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A theory of the action of ultrasound on the structure of a planar-oriented cholesteric liquid 
crystal layer is developed. It is shown that at sound intensities above threshold, cholesteric 
layers become distorted, forming a domain structure of the square-grid type. The threshold 
amplitude of the velocity in the ultrasound wave and the size of the domains are determined 
for an equilibrium layer and for one stretched along the crystal axis. The calculation results are 
compared with the experimental data. 

The action of sound on the structure of liquid crystals 
(LC) is of interest from the standpoint of visualizing a sound 
field and transforming acoustic information into optic. Most 
experimental and theoretical studies made to date were on 
nematic LC. The action of sound on the structure of nemat- 
i c ~ ,  with homeotropic molecule orientation, reduces to rota- 
tion of the molecules in acoustic streams at high frequen- 
cies,' to a linear-in-amplitude deformation of the sound 
oscillations at low frequencies,2 and to the onset of domains 
following an elliptic3 and a one-dimensional shear.4 The ac- 
tion ofboth periodic shear5 and periodic compression on the 
structure of a nematic with planar orientation of the mole- 
cules also leads to domain formation. 

The action of sound on the structure of a cholesteric LC 
(CLC) has been less investigated. The dependence of the 

layer, is produced in the cholesteric layers and is observed as 
a domain structure. Two cases are analyzed here; an un- 
stretched CLC layer with an equilibrium helix pitch, and a 
stretched one with the helix pitch larger than the equilibri- 
um value. 

When determining the viscous torques and stresses in 
the hydrodynamics of CLC with weakly distorted structure, 
we shall treat the CLC as a twisted nematic and disregard the 
inhomogeneity of the molecule orientation. The molecule- 
rotation and motion equation stake in this case has the form 

pitch of the CLC helix on the temperature, which changes as Here n is the director that determines the molecule- 
the crystal is heated in the acoustic field, was used in Ref. 7 to alignment direction ( n ~  = ); is the velocity, the strain- 
visualize strong acoustic fields. Ultrasound action, not con- rate tensor, = - ( 1,2)curl [ v X n l  specifies the rotation 
nected with thermal effects, on the structure of CLC was of the molecules relative to the surrounding liquid; is the 
investigated experimentally in Refs. 8 and 9, where it was density, the coefficient ofrotational viscosity, the density 
shown that when an ultrasound wave is incident on a CLC of the Frank elastic energy, G = JgdV, and the pressure. 
layer with planar orientation of the molecules, periodic dis- We write the viscous-stress tensor in the form 
tortions of the CLC structure are produced and have the 
form of domains; the effect has a threshold. If the initial 
orientation is homeotropic, domains of the fingerprint type 
or bubble domains are produced in various situations. 

We construct here a theory for the action of ultrasound 
on a CLC layer with planar initial orientation of the mole- 
cules and with a helix pitch much smaller than the layer 
thickness. The effect is analyzed on the basis of the CLC 
hydrodynamic equations, in which are retaineq the quadrat- 
ic terms proportional to the product of the molecule-rota- 
tion angles by the velocity of the liquid. Allowance for qua- 
dratic terms leads to the following picture of the effect. 
Random distortions of cholestric layers lead, owing to mole- 
cule rotation in the plane of the layer or to departure of mole- 
cules from the cholesteric plane, to the appearance of oscil- 
lating eddies whose dimension along the layer determines 
the domain dimensions, and the dimension along the crystal 
is of the order of the layer thickness. The interaction of inter- 
acting streams and the molecule rotation with compression 
they produce in the ultrasound wave leads to time-averaged 
torques that add to the distortion of the cholesteric struc- 
ture. At the threshold of the effect these torques are stabi- 
lized by elastic Frank torques. At sound-velocity amplitudes 
above threshold, stationary distortion, periodic along the 

wherep, and ai are the Leslie viscosity coefficients. Assum- 
ing, in analogy with nematic crystals, that the viscosity coef- 
ficients a,  and a, are small, we set them equal to zero, so that 
y = a2 = a5 - a6. 

