in plane sound waves, we obtain for sound incident from the 
vapor 

where 

cos O2 cos 80 
R. = (cos 0, + K ,  + TO, 

C,czpL Ap-' pvco 
COS 02 cos 

R, = (GOS 0, + K ,  + rl, 
CLCZPL dp-' P V C I  P V C I  

CL is the heat capacity of the liquid (at constant pressure), 
c, (a = 0,1,2) is the sound-wave velocity, and 0, are the in- 
cidence angles, i.e., the angles between the wave vectors and 
the normal, related by Snell's law: 

sin 0. sill O l  s in& 
- =- 

C" c 1 c2 

Similarly, for incidence of first sound on a liquid we get 

and for incidence of second sound 

It is convenient to define the absorption coefficients ya 
as the fraction of energy lost when the sound wave collides 
with the surface. From (25)-(30) we get 

It is interesting that the ratios of the absorption coefficients 
turned out to be independent of the dissipative coefficient 
K,. Equations (25 )-(33) can be applied directly only if inci- 
dence of the sound wave on the surface leads to the appear- 
ance of three different sound waves outgoing from the sur- 
face. This is not the case for all incidence angles. 

It is known that at T >  T0=0.7 the sound velocities sat- 
isfy the equalitites 
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and co becomes smaller than c2 at T < To. If the angles 0, and 
0, are such that Eq. (27) yields sin 0, > 1, the first-sound 
wave, produced in the liquid following incidence on the in- 
terface of a second-sound wave or of a sound wave from the 
vapor, should have a wave-vector component perpendicular 
to the interface and pure-imaginary, corresponding to 
damping in the interior ofthe liquid. In this case it is possible 
to use, as before, expressions (25), (26), (30), and (3  1 ) for 
Dab (a,b #I ) ,  in which it is necessary to substitute 
i(sin2 0, - 1)'12 for cos 0,. 

If a second-sound wave is incident on the interface at 
T > To and sin 0, > c/co, only one wave propagating from the 
interface is produced, viz., a reflected second-sound wave. 
The reflection is not total, i.e., part of the energy is lost in the 
interface: 

where cos 0, and cos 6, should be replaced by 
i(sin2 e0 - 1 ) ' I2 and i(sin2 0, - 1 ) 'I2, respectively. The re- 
flection of the second wave in the vapor is not total, in exact- 
ly the same manner, if T <  To and sin 8, > c0/c2. 

We have thus found the values of the acoustic coeffi- 
cients Dab at zero frequency. None of the reflection coeffi- 
cients D,, vanishes at any incidence angle. To find the fre- 
quency-dependence corrections, it is necessary to use also 
the boundary conditions ( 17) and (23), and take into ac- 
count the onset of the temperature wave and of the viscous 
waves. Since the oscillation amplitudes of these waves are 
related by an equation of the form (22), the corrections to 

Dab are proportional to w'I2 at low frequencies. 
The author is grateful to I. M. Khalatnikov for suggest- 

ing the problem and for interest in the work, and to A. V. 
Markelov for helpful discussions. 
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