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We find for a weakly inhomogeneous collisionless plasma an expression for the permittivity 
E:;. The anti-Hermitean part of E:; provides us with a correct description of the exchange of 
energy between a wave and the particles of the plasma under conditions when the nature of the 
resonance interaction changes strongly due to the presence of inhomogeneities. We consider 
specific applications of the E$ tensor. We show that the form of the Landau damping of long- 
wavelength Langmuir oscillations in an inhomogeneous plasma in an electric field changes 
completely. A beam of fast electrons causes in such a plasma alternating bands of excitation 
and damping regions for the oscillations. We consider the instability of a stationary flux of an 
ultra-relativistic plasma moving in a strong curvilinear magnetic field; this is important for the 
theory of the origin of the radio-emission of pulsars. 

The propagation of small amplitude waves in a rarefied 
plasma is described by a set of linearized kinetic equations 
for the particles and by the Maxwell equations for the field. 
In a uniform medium the eigensolutions of these equations 
are plane waves. Their properties are completely determined 
by the permittivity tensor E , ~  (k,o) whereo is the frequency 
and k the wave vector of the wave. Using the E,, (k,o) ten- 
sor we find from the dispersion equation the oscillation 
eigenmodes of the medium and for each mode we determine 
the way the wave vector k and the spatial growth rate (or 
damping rate) x of the oscillations depend on the wave fre- 
quency o. The quantity x describes the change in wave am- 
plitude due to an exchange of energy between the wave and 
the particles of the medium; it is determined by the anti- 
Hermitean part of &. 

In an inhomogeneous medium the picture is significant- 
ly different. First of all, plane waves are no longer eigenfunc- 
tions of the linearized equations. It is true that in the case of a 
weakly inhomogeneous medium which we shall consider in 
what follows, 

(L is a characteristic scale of the inhomogeneity ) one should 
expect that the eigenfunctions can be represented in the form 
of a packet of plane waves with a structure determined by the 
geometric-optics formulae. However, to construct the pack- 
et it is necessary to know the permittivity tensor &, (r,k,w) 
of an inhomogeneous plasma and finding it encounters well 
defined difficulties. 

The main difficulties arise when separating the anti- 
Hermitean part &:! (r,k,o) of the tensor. First of all, the 
change in the wave amplitude in a non-uniform plasma is 
due not only to an exchange of wave energy with the medi- 
um, but also to a change in its group velocity. It is necessary 
to find a way to separate these two processes when determin- 
ing the E,, tensor in a non-uniform medium. An even more 
complicated situation arises in respect to the anti-Hermitean 
part E:! (r,k,o) determined by the resonance particles, since 
the scale L of the inhomogeneity may become comparable 
with or less than the characteristic scales for the interaction 
of the particles with a wave (these scales depend strongly on 
o and k) .  Thanks to the effect of the inhomogeneity, the 

whole character of the resonance interaction is then trans- 
formed, and this must lead to a complete change in the corre- 
sponding part of E::. 

The study of wave propagation in a plasma in a non- 
uniform magnetic or electric field or possessing non-uniform 
parameters-densities, particle temperature-is important 
for many problems connected with plasma stability, its con- 
tainment and heating, the generation of radiation, and so on. 
Many papers (see the monographs and reviews of Refs. 3 to 
5)  have therefore been devoted to a theoretical study of the 
problems indicated here, both in the general form and in 
some specific statements of it. However, its complete solu- 
tion has not been obtained. In particular, the effect of the 
non-uniformity of a plasma on the resonance interactions of 
the particles with a wave has in fact not been considered 
earlier. 

In 4 1 of the present paper we shall, by a special expan- 
sion using the small parameters of ( 1 ), construct a solution 
of the linearized equations under stationary conditions and 
find a general expression for the permittivity tensor 
(r,k,o) of an inhomogeneous plasma. This expression pro- 
vides a correct description of the exchange of energy be- 
tween a wave and the particles of the medium under all con- 
ditions, amongst them the case when the inhomogeneity of 
the plasma significantly affects the resonance interaction. 
Using a special symmetrization of the Fourier transform, we 
can prove that the permittivity tensor guarantees equiv- 
alence for inversion of the wave (w+ - w,k- - k)  and 
time reversal ( t -  - t )  thanks to which the quantity E"' 

which we have found possesses the same properties as the 
permittivity of a uniform medium. 

In subsequent sections of the paper we give examples of 
actual applications of the E:: tensor. In $2 we consider cases 
when the resonance interaction is unimportant and it is suffi- 
cient to restrict oneself to a simplified expression for E:;. We 
study the excitation of long-wavelength ion-sound oscilla- 
tions and consider one example of drift instability (the ion- 
cyclotron drift instability). We show that using the correct 
expression for the permittivity tensor may lead to consider- 
able corrections in the theory of the drift instability. 

We study in $3 Langmuir oscillations of a plasma in an 
electric field. We show that the Landau damping changes its 
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form for sufficiently long-wavelength oscillations due to a 
change in the nature of the resonance interaction in an inho- 

kv ' k.vrf 
~--e' Juadp  j[(i--)6r.+-] Gap - 

mogeneous plasma. When the oscillations are excited in such -a w 0 

a plasma by a fast electron beam the picture may differ com- X exp {io (t-t') - ik (r-r') } - 
pletely from the classical one-the growth rates change 

d F  dt'. 
dp,' 

( 2 )  

strongly and there arise alternating bands of regions where In a uniform medium when the distribution function F ( p )  is 
the oscillations are excited and damped. 