Note that allowance for the inhomogeneity of the direc- 
tor orientation in the expressions for the viscous torques and 
stresses leads to a more complete hydrodynamic description 
of the CLC; in the expressions for the torques and the stress- 
es there appear additional terms that are linear in N and ir 
and contain in the coefficients the component of the unit 
vector 1 which is directed along the helix axis.'' The descrip- 
tion of the effect in this case becomes unjustifiably cumber- 
some, and the result will differ from those obtained below on 
the basis of Eqs. (1)  only by a dimensionless factor in the 
expression for the threshold velocity, a factor consisting of 
the viscosity coefficients that appear in the complete hydro- 
dynamic description of CLC. The values of these viscosities 
are unknown, as are the factors made up of them. It is there- 
fore impossible to establish the difference between the re- 
sults of the complete and incomplete descriptions of the ef- 
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fect, and in the present paper the analysis of the effect is 
based on the simplified equations ( 1 ) . 

The force F arises in a deformed cholesteric structure 
and is determined by varying the density g of the Frank elas- 
tic energy with respect to the displacement u: 

The Frank elastic energy G takes in the two-constant ap- 
proximation the form1* 

I 
G = - K I {(div n)'+h(nrot n+q)'+[n rut I * ] ' ) ~ v ,  

v 

where K = K, = K,, A = K2/K, Ki are the Frank elastic 
constants, q = 2r/P0, and Po is the pitch of the helix. In the 
unperturbed state, the director lies in cholesteric planes and 
rotates uniformly on going from one plane to another, with a 
period Po. We define the structure distortions by the angles 8 
and q, that determine the deviation of the molecules, respec- 
tively, from the unperturbed cholestric plane and (in the 
plane) from the initial orientation. Uniform rotation 
through an angle q, displaces the cholesteric layers along the 
crystal axis by a distance q, /q; a nonuniform rotation of the 
molecules along the layer distorts the layer. We regard here- 
after the angles 0 and q, as spatial variables. The Frank elas- 
tic energy takes in the approximation quadratic in 8 and q, 
the form 

where n is the director in the unperturbed CLC structure, 
with components n, and n, in the cholesteric plane; Vil and 
V, (Vl,V,) are the gradients along and perpendicular to the 
cholesteric helix, respectively. 

The cholesteric-crystal structure is least stable to per- 
turbations whose energy is a minimum-such perturbations 
are the angles q, that vary slowly along the crystal axis and 
the rapidly varying angles 8, which can be represented in the 
form 

where r, is a function that varies slowly along the crystal 
axis. These are precisely the perturbations considered in the 
present article. The integrals of the terms n,V2t9Vllp, 
n2V18VII q, and n,n2V,8V,8 over the volume of the CLC lay- 
er vanish if the molecule orientation does not change on the 
layer boundaries; the elastic energy assumes the following 
final form: 

In the particular case when two-dimensional structure 
distortions are considered in a plane perpendicular to the 
cholesteric layers, assuming the elastic moment conjugate to 
the angle 8 to be zero, expressing the angle q, in terms of the 
displacements of the liquid along the crystal axis 
u(q, = - qu), assuming that A 4 1, and averaging over the 

pitch of the helix in Eq. ( 3 ) ,  we arrive at a known formula 
for the elastic energy 1 3 :  

Consider an ultrasonic wave of frequency w and vibra- 
tional velocity v0 normally incident on a CLC layer. We con- 
fine ourselves to frequencies at which the following inequal- 
ities hold: 

where h is the CLC layer thickness, 7 the viscosity, and c the 
speed of sound in the liquid crystal. These inequalities mean 
that the length of the viscous wave is assumed shorter and 
that of the sound wave longer than the CLC-layer thickness. 
The latter inequality allows us to determine the threshold of 
the effect by replacing the action of the sound by its average 
over the layer. 

