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We indicate the possibility of the appearance of turbulent flows in bounded volumes after two 
Hopf bifurcations, as a result of the simultaneous action of active modes on a passive mode. 
We study the structure of the strange attractor formed in the phase space of the system. We 
give the results of numerical experiments confirming the realizability of the given scenario for 
a transition to turbulence and we find analytical estimates for the parameters of the model for 
which a transition to chaos may occur. 

1. In the analysis of the features of the appearance of 
turbulent flows in bounded volumes two scenarios proposed 
by Landau' and by Ruelle and Takens2 have mainly been 
considered. According to Ref. 1 turbulent motion is the 
limiting case of a quasi-periodic motion and arises as the 
result of successive self-excitation of an infinite number of 
modes of the system. However, from the results of studies 
given in Ref. 2 it follows that such a development of turbu- 
lence is not typical for a general class of systems. The mutual 
influence of the modes can lead to the destruction of quasi- 
periodic motion that sets in after a finite number of Hopf 
bifurcations and to the formation of a strange attractor in the 
phase space of the system. 

One may take it as experimentally established that, in a 
transition to turbulence in bounded volumes, one observes in 
the spectrum of the pre-turbulence state of the system at 
least two discrete spectral components334 corresponding to 
the excitation of two modes of the system. The problem of 
the further path followed by the transition to chaos has not 
yet a unique solution and requires a detailed study5 both 
theoretically and experimentally. The Ruelle-Takens sce- 
nario assumes that the turbulent motion arises not earlier 
than after the third Hopf bif~rcat ion.~ We show in the pres- 
ent paper that turbulence may develop already after the sec- 
ond of such bifurcations. The mechanism for the transition 
to chaos may in that case be due to the appearance in the 
turbulent motion of a passive mode' that is far from the 
threshold for self-excitation. 

2. Let two Hopf bifurcations establish in the general 
case a quasi-periodic motion with two close frequencies w, 
and w,; to be specific, let w, <a,. We choose a passive mode 
with eigenfrequency w, close to the frequencies w,, 0, and 
consider the effect of the active modes on its behavior. We 
shall then neglect the reaction the passive mode on the active 
ones and also the mutual influence of the active modes. We 
note that an assumption similar to the last one was made in 
Ref. 7 in the study of the transition to turbulence during the 
action of an infinite number of self-excited modes on an ac- 
tive mode. 

Under quite general conditions the change in time of the 
dimensionless amplitude A and of the phase q, of the passive 
mode can be described in the framework of the assumptions 
made here by the following set of averaged equations:' 

is the "slow" time, a a parameter characterizing the dissipa- 
tion in the system, p a parameter of the non-isochronism of 
the passive-mode oscillations, A = (w - w,)/w the frequen- 
cy mismatch parameter, w = (a, + w2)/2, R = (a2 - w,)/ 
213, B, and B2 the dimensionless amplitudes of the active 
modes with respective frequencies o, and 0,. We have writ- 
ten down Eqs. ( 1 ) assuming for the sake of argument a cubic 
non-linearity of the medium. Since we assume that the pas- 
sive mode is far from its threshold for a Hopf bifurcation, we 
confine ourselves in the equation for the amplitude to the 
linear term describing the dissipation in the system; its non- 
linearity appears only in the non-isochronism of the oscilla- 
tions. 

In the general case the set of Eqs. ( 1 ) was studied nu- 
merically. As the criterion for the transition of the passive 
mode to chaotic motion we used the maximum characteris- 
tic Lyapunov exponent (Ref. 8, Ch. 5 )  that determines the 
local instability of the phase trajectories. Moreover, we cal- 
culated the power spectra, the phase trajectories, the time 
realizations, and the Poincart mappings. 

3. Our studies showed that a necessary condition for the 
stochastization of the oscillations is the presence of a singu- 
lar saddle point in the phase plane of the set ( 1 ) when one 
excited mode acts on the passive mode. For instance, when 
B, = 0 this is possible when the following inequalities are 
satisfied: 

These conditions indicate that the amplitude of one of the 
active modes must exceed a minimum value and then there 
exists a well defined upper bound on the magnitude of the 
dissipation in the system. The stochastization of the oscilla- 
tions when a second mode is excited is caused by the fact that 
a homoclinic structure is formed for well defined values of A 
and R in the vicinity of the hyperbolic singular point (Ref. 8, 
Ch.7). 