In the concluding $4 we consider a plasma which is a 
independent of the coordinate the quantity uz, is also inde- 

stationary beam of ultra-relativistic particles moving along a pendent of r and is indentically the same as the usual com- 

strong non-uniform (curvilinear) magnetic field. In this plex conductivity of a uniform plasma: a:, = a,, (w,k).' 

case the resonance interaction is especially large as almost all Moreover, the total current is 

particles turn out to be at resonance. We find an expression 
for the permittivity tensor. An analysis of the dispersion 
equation obtained in this case shows that under conditions of 
a sufficiently dense plasma there appear fast growing hydro- 
dynamic modes. This result is of considerable interest in as- 
trophysics for the theory of the origin of the extraordinary 
powerful and highly directional radio-emission from pul- 
sars-it has not been possible previously to find a mecha- 
nism for generating this radiation. 

$1. RESPONSE OF A NON-UNIFORM PLASMA TO A PLANE 
WAVE. EFFECTIVE PERMITTIVITY 

We consider a stationary non-uniform rarefied plasma. 
The propagation of small amplitude waves in it is described 
by a set of linearized collisionless kinetic equations for the 
plasma particles and the Maxwell equations for the field. 
The non-uniformity of the plasma appreciably affects then 
both the motion of the particles which determine the re- 
sponse of the plasma to the action of the wave, and also the 
process itself of the propagation of the wave field. 

An effective method for finding the response of the plas- 
ma to the action of an electromagnetic field is the path-inte- 
gral method suggested by Shaf ran~v.~  It enables us to obtain 
expressions for the currents and charges arising in a plasma 
with arbitrary inhomogeneities and non-stationarities when 
a small amplitude electromagnetic wave acts on it. Restrict- 
ing ourselves here to a stationary medium when all per- 
turbed quantities are proportional to exp{ - iwt), we get 
from the solution of the collisionless kinetic equation the 
following expression for the current density in the plasma: 

ja (r, W )  =-e2 dk exp {ikr) 

Here F(r,p,t) is the unperturbed distribution function of 
particles with charge e; p(t  '), v (  t '), r' = r (  t ') are the mo- 
mentum, velocity, and coordinate at time t '  of a particle 
moving along the unperturbed trajectory such that at time t 
it is at the point r considered with momentum p and velocity 
v. The quantities E(k)  and B(k)  are the Fourier compo- 
nents of the electromagnetic field of the wave: 

The conductivity found thus as a response of a non-uniform 
plasma to a plane wave we denote by a:, (r,k,w): 

ja(r, W )  = dk eikroa: (I, k, O )  Ed@). ( 3  

Expressing in ( 3 )  the Fourier component ED ( k )  in terms of 
the field ED ( r )  and substituting this quantity into the Max- 
well equations we get a linear integro-differential equation 
describing the evolution of the wave field: 

In a uniform medium the eigenfunctions of this equation are 
plane waves and the condition of solvability of this equation 
has the form of the usual dispersion equation 

o2 4n i 
Det I kakr-k21aB + - caa (=o,  ~ap=616 + - 4 a ~  ( 5 )  

C o 

In a non-uniform medium this is, of course, not the 
case-plane waves are not eigenfunctions of the linear Eq. 
(4) and the solvability condition does not have the form of 
the dispersion Eq. (5 ) neither for the tensor E , ~  (k,w ) nor 
for 

4ni EagO (r, k, 0) = 6a6 + -- 0apO (r, kt a). 
o 

( 4 )  

However, in the case of a weakly non-uniform medium, 
when the wavelength is much smaller than the characteristic 
scale of the inhomogeneity 

p = l / k ~ < l ,  L- l ~ ~ l / l a ~ ~ / i a ~ I  ( 7 )  

and its damping (or growth rate) relatively small: 

~ = I X I / I ~ I = I E ~ ~ I / I E * I < I ,  E ~ ~ = E ~ ~ ~ + ~ E ~ ~ ~ ~  ( 8  

(&ED is the Hermitean and 6;; the anti-Hermitean part of 
the E , ~  tensor, p = Im k) ,  we can construct the eigenfunc- 
tions of Eq. (4) and find the condition for its solvability. It 
will be shown below that this condition can be written in the 
form of the dispersion Eq. (5)  for a function E$ (r,k,w). We 
shall call this function the effective dielectric permittivity of 
a non-uniform plasma. 