We describe the effect in the following geometry. The z 
axis is normal to the layer, with z = 0 the lower face of the 
layer; the axes x and y lie in the plane of the lower face of the 
layer; the unperturbed cholesteric layers are parallel to the 
(xy) plane. We assume furthermore that 

Action of the sound on the distorted CLC structure (p #0,  
8 # O )  produces both acoustic waves and eddies, in which the 
velocities differ by a factor ~ w / ~ c ' .  Confining ourselves in 
addition to the frequencies w, at which this ratio is small 
( W  < 10'' sec-' in a real case), we exclude acoustic modes 
from consideration applying the curl operation to the equa- 
tion of motion ( l ). Retaining in the equations the quadratic 
terms proportional to the product of molecule rotation an- 
gles 8 and q, by the velocity, and carrying the necessary 
transformations, we arrive at the following systems of equa- 
tions. 

The rotation equations: 

Here To and Tq, are the elastic torques conjugate to the 
angles 8 and q, and expresed in terms of the free energy ( 3 )  
by the Euler equations: 

Here and elsewhere the subscript a runs through the values 
a = x a n d y , a n d A ,  = d X 2 + a y 2 .  

The equations of motion: 

(pdtA-6') vz=-yAlntrG, rl+ (pt+ a5) u,,A,n,O,. 

- -~~d,~(u, ,n ,0,  .I+ (rot rot f),+A,F,-d, (F,, .), 
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[pa , - (q+y)dz2-  (? I -a i /2 )ALl  (rot v ) ~ - - y A ,  (cp, r+qv=) 

+asd,[uzz (n,0, .-nxO, ,) I + &  (rol f )  ,+F,, .-Fx, ,, 
div v=O. 

We have introduced here the notation 

f is the force, nonlinear in velocity, due to convection and to 
compression of the medium: 

To derive the force F from Eq. (2)  we must transform in 
the expression for the Frank elastic energy to the material 
angle variables 6, and p, and exclude molecule rotations 
connected with rotation of the medium as a whole. This tran- 
sition is implemented by substituting in (3)  the angles 6 and 
p in the form 

Fixing the values of 8, and p, in the elastic energy and 
substituting the latter in (2 ) ,  we get 

Expressing I?, and T, in terms of the viscous moments with 
the aid of the rotation equations (4) ,  we obtain the final form 
of the equations of motion: 

+ aadZ [v , ,  (n,0,,-nX0,,) ]+az (rot f )  z--A~rq, ( 5  
div v=O. 

The term - yq2A, v, in the right-hand side of the equation 
for v, gives rise to a seeming increase of viscosity in flow of a 
cholesteric liquid in a direction normal to cholesteric layers 
whose positions are fixed in space. 

We linearize next the system (4)  and (5)  with respect 
the angular variables and the velocity perturbation Sv, re- 
garding the velocity of the medium and its compression in an 
incident sound wave as coefficients that depend on the time 
and coordinates. We represent 6, p, and Sv as a sum of a 
stationary term and one that oscillates at the frequency of 
sound: 

where the superscript 0 denotes the stationary part, and the 
prime the oscillating one, and subdivide the system (4) ,  ( 5 )  
into systems of equations for stationary and nonstationary 
variables. We consider the distortions of a structure with a 
minimal free energy, when the angle is represented in the 
form 6 = n, 7, while r, and the angle q, vary slowly along 
the crystal axis. We shall also regard the velocity perturba- 
tions as slowly varying with respect to the functions. We 
average all the terms in the equations for p and v over the 

pitch Po of the helix; the variables p ', (curlvl)z and (curlvO)z 
turn out to be unrelated to the stationary distortions p O and 
19 O, and consequently do not influence the destruction of the 
cholesteric structures-we henceforth leave out the equa- 
tions for these variables. Discarding also in the equation for 
6 ' the elastic terms, which are small compared with the vis- 
cous ones, and carrying out the necessary transformations, 
we obtain the following self-consistent system of equations 
for O', v:, vZ0, 6O, pO: 

+ ((rot rot f),) - ?Al { q  [qvZo - '1, (rot vO),] - 
- <np% (0: ZV,  - n.v!, . - &))I. 