We consider the nature of the transition of the system to 
a turbulent motion when the amplitude of the second mode 
increases. It is well known that when the characteristic bi- 
furcation parameter of the system R (e.g., the Reynolds or 
Rayleigh number) increases the amplitude of the oscilla- 
tions of the excited mode increases in proportion to 
(R - R,, ) ' I 2 ,  where R,, is the value of the parameter R for 
which a Hopf bifurcation  occur^.^ In the vicinity of the sec- 
ond Hopf bifurcation, of most importance is the change in 

We have used here the following dimensionless quantities: T the amplitude of the second mode, and the amplitude of the 
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FIG. 1 .  The Lyapunov exponent A as function of the amplitude B, of the 
activemodefora= l , p =  1 , A =  1 1 , n = 4 . 9 , B , = 6 .  

first active mode can then be assumed to be approximately 
constant. Typical results of the evaluations of the maximum 
characteristic Lyapunov exponent /Z of the amplitude B, are 
given for that case in Fig. 1. In  carrying out the calculations 
the value o f a  was specified to be equal to unity, which corre- 
sponds to normalizing all the parameters of Eqs. ( 1 ) to the 
parameter determining the dissipation in the system with an 
appropriate change in the time scale. The parameters of the 
passive mode and of the first active mode were chosen start- 
ing from the conditions (2 ) ,  (3) .  Starting from some values 
of the amplitude B, one observes in the system under well 
defined conditions the excitation of stochastic oscillations. 
The transition from the regular oscillations to the stochastic 
ones and inversely then has a "rigid" character as one ob- 
serves it for comparatively small relative changes in B,. In 
the stochasticity region the value of the maximum Lyapunov 
exponent /Z k 1, i.e., the characteristic time for the dispersal 
of trajectories at the strange attractor of the system, is com- 
parable to its characteristic relaxation time. The numerical 
studies made here did not exhibit any appreciable change in 
the behavior of the system when the initial values of the am- 
plitude A and of the phase q, within a wide range of changes 
of the parameters, which enables us to make assumptions 
about the ergodicity of the processes considered. 

The main properties of the excited oscillations are illus- 
trated by the power spectra, sections of phase trajectories, 
and PoincarC mappings, constructed with a period 271/fl, 
given in Fig. 2 for a number of characteristic points of the 
function of Fig. 1. In the pre-turbulence state the oscillation 
spectrum is nearly symmetric and discrete. When B, in- 
creases there appears a complex spectrum, against whose 
background is preserved a series of discrete components, as 
is in general typical of spectra observed in real experi- 
m e n t ~ . ~ . ~  For sufficiently large amplitudes B, the complex 
spectrum changes to a discrete one with a significant asym- 
metry relative to the frequencies of the modes considered. 
One observes here the excitation of more intensive spectral 
components in the high frequency region. The PoincarC 
mappings have a Cantor structure and their dimensionality 
is close to unity,, which is characteristic for systems for 
which an important role in the formation of the oscillation 
dynamics is played by the dissipation. This is also indicated 
by the fact that the characteristic time for changes in the 

FIG. 2. Power spectra, phase trajectories and Poincare mappings for dif- 
ferent values of the amplitude B, for the system parameters corresponding 
to Fig. 1 .  

amplitude of the passive mode is of the order of unity, i.e., of 
the order of the characteristic relaxation time of the system. 

4. I t  turns out that by using rather simple qualitative 
considerations one can determine approximate values for 
the amplitudes and frequencies of the active modes for which 
involvement of the passive mode in the turbulent motion is 
observed. We consider the way the amplitude A,, of the sta- 
tionary states of the passive mode depends on the amplitude 
of the single-frequency action B acting on it. When condition 
(3 )  is satisifed the typical form of this dependence is shown 
in Fig. 3. The solid line corresponds to stable states of the 
focus or node type, and the dotted one to saddle-point unsta- 
ble states. I t  is well known that two harmonic oscillations 
with neighboring frequencies w,, w, and amplitucics B,, B, 
can be written as a single oscillation with a central frequency 
w = (w, + w2)/2 and slowly changing amplitude B and 
phase; the amplitude B changes then with time between the 
limits IB, - B,I and B, + B,. Numerical studies show that 
the transition to stochastic behavior is realized if the range of 
change of B is of the same order of magnitude as the range 
(B,, B, ) (see Fig. 3 )  where B,, B, can be expressed in 
terms of the parameters of the model as follows: 

and, hence, the approximate values of the amplitudes of the 
active modes at  which one may observe a transition to turbu- 
lent motion are given by the conditions 
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0 B~ 5 FIG. 5. Typical dependence of theamplituded,, of stationary states of the 
passive mode on the normalized frequency mismatch A of an external 