It is natural to look for the eigenfunctions of Eq. (4)  in a 
weakly non-uniform plasma in the form of a wavepacket 

Ee(r) =EgO (r) e i w r ) .  (9) 

We neglect here the reflection of waves; this is valid with 
exponential accuracy by virtue of condition ( 7 ) .  Substitut- 
ing expression (9)  into (4)  we get 
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When integrating over d k in ( 10) the main contribution to 
ja under the conditions (7),  (8 )  comes from values of the 
wavevector close to ko(r) = V\V(r). It is therefore conven- 
ient to expand the quantity a:D ( k )  near k,(r) in a power 
series in k - k, (we assume that u$ (k )  does not have a 
singularity close to the point k,): 

doad (ko) 
oa: (r, k ,  o )  = oaB" (r, ko) + (k i -koi)  

dki 

4 ds~a8"(ko) +- 
6 dkj ilk, ilk, (kk-kok) (ks-koi) (ki-kol) . a .  (1 1)  

We further apply the following method of successive 
approximations for solving Eqs. (4) ,  ( lo) ,  ( 1 1 ) : we first 
restrict ourselves to one term in the series ( 11 ) and to the 
zeroth order in p on the left-hand side of (4) ,  afterwards to 
three terms in ( 11 ) and the first-order terms in p, next to 
four terms in the expansion and second-order terms inp, and 
so on. In the first approximation Eq. (4) takes the form 

(koakoB-ko26aa+~2~-2~a~a)E~=0. 

Its solution determines the magnitude of the vector k, which 
satisfies the dispersion equation 

DetI koakos-ko26a8+02c-%aaa0a(rko) I =0, k o = V $ ( r ) ,  ( 12) 

the same, as for a uniform medium, (5 ) with E , ~  = E$ . AS 
only the Hermitean part of E$ occurs in the dispersion Eq. 
(12), k, and also $(r)  are real quantities. The amplitude 
EO(r) then turns out to be a complex quantity. 

In the second approximation (first order in the param- 
eterp and with three terms in the series ( 11 ) ) Eq. (4)  takes 
the form 

The right-hand side of this equation is proportional to the 
anti-Hermitean part of the ES tensor. When there is no dis- 
sipation of electromagnetic energy, it vanishes and Eq. ( 13) 
must lead to the energy conservation law, which in a non- 
uniform medium (as in a uniform medium) has the form 

o 
div S = - - E~~"~E~OE,O' ,  

8n 
(14) 

where S is the electromagnetic energy flux. To find the quan- 
tity S we multiply, as usual, ( 13) by E :'* and combine it 
with the complex-conjugate expression. As a result we get 

a [ E a 0 * ~ :  (koBtii.+ ko,6is-2koiB.I + -- 
dri cZ dki 

We see that the left-hand side of Eq. ( 15) contains, in first 

approximation in the small parameterp from (7) ,  a quantity 
which is proportional to the well known expression for the 
divergence of the energy flux S:2 

However, the right-hand side of ( 15), which describes ab- 
sorption or buildup of the wave energy, is not expressed sim- 
ply in terms of the anti-Hermitean part of the permittivity 
tensor, as in a uniform medium, but contains a correction 
id 2~iF /dkidri. Therefore, on the right-hand side of Eq. ( 15) 
there stands the anti-Hermitean part not of the tensor E : ~ ,  

but of the tensor E$ : 

In this case Eq. ( 15) is equivalent to the relation 

where we have performed an expansion in powers of the pa- 
rameterp = Ixl/lkl and retained only the first two terms in 
that expansion. From (17) follows the dispersion Eq. (5)  
for the tensor E','. The quantity E$ is thus, in the second 
approximation considered here, that permittivity tensor E , ~  

which we must substitute in the usual dispersion Eq. (5)  in 
order to determine the eigenmodes in a non-uniform medi- 
um under the conditions (7)  and (8) .  

The need to transform E is connected with the fact that 
in a non-uniform plasma the wave amplitude changes not 
only due to the anti-Hermitean part of the tensor, as in a 
uniform medium, but also due to its Hermitean part (change 
in the group velocity). This fact is automatically taken into 
account by the energy transfer equation. The energy conser- 
vation law ( 14) therefore plays the role of an additional con- 
dition guaranteeing the correct choice of corrections to the 
permittivity tensor. 

One might conclude from Eq. ( 15) for the transfer of 
the energy of the electromagnetic oscillations that there 
arises a correction only to the anti-Hermitean part of the 
permittivity tensor. However, the construction of the next, 
third approximation shows that this is not the case and that 
Eq. ( 16) is valid both for the anti-Hermitean part and for the 
Hermitean part (see the left-hand side of Eq. ( 19) ). More- 
over, there appears yet one more additional term in Eq. 
( 16). In this approximation it is necessary for the solution of 
Eq. (4)  to take four terms in the expansion (1 1) and to 
retain all terms up to second order inp. As a result we have 
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0' d&agO i d3&ag0 
+--7-- 6ik 

c2 dki 6 dkkdkldkm 

d2EBo I o2 d 2 ~ a g 0  61' o a a  
+ -- (6ia6hb-6aaSih + - - -- = i - E,". ari ark 2 c2 dk idkk  c2 

Moreover, as before, we multiply ( 18) by E :* and add it to 
the complex conjugate expression. We transform the expres- 
sion obtained in such a way that the left-hand side has the 
form of a divergence. To do this we split the quantity E into 
a real amplitude and a phase E: = ADeip and we introduce 
the wavevector k = k, + Vp. As a result we get 

2 [Eao*En<k&ia+kr6i,-2ki6a0 +- 
dr, cz dki 

1 o2 d 2  +----- [E.o*.E: a 2 . L :  '" (r ,  k)  1 
4 c2 dr, ark dki dk,  

o2 i d2eag0 I d4eagO(r, k) Iaa 
=Z-E~O*E~O"[~~O+-- - - -  c2 

2 dki  dri 8 dki  dkkdri  dr, ' 

One should note that in the expression for the electromag- 
netic energy flux in ( 19) there occurs the magnitude of the 
Hermitean part of the effective permittivity tensor ( 16). The 
expression in the right-hand side of ( 19) determines accord- 
ing to ( 14) to ( 16) the effective permittivity. We see that in 
the third approximation there appears a new correction to 
the expression for the permittivity tensor (cf. ( 12), ( 16) ) . 