Here and elsewhere the velocity v, and its derivatives with 
respect to z pertain to the acoustic wave in the layer, the 
angle brackets denote averaging over the pitch of the choles- 
teric helix, and the superior bar denotes averaging over the 
period of the oscillations in the sound wave. Terms of the 
form v, Ov, and v, Ov, have been left out of the equation for 
v:, since their inclusion in the solution of the problem leads 
to a small relative correction, of order K p / y 2  ( 1, to the de- 
termination of the threshold amplitude of the velocity. 

We assume zero stationary perturbations at the boun- 
daries: 

and define the oscillating variables vi and 0 ', neglecting ef- 
fects in the boundary layers whose thickness is less than the 
length of the viscous wave as a particular solution of corre- 
sponding inhomogeneous equations. The condition for the 
existence of a nonzero solution of the system (6)  is then 
tantamount to the condition of domain formation. 

We substitute the stationary perturbations in the form 
of functions that are periodically dependent on the variables 
x and y, and satisfy the boundary conditions, 

where k, and ky are wave numbers that determine the form 
of the domain structure, p = 2n-/h, and d, = ik, and 
A, = - k, - ky = - k '. We assume that the following 
inequalities are obeyed: 

Under these assumptions, the sound field in the CLC 
layer leads according to (6) ,  in the presence of the perturba- 
tion 6 O, to the following oscillations of the velocity v: and the 
angle 6 ': 
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where a = p 2 ~ 2  + v2k4 and uZZ is the compression in the 
sound wave. 

The averaged terms in the stationary equations of the 
system ( 6 )  are equal to 

- pk'q ( p 3 + a 6 )  
L3=( (rot rot f )  ,) = 'Tap 

2a 
-- 

XI2 (u,I12+u,u*., i l .  

When the condition hw/c < 1 is met, the mean values 
and u, u , ,  vary little over the CLC-layer thickness; we 

replace them in Li hereafter by the values averaged over the 
layer thickness. Substituting Li in the stationary equations 
of the system ( 6 ) ,  excluding the stream velocities u,O, and 
carrying out the necessary transformations we arrive at the 
following system of equations for the angles p 0  and 
8 ° = n , ~ , 0 :  

where 

the angle brackets denote averaging over the CLC layer 
thickness, and the term containing D in Eqs. ( 7 )  describes 
the torque which is due to the presence of the sound field and 
which destabilizes the CLC structure. 

Equating to zero the determinant of the system ( 7 ) ,  we 
obtain the value of D at which the system has a nonzero 
solution: 

where 

the angle $ determines the relation between the wave 
numbers k, and ky, viz., k, = k cos $, ky = k sin $, and 
consequently the form of the produced structure. 

The form of the domain structure and the threshold 
velocity amplitude u,,,,, are obtained by minimizing D with 
respect to $ and k. A slight minimum with respect to the 
angle qh is reached at jsin $1  = lcos $1  = 2-'I2, when 
k, = ky, and the domain structure has the structure of a 
square grid. Note that the dependence of D on the angle $ is 
governed only by the form of the elastic energy ( 3 ) ,  whose 
density g can be represented, with allowance for the second 
and third equations of the system ( 7 ) ,  in the form 

and which is minimal for perturbations of the square-grid 
type ( B $ )  - max), determining by the same token the ap- 
pearance of just this structure. Domains of the square-grid 
type, being energywise favored, should result also from oth- 
er actions, isotropic in the layer planes, on the CLC struc- 
ture. Such actions are thermal convection, dilatation, and 
others. The anisotropy of the external action can lead to a 
different domain structure-such a situation arises if do- 
mains in the'form of stripes appear in Couette flow in a CLC 
layer. l4 

Putting sin2 $ = cos2 $ = 1/2 in Eq. (8)  and trans- 
forming it, we get 

where o is a quantity close to the modulus of the wave num- 
ber in a viscous wave in a cholesteric crystal; k, is a wave 
number that coincides, as will be shown below in the analysis 
of Eq. ( 12), with the wave number of the domain structure 
produced when the CLC layer is stretched along the crystal 
axis. 