FIG. 3. Typical dependence of the amplitude A,, of stationary states of the single-frequency action. 
passive mode on the amplitude from an external single-frequency action. 

max(B,, B2)=(B,+BL)12, min(B,, B,) = (B,-BL) 12. (5)  results shown in Fig. 4 show the validity of this assumption. 
The straight lines A - R = A, and A = A,,, , where A,,, is 

These conditions are rather well satisfied in the numerical the value of the ~arameter A evaluated from (4)  and ( 5 ) ,  are . . 

experiments. For instance, as applied to the results shown in shown dashed in Fig. 4. The stochasticity region is close to 
Fig. 1 we see from (5)  that the quantity B 2 z  8.8 which the points where they intersect, i.e., when condition (5) and 
agrees as to order of magnitude with the result of the numeri- the condition 
cal experiment. 

We now determine the conditions, which must be satis- A-QzA,  (8) 

fied by the frequencies ofthe active modes, for a chaotization 
of the oscillations of the passive mode. We show in Fig. 4 the 
stochasticity region for fixed values of the amplitudes of the 
active modes in the plane of the parameters (A - R, A + R )  
which determine the normalized detunings of the frequen- 
cies w ,  and 0, from the eigenfrequency of the oscillations of 
the passive mode w,. The numerical determination of the 
region of the existence of stochastic oscillations was carried 
out as follows. The (A - R, A + R )  parameter plane was 
split into squares of side length 0.3, in the center of each of 
which the value of the maximum characteristic Lyapunov 
exponent /l was evaluated. Positive values ofA in Fig. 4 cor- 
respond to points in the center of each square. To interpret 
these results we consider the dependence of the amplitude 
A,, of the stationary states of the passive mode on the detun- 
ing A when a single mode acts on it. The typical form of this 
dependence when condition (2)  is satisfied is shown in Fig. 
5. The values of A - R = A,, A, where 

correspond to the presence in the phase plane of the system 
( 1 ) of a singular saddle-point type point-a point which is 
unstable with respect to perturbations. The presence of a 
second active mode acting on the passive one can in this case 
lead to the "destruction" of the saddle-point type singular 
point and to stochastication of the oscillations. Numerical 

are simultaneously satisfied. 
The analytical conditions (5)  and (8)  found here en- 

able us to localize with sufficient accuracy the region of the 
parameters of the dynamical system ( 1) for which one ob- 
serves its stochastic behavior; this confirms the systematic 
numerical experiments which we carried out. 

5. Our studies showed thus that already after the second 
Hopf bifurcation one can observe in systems with a bounded 
volume a transition to turbulence, which in general does not 
contradict well-known experimental  result^.^.^ The transi- 
tion to stochastic behavior of the system is caused by the 
formation in phase space of a strange attractor due to the 
"mixing" of the oscillations of two excited modes and a pas- 
sive mode. On the basis of rather simple physical ideas we 
found analytical conditions establishing the values of the 
amplitudes and frequencies of the active modes for which 
one observes a transition to chaos. For the proposed scenario 
of the transition to a turbulent motion, the dissipation in the 
system must be less than some critical value determined by 
the distance between the eigenfrequencies of the modes (see 
( 3 )  ) . Hence one can assume that such a scenario is the most 
probable one for large-scale fluctuations for which dissipa- 
tion is relatively small,6 although the process of formation of 
the stochastic dynamics of the oscillations in the model con- 
sidered is typical of essentially non-Hamiltonian systems. 
The stochastization mechanism itself is crude in the sense 
that ( 1 ) it is described by averaged equations; (2 )  there are 
not imposed any rigid restrictions whatever on the relations 
between the frequencies of the interacting modes; (3 )  there 
exists a finite multidimensional region of the model param- 
eters where the transition to turbulent motion is observed. 

FIG. 4. Region of stochastic behavior of the system (dots) in the 
(A - R, A + R )  parameter plane for a = 1 , o  = 1, B, = 6, B, = 6. 

"We call a mode passive when it is in a state before a Hopf bifurcation in 
contrast to the active modes which have undergone this bifurcation. 

''We note that a similar form of mappings was observed in the analysis of 
the transition to turbulent motion when an infinite number of active 
modes act upon an active mode7 in the case of strong dissipation. 
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