We now examine how important these corrections are. 
At first sight it looks as if the first correction to the tensor 
E:@ is of orderp and the second of orderp2. This, however, is 
valid only for the Hermitean part of the tensor and the con- 
tribution of non-resonance particles to it. As to the anti- 
Hermitean part, the picture is completely different here-it 
depends on the form of the tensor E& and the contribution 
from the corrections may be important and even decisive. 
First of all, if the tensor E:@ is Hermitean, it is just the correc- 
tions which give the anti-Hermitean part of the E$ tensor, 
i.e., they completely determine the damping and growth pro- 
cesses of waves in a non-uniform plasma. In those cases one 
can usually restrict oneself to the first correction, i.e., to Eq. 
(16)  for^:;. 

A more complicated situation arises when the tensor 
O has an anti-Hermitean part which is determined by the ' a @  

resonant particles. In that case, when the scale of the in- 
homogeneity of &:@ becomes comparable to or less than the 
characteristic scales of the resonance interaction of particles 
with the wave (and these scales depend significantly on the 
frequency w and the wavevector k of the perturbations con- 
sidered) the whole nature of the resonance interaction is 
transformed and the anti-Hermitean part of the E$ tensor is 
correspondingly completely changed. The violation of the 
conditions for the resonance interaction of the wave with 
plasma particles occurs also in an external electric field and 
also in a non-uniform magnetic field because the particles 
are accelerated, v = v(r).  It will become clear in what fol- 
lows that in that case the contribution from the first and 

second order to the anti-Hermitean part of the E:; tensor 
(19) turns out to be of the same order which is a conse- 
quence of the exponential character of the phase synchro- 
nism in the resonance interaction. In the general case, there- 
fore, it is necessary for the determination of the effective 
permittivity to extend the expansion and to find the subse- 
quent corrections (19) to the E$ tensor. It is natural to 
assume (and this is confirmed by calculations) that the gen- 
eral form of the expansion of E$ obtained in successive ap- 
proximations retains the same form as for its first three terms 
standing in Eq. ( 19). Then 

Hence it follows that the E$ tensor can be written in the 
following convoluted integral form: 

One can easily check that (20) and (21) are identical by 
expanding E% under the integral in a Taylor series. 

The solution found gives a complete answer to the prob- 
lem we posed. E$ tensor is in a weakly non-uniform plasma, 
i.e., under the conditions ( 7 ) ,  (8) ,  given by Eqs. (2) ,  (6) ,  
(20). This expression for the E:; tensor is then used in the 
usual dispersion Eq. (5 )  to sort out the eigenmodes and to 
determine for them the real k ( r )  and the imaginary x ( r )  
parts of the wavevector. The electrical field of the wave is 
after this determined by the usual geometrical optics formu- 
lae. 

One can simplify Eq. (2  1 ) by integrating in it over dq 
andd kt. Indeed, we takeintoaccount that thequantity r - r' 
in (2)  is a function of the coordinate r, the momentum p and 
the time difference t - t ': 

r-rt=L (r, p, t-t') . 
Then integrating in (21 ) we get 

i d  +-- uBt--- 
20 dr, (22) 

where the vector q*(r,p,t - t ' )  is a solution of the following 
equation: 

q'=L(r+q'/2, p, t-t') . (23) 

Formula (22) is the final one in which all possible simplifi- 
cations have been made. 

We now discuss the problem of the relation between the 
permittivity (21 ) and the complex tensor 2,@ (r ,r l)  which is 
the kernel of the integral connection between the induction 
and the electrical field strength vectors:' 

Da(r) = $ab (r ,  r f )  EB ( r f )  drf 
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It is well known that in a uniform medium 
z a ~  = i.ap (r  - r'). In a weakly non-uniform medium one 
also distinguishes in daD (r,rf) a "fast" variable r - r'. For 
the "slow" variable one then uses two forms: the simple 
one4s6 Eap (r - rf,r) and the symmetric one co 
(r  - r', (r + rf ) /2)  . 5 3 7  

In our case, from ( 3 ) , 

D, (r') = J 8,: (r', k, o) e rp  (ikr') EB (k) dk. 