Minimizing D with respect to the wave number k, we 
obtain the value of k at the threshold of the onset of domain, 
and the threshold velocity gradients: 

In the subsequent analysis of the effect we confine our- 
selves to total reflection of the sound from the boundary 
z = h, assuming the boundary to be solid; the sound field in 
the layer is then determined by the standing wave 

v,=2u,e-'"' sin [o ( z - h ) l c ]  

Averaging in Eq. (9)  with allowance for the inequality hw/ 
c < 1, we obtain the threshold velocity amplitude in the form 

UO,,,, = c [ K p (  l+A) l ( 2 a , + y -  y,) ( y ,+a , )  1" (2o2+kO2)/4a' .  

(10) 
At low frequencies, when the inequality 2a2 =pw/ 

7<ko2, is satisfied, the threshold velocity amplitude is in- 
versely proportional to the frequency: u0,,,, a + /w; at high 
frequencies, when 202 $ k *, the velocity u,,,, is independent 
of frequency and is equal to 

U ~ . t h r  = uA,$ ='/ZC [Kp ( l + A )  / ( 2 a l + ~ - l t 3 )  (p34-ae) 1'". ( 1 1 ) 
Setting the parameters in ( 1 1 ) equal to values typical of 

nematic crystals, viz., c z  lo5 cm.s-', K ~ 0 . 5 .  dyn, 
a , ~ y z p , ~ l  P, a 6 z 0 ,  p z l  g.cmd3 (Refs. 12 and 15), 
and putting A <  1 we obtain for the threshold velocity ampli- 
tude the estimate uA,$ ~ 2 5  cm/s. 

The domain dimension d in an unstretched CLC layer is 
given by 

d=2'"nllz=x (oh^,,) -'"=n [ (I+h) /4Ap2q'a]  "/" 

and its dependence on the layer thickness, the helix pitch, 
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and the frequency is given by d - h  ' / 4 ~ 0 ' / 4 w - 1 1 4 .  2%'-6x3+ (40"/ko4) 6r.-8oVko4=0, %=k2/kos. 
The wave-number relationp < k < q used in the deriva- 

tion of ( 9 )  holds for frequencies satisfying the inequality At high frequencies, when the inequality a >  2'l2kO/S is 
satisfied, we obtain k = ( 2 / S )  'I2k,, and 

restricting further the region of validity of the results ob- 
tained for the frequency. 

We consider now the action of sound on a CLC layer 
stretched along the axis. Stretching of the layer takes place, 
in particular, if the boundaries are not parallel near the 
Grandjean lines in a medium with paired disclinations, on 
which the number of cholesteric layers changes. Stretching 
of the CLC structure does not affect the form of the hydrody- 
namic equations ( 1 ), but alters substantially the Frank elas- 
tic energy, for which we obtain a new expression by retaining 
the third powers of the variables in the expansion of the ener- 
gy over the angles. This leads to the appearance of a term 
K*,, (V, ~ p ) ~ / 2 q ,  where @ = - qzS' + e, is the total mole- 
cule rotation angle due both to rotation of the molecules 
through an angle p and to the displacement of the molecules 
when the layer is stretched, and S' is the tension strain. Dis- 
carding next the third powers of the angles q, and 6 we obtain 
for G 

The minimum of the elastic energy for perturbations, 
periodic along the layer, of the angles 6 and p makes possible 
the formation domains of the square-grid type at a tension 
strain equal to S;,, = ( 1 + A )  kO2/2q2; the wave number of 
this structure is equal to the previously introduced wave 
number k,. 

Calculation of the effect for a stretched CLC layer is 
quite similar to the foregoing calculation for an unstretched 
layer, but with a free energy in the form ( 1 2 ) ,  and leads 
likewise to the appearance of square-grid domains. Leaving 
out the intermediate steps, we present the final expression 
for the value of D at which domains are produced: 

where 6 = 2Sf/S:,, is the reduced tension strain. The value 
S = 2 corresponds to the critical stretching, at which a do- 
main structure appears also in the absence of a sound field. 
We assume hereafter 0 < S < 2. 