Consequently, the tensor E$ takes the form 

We now find the Fourier component of the tensor E G ,  sym- 
metrized with respect to r. To do this, we put (r' + r") /  
2 = r, r' - r" = q and hence r' = r + q/2. Then 

Now comparing (24)  and (25)  with (21)  we see that 

eff 

(r, k)  Eap (r, k)  . (26) 

One should note also a simple connection between the 2.0, 
tensor and the symmetrized Zo tensor: 

The effective permittivity tensor E$ (r,k,w) is thus the sim- 
ply symmetrized with respect to r Fourier component of the 
tensor t$ (r' - r",rf) which determines the relation be- 
tween the induction and electrical field strength in a non- 
uniform plasma, (24) ,  ( 3  ), ( 6 ) .  The physical meaning of the 
symmetrization with respect to r of the Fourier transforma- 
tion in the fast variable r' - r" is elucidated in Fig. 1.  The 
vectors r' and r" are on both sides of the given vector r such 
that their half-sum is always constant and equal to r. For 
such a symmetrization the two vectors r' and r" turn out to 
be equivalent: interchanging r' and r" only changes the sign 
of q without changing the second argument of EO. Thanks to 
this the Fourier transformation of the tensor 2" in which the 
effect of the inhomogeneity on the particle motion is taken 
into account proceeds as in the uniform case, and r plays 
simply the role of a parameter. The E:; tensor, therefore, 
possesses, as in the uniform case, the following symmetry 
properties: under time reversal ( t  -, - t )  the wave with an 
inverted front (w -. - w, k -  - k )  i.e., moving in the oppo- 

FIG. 1. Position of the vectors r' and r" for the symmetrization of the 
tensor 20, (r' - r",rl) of (24) with respect to the radius vector r. The 
vectors r' and r" are positioned always such that their half-sum equals r. 

site direction, gives the same response in the medium as the 
initial one (apart from a permutation of the indices E$ 

(t-. - t, - a, - k )  = ~ ' , f  (w,k) ) .  This leads to a correct 
formulation of the energy conservation law. One verifies 
easily that the initial tensor E:~  of ( 2 ) ,  ( 6 )  does not possess 
this symmetry. One can show that the symmetrization per- 
formed here is the only way to construct in a non-uniform 
medium the EL; (r,k,w) tensor from the EL (r,k,w) tensor. 
Thus, the construction of the symmetrized E , ~  (r ,k)  tensor 
(25)  which is the same as EL; (r ,k)  confirms the correctness 
of Eq. (22)  which we have obtained. Yet another proof will 
be demonstrated in 94 where we show that only the tensor 
E$ guarantees complete satisfaction of the Einstein rela- 
tions which determine the connection between the stimulat- 
ed and spontaneous radiations. 

In conclusion we compare the solution obtained with 
the results of earlier papers. PitaevskiiX was the first to ob- 
tain a correction of the form ( 16) for the permittivity in a 
medium which varied slowly in time and Kadomtsev7 the 
first to get it for a medium weakly non-uniform in space. At 
the same time in papers on the theory of a non-uniform plas- 
ma (see the monograph, Ref. 3)  basically either the quantity 
&O(r,k,w) was used-the response of a non-uniform medium 
to a plane wave-or the so-called local permittivity tensor 
&loc . The &Ioc (r,k,w) tensor is obtained from the uniform 
tensor E (k,w ) by a direct replacement of the uniform plasma 
parameters-the density N, the electron and ion tempera- 
tures, T, and T, , and the magnetic field B, by the non-uni- 
form N ( r ) ,  T, ( r ) ,  T, (r ) ,  and B, ( r ) .  Comparing &Ioc and E' 
we find that in the conditions ( 7 ) ,  ( 8 ) the tensors E'"' and E" 

guarantee the correct transition to the limit of a uniform 
medium and give the correct main term in the Hermitean 
part ofthe tensor. The non-Hermitean part of the permittivi- 
ty tensor like the corrections to the Hermitean part, under 
conditions when the non-uniformity is important, may turn 
out to be incorrect. This means that under well defined con- 
ditions the use of the tensors &IoC or E' may lead to incorrect 
expressions for the growth and damping rates of the waves, 
to non-observance of the energy conservation law, and to the 
appearance of false instabilities. The use of the E:; tensor 
with a correction of the form ( 16) may also lead to the same 
errors under circumstances when the effect of the non-uni- 
formity on the resonance interaction between the waves and 
the plasma particles is important. This will be shown in more 
detail using the examples which we consider in the following 
sections. 

We considered here for the sake of simplicity only one 
species of particles. When there are several species present it 
is necessary to simply sum over them when determining the 
quantity uzD. The results obtained can also be generalized to 
the case when there is a weak non-stationarity present or to 
the case of a few collisions. 

92. ISOTROPIC PLASMA. DRIFT OSCILLATIONS 

In the present section we consider two simple examples 
when the anti-Hermitean part of the permittivity does not 
have a resonant character or when the non-uniformity does 
not affect the resonant interaction between particles and 
waves. In that case we can restrict ourselves to Eq. ( 16) for 
ceff . 
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Long-wavelength ion-sound oscillations 

One-dimensional long-wavelength ion-sound oscilla- 
tions of a non-isothermal plasma are described by 
Korteweg-de Vries equations:9 

Equation (27) is written down in a system of coordinates 
moving with the sound velocity c, = ( Te /M) ' I 2  ( Te is the 
electron temperature, M the ion mass, v the hydrodynamic 
ion velocity, = c, g 2 / 2  is a small parameter which deter- 
mines the contribution from the dispersion terms, and 9 is 
the Debye radius). 

In a uniform medium (u, = const) Eq. (27) corre- 
sponds to a permittivity 

The dispersion relation for longitudinal ion-sound oscilla- 
tions then takes the form 

The permittivity E does not contain an anti-Hermitean 
part-the oscillations in a uniform plasma are neither 
damped nor do they grow. 

We now consider a large-scale non-uniform flow, i.e., 
we assume that u, = u,(x) where according to (7)  the quan- 
tity v, changes appreciably only on a scale L%B/(v, /  
us ) ' I2.  From (27) we find 

& , = I -  u,k-gk3 i d v ,  +--. 
0 o dx 

Using then Eq. ( 16) we get 

The presence of an anti-Hermitean part in E'' leads to the 
appearance of a damping of the oscillations ( y the temporal 
and x the spatial damping) : 

1 avo 
(vO-3f3k". (31) 

Hence it follows that in the region of a rarefaction wave, 
where dv,/dx > 0 the flow is stable, but in the region of a 
compression wave (du,/dx < 0)  it is unstable. It is clear that 
the growth rate of the instability is completely determined 
by the inhomogeneity. 

The equation for the wave energy transfer in the case 
(27) which we consider has the form 

da2 a avo 
- + - (Va2)  + - a2=0, V=uo-3bk2. 
at ax ax (32) 

Here a is the amplitude of the oscillations and Vis the group 
velocity. The change in the wave energy described by the last 
term in (32) completely corresponds to the growth rate 
(3 1 ) . The same term but with the opposite sign appears also 
in the equation for the energy of the large-scale motion when 
we take into account its effect on the wave. The growth rate 
(3 1 ) and hence also the permittivity (30) thus correctly de- 
scribe the process of the exchange of energy between the 
large-scale motion and the wave. 

We note also that using the local approximation 

E = &IoC (Eq. (28) with v, = v,(x) ) does not give an insta- 
bility as there is no anti-Hermitean part in &Ioc. Using, how- 
ever the quantity &' of (29) which is the response to a plane 
wave leads to a change in the wave amplitude which is faster 
than what follows from (3  1 ). It is clear from (32) that the 
change in amplitude consists of two parts: one part is con- 
nected with a change in the group velocity V and the other 
with the damping (or growth) rate of the oscillations. In the 
case considered here both these parts turn out to be the same. 

Drift oscillations in a uniform magnetic field 

We now consider the example of an anisotropic medi- 
um-a collisionless plasma in a uniform magnetic field B, 
with non-uniform parameters N and T. We direct the field 
B, along the z-axis and assume, as usual, that the plasma 
particle distribution function depends on a single coordinate 
x in an orthogonal direction. We shall assume that the size of 
the non-uniformity L is much larger than either the wave- 
length k - ' of the oscillations considered or the particle Lar- 
mor radius p, . 

In that case Eq. (22) for the effective permittivity can 
be strongly simplified. Indeed, in a uniform magnetic field 
the particle trajectory does not depend on the coordinates so 
that the quantity q* in (23) is the same as r - r'. This means 
that the inhomogeneity does not affect the resonance inter- 
action of the particles with the oscillations and we can re- 
strict ourselves in Eq. (20) for &,$ to a finite number of 
terms. To first order in the quantity L -' we have (16): 

The  tensor^:^ (r,k) is in our case well known'0*" and is used 
to consider drift oscillations in a non-uniform plasma. It 
contains both the magnitude of the local permittivity and 
corrections taking into account drift effects which corre- 
sponds to an expansion in the ratio of the particle Larmor 
radius to the inhomogeneity length,p, /L. In the same order 
inL -'wecanin (16) replacetheterm (i/2)d 2~$/dkxdxby 
(i/2)d 'E:' /dkxdx where E:; (r,k) is the local permittivity 
tensor which is well known from the theory of osciliations in 
a uniform plasma. 

We show that taking the correction (i/2)d 2~:'/dkx ax 
into account is important. We confine ourselves here to sole- 
ly the quantity 

which is necessary to obtain the dispersion equation for po- 
tential oscillations 

J,  (6) is Bessel function, E, is the energy of the transverse 
motion of the particles in the magnetic field, k : = k f; + k :. 
We see that the magnitude of the correction (33) is propor- 
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tional to the wave vector component along the inhomogene- 
ity x-axis as should be the case as a wave propagating at right 
angles to the inhomogeneity gradient does not feel it. For a 
Maxwellian plasma with a temperature T(x)  Eq. (33 ) takes 
the form 

here 

B2=T/4nNeZ,  v,= (2Tlm)Ih, g=k12TlMo,2; 

Z(6) is a Kramp function, I, ( 5 )  a modified Bessel function. 
The correction to the permittivity ( 3 4 )  has a structure simi- 
lar to the usual drift correctionlo with the only difference 
that the drift frequency w* proportional, say, to the gradient 
of the particle density, depends only on the quantity k y  : 

whereas in ( 3 4 )  there appears a frequency proportional to 
k,  : 

-. k , ~  a In N (,, =-- 
Mo, ax a 

As a result the dispersion equation describing drift oscilla- 
tions in a non-uniform plasma depends not only on the mag- 
nitude of the wavevector ky at right angles to the inhomoge- 
neity gradient, but also on the component of the wave vector 
along the gradient itself, k,  . This can led to an appreciable 
change in the drift instability. 