Considering, as in the preceding case, total reflection of 
incident sound wave from the boundary z = h,  and assuming 
as before that hw/c < 1, we obtain the following expression 
for v,: 

The domain size is in this case 

and is independent of the sound frequency. The threshold 
velocity amplitude is independent of the sound frequency, of 
the layer thickness h,  of the cholesteric helix pitch Po, and of 
the frequency w. 

At low frequencies, when the inequality a < 15'/~k,/2 
holds, we obtain accordingly k = ( S / 2 )  'I2k,,, and 

In this case the domain size is 

and is also independent of w; for the threshold velocity am- 
plitude we get the relation v,,,,, -h - 'PC la-'. 

The dependence of the domain size on the frequency in 
the frequency transition region a- k ,  is shown in Fig. 1, on 
which are plotted the relative domain sized /do (do  = 2l1*n/ 
k ,  is the size of the domains produced by stretching the CLC 
layer) vs the dimensionless parameter a= 4a4/k -w2 for 
different values of S. The dependence of the threshold veloc- 
ity amplitude on the frequency is shown in Fig. 2, on which is 
plotted the relative threshold amplitude v,,,,, v$,$ (here 

is the threshold velocity amplitude at high frequencies 
and at 6 = 0, while u$,yir is given by Eq. ( 1 1 ) . 

Let us compare our results with the experimental data 
of Refs. 9 and 10, where the effect of ultrasound on the CLC 
structure was investigated. The ultrasound frequency was 
varied in the range 0.3-3 MHz. The cited papers report the 
appearance of a domain structure of the square-grid type 
with sides parallel and perpendicular to the rub-in lines of 
the boundary surface; the grid appears only on individual 
sections of the CLC layer. The domain dimensions are pro- 
portional to (POh) l t2  and decrease weakly with increase of 
frequency; the threshold velocity amplitude u,,,,, does not 
depend on the layer thickness h. The experimental picture of 
the action of ultrasound on a CLC layer agrees qualitatively 
with the theory developed for a stretched structure at values 
of the parameter S close to 2; it appears that in the experi- 
ment the stretched regions are bounded by disclinations. 

We obtain again the wave number k of the domains at 
the threshold of the effect, and the threshold velocity ampli- 
tude v,,,, , by minimizing the expression for v, with respect 
to k ;  this yields for k the equation 

FIG. 1. Reduced domain dimension d /do vs the parameters R = 404/k,4 
at different degrees of layer stretching: 1-6 = 0.5; 2 - 4  = 1; 3- 
S = 1.95. 
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FIG. 2. Reduced threshold velocity u,,,,/u~,~,',: vs the parameter 
= 4u4/k$ at different degrees of layer stretching: 1 4  = 0.5; 2- 

6 = 1; 3 4  = 1.95. 

A numerical comparison of the results with the experi- 
mental data is impossible without the use of free parameter, 
since 6 remains undetermined in the experiment, and there 
are no published data on R for CLC. We confine ourselves 
here therefore to estimates of6 andR such that the equations 
for d and v,,,, agree numerically with the experimental 
data. At f = 1.2 MHz, h = 4. lo-, cm, and Po = 2. lop4 cm 
the experimental domain size is d=: 1.4. cm (Ref. 10). 
Equating the theoretical domain size at S = 2 to the experi- 
mental one we obtain the ratio of the elastic moduli: R = K,/ 
K ,  =: For the same frequency, at h = 4.  lop3 cm and 
Po = 4. lop4 cm experiment yields u,,,, -- 1.2 cm/s.I0 Tak- 
ing into account at these data the estimate u/ko -- 1.25 > 2'12/6 -0.7, we determine the threshold velocity 
amplitude from Eq. ( 13). Substituing in this equation the 
value of the elastic constant and of the viscosity coefficients, 
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previously chosen for the determination of v,,,, in a non- 
stretched structure, we estimate the parameter S at which 
the theoretical and experimental values of v,,,, agree: the 
estimate yields S=: 1.95. 
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