As an example we consider the so-called drift-cyclotron 
instability." It is an instability of oscillations close to the 
harmonics of the ion cyclotron frequency w  =:nwci when this 
frequency approaches the ion drift frequency: w*znwci .  
This is possible under the conditions (k1pBi ) 2  z n L k ,  % 1.  
We put k,  = 0 and VT = 0 and we get, using ( 3 4 )  the fol- 
lowing dispersion equation: 

a = (2ak : T/Mwfi  ) ' I 2  = ( 2 a )  "2k,p,, , m is the electron 
mass, M  the ion mass, and w,, the electron Langmuir fre- 
quency. When k, = 0, i.e., when 5* = 0, the maximum 
growth rate of the instability is reached when 

and equal to 

When one does not take the correction ( 3 4 )  into account 
this result for constant k ,  is independent of the magnitude of 

k,  . Taking this correction into account it is clear from ( 3 5 )  
that the magnitude of the growth rate decreases with in- 
creasing k ,  and for a sufficiently large ratio k ,  / ky  the insta- 
bility disappears: 

We see thus that the drift instability is, when the correc- 
tion ( 3 4 )  is taken into account, not indifferent to the direc- 
tion of the wavevector k whether it is directed along the 
gradient of the inhomogeneity or at right angles to it. In the 
given case propagation strictly along the gradient led to the 
vanishing of the instability, although the range of angles k,/ 
k ,  where correction ( 3 4 )  is important is small. It is, how- 
ever, clear that each concrete example needs its own consid- 
erations. 

$3. LANGMUIR OSCILLATONS 

We now consider an isotropic plasma in which there is 
no external magnetic field. We shall assume that the non- 
uniformity of the plasma is sustained by a large-scale electri- 
cal field with a potential p ( r )  which changes along a length 
of the order L  which is much longer than the wavelength of 
the perturbations considered, ( 7 ) .  We assume that the parti- 
cle distribution function F(p,r) depends only on their ener- 
gy E =p2/2m + e p ( r ) .  

We determine the magnitude of the effective permittivi- 
ty 

eff 4ni eff 
Eap = ha, + -0.z~ . 

0 

It is convenient in this case to split off in Eq. ( 2 2 )  the main 
part E& and the correction of order p: 

eff eff eff 
Ea@ = E o a ~  + Eiae 

Here @ is a function describing the main dispersion proper- 
ties of the non-uniform plasma: 

@(r, v, k, o)=- i J dt' exp{io(t-tl)-ikq'). ( 3 7 )  
- m  

The quantity q* = q*(r,v,t - t ') is given by Eq. (23) .  To 
find it we must consider the particle trajectories. We consid- 
er here particles of charge e and mass m moving in the poten- 
tial field q ( r ) . Hence 

a 6 
r-r1=v (t-t') - - 

2 
(t-t')* + (t-t'Ia - . . , , 

As the value of the distribution function in the point r + q*/ 
2  occurs in Eq. ( 3 6 )  it is convenient for us to change from the 
momentum p and the velocity v  to the momentum and veloc- 
ity which a particle has also in the point r  + q*/2, i.e., 
w = v ( r  + q*/2) .  Substituting next the expansion (38)  into 
(23) we find 
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We have renamed w by v since 

It is clear from (39) that q* does not contain a term propor- 
tional to ( t  - t and moreover is generally, since one can 
show, an odd function of t - t '. This means that the quantity 
w ( t  - t ' )  - kq* occurring in (37) will also be an odd func- 
tion oft - t ' which as already noted in § 1 is a consequence of 
the symmetrization of the effective permittivity tensor (25) : 
under time reversal t -  - t the dispersion function (37) 
does not change for the inverted wave (w - - w,k- - k). 
It is also important that in q* occur only terms which are 
proportional to a or a2-this corresponds directly to the well 

known fact that the emission of an accelerated particle is 
proportional either to the derivative a or to the square of the 
acceleration. l 2  

Substituting (39) into (37) and integrating we find 

where 

Ai(z) is the Airy function and Gi(z) a function related to it: 
rn 

We give the asymptotic expansions of these functionsI3 
which are important for what follows. When 1 ~ 1 %  1 

Moreover, on the real axis when z > 0 the function Ai(z) is 
exponentially small: 

~ i ( ~ )  =1/2n-"jz-''* e~p(-~/,z"),  Im z=0, Re z>0. (42) 

In a uniform medium, i.e., when a, a-0, the quantity 
z- OJ and Eq. (40) goes over into the well known dispersion 
function of a uniform isotropic plasma? 

P denotes that the integral over the velocities is taken in the 
sense of a principal value integral. The imaginary part of @ is 
connected with Cherenkov emission of plasma waves by res- 
onance particles w = kv. 

In a non-uniform plasma the form of the dispersion 
function (40) depends significantly on the particle velocity. 
For non-resonant particles in the region (w - k-v) $6 - ' the 
parameter z s  1. Accordingly the real part of @ is here ac- 
cording to (41 ) practically the same as in a uniform plasma, 
(43). On the other hand, in the imaginary part there appears 
a finite term (42) although the Cherenkov emission must be 
absent when w > k-v. The physical emergence of the imagi- 
nary part (42) is connected with the fact that particles move 
in the inhomogeneous field p ( r )  with an acceleration which 
must lead to the generation of bremsstrahlung which is not 
present in a uniform collisionless plasma. Thus, in a non- 
uniform medium there appears apart from Cherenkov radi- 
ation also bremsstrahlung with an intensity which in the 
non-resonance region is exponentially small: 

which is in accordance with Ref. 14. 
In the region w < k-v the function Gi(z) oscillates near 

the same asymptotic value l/?rz and the function Ai(z) os- 
cillates, changing sign which corresponds to an alternation 
of bands in which there is emission and absorption of waves. 

I--- 
These oscillations are caused by the phase desynchroniza- 
tion of the Cherenkov radiation connected with the inhomo- 
geneity of the medium and leading to the formation of inter- 
ference bands. The dispersion function in a non-uniform 
plasma is thus significantly different from that of a uniform 
plasma which is connected both with the appearance of a 
new kind of radiation (in our case bremsstrahlung) and with 
a change in the phase structure of the radiation existing in 
the uniform medium. 

We'now consider high-frequency Langmuir oscillations 
with a dispersion which is determined by the electron com- 
ponent of the plasma. The magnitude of the longitudinal 
permittivity is given by Eq. (36) 

in which, as usual, the dispersion function (40) is averaged 
over the electron velocities. We first consider an equilibrium 
Maxwell distribution (for constant temperature T, ) 

As the phase velocity of the oscillations v,, = w/k is much 
higher than the thermal velocity v, = (2Te/m) ' I 2  the main 
contribution to the real part of &Eff comes from particles for 
which the quantity z% 1. The function Gi(z) determining 
the real part of the dispersion equation is then equal to l/?rz. 
Thus, Re &Eff is the same as the expression determining E in a 
uniform plasma with the local value of the density: 

eff 4neZN (r) Re &, =&"=I- ---- 
moZ 

( 1 + 3 k 2 a 2 ) .  

As to the imaginary part of &Eff determining the damping of 
the Langmuir waves the main contribution to it comes from 
resonance particles u=:v,, for which z z  1 and the non-uni- 
formity may turn out to be important: 
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for sufficiently long-wavelength oscillations significantly 
larger than in a uniform plasma and it also changes its de- 
pendence on the wavevector: 

The quantity f in (45) equals ( u s u , )  The inhomogeneity of the plasma also changes the 
growth rate of the kinetic beam instability. The result de- 

e 
pends greatly in that case on the parameter 

m ar dr 

We distinguish here two cases: when the width of the 
oscillations of the Airy function occurring in (45) Au=: 1/ 
k I f  I is much smaller than the thermal velocity and converse- 
ly. In the first case 

( fph  = ((0 = uph ), L is the characteristic scale of the in- 
homogeneity, SN is the magnitude of the inhomogeneity) 
the imaginary part of &Eff is practically the same as in a uni- 
form plasma: 

i.e., the damping of the Langmuir waves is the usual Landau 
damping, y = - (w/2)Im E,. In the opposite case up,/ 
uT > (w I f p h  1 )314, i.e., for sufficiently long-wavelength oscil- 
lations k < (LB )-'12(6N/N) 'I4, the Landau damping is 
significantly changed in a non-uniform plasma. Calculating 
the integral in (45) by the steepest descent method shows 
that the main contribution to the Landau damping in this 
case comes not from locally resonant particles u z u , ,  but 
(owing to the smearing out of the resonance by the inhomo- 

( f b  = f ( u  = ub ), vb is the beam velocity, u, the thermal 
spread). When a )  1, i.e., for a sufficiently wide beam 

the non-uniformity is unimportant and the growth rate of 
the beam instability is determined in the same way as in a 
uniform medium. In the opposite limiting case, a 4  1, the 
smearing out of the Cherenkov resonance becomes larger 
than the beam width. The growth rate then takes on an oscil- 
lating nature: 

periodically changing sign and considerably decreasing in 
magnitude: 

here 

geneity from particles with appreciably smaller velocities is the maximum value of the beam instability growth rate in a 
~TQuo<u,h: uniform plasma. For a value of the parameter a - 1 the way 

*/A the beam instability growth rate depends on the magnitude 
~ . = 5 " . 3 - " ~ . 2 ~ ~ v ~ ( o  I gd )".($) of the wave vector of the oscillations considered 6k = (kv, / 

B2 6 N  w, - 1 )u, /uTb is shown in Fig. 2. We see that not only the 
z u T ( 7  -) -'js ( F) 

L N structure of the unstable regions in the wave-vector space is 
changed, but also the magnitude of the growth rate which 

In this case tends to zero when the inhomogeneity of the plasma is suffi- 

o 2  u ' u: ciently large. 
1rn e.'" =2n1".3.10-*-+(-) exp( - 7) In concluding this section we give the expression for the 

0" U, VT 
correction to the permittivity tensor of an isotropic non-uni- 

and the Landau damping in a non-uniform medium becomes form plasma which is proportional top:' 

FIG. 2. The growth rate of the kinetic beam instability yb as 
function of the wave number k. Along the horizontal axis is 
plotted thequantity Sk = (kub /o ,  - l )v , /v , ,  along theverti- 
cal axis yb /yb,,, ;yb ,,, is the maximum value of the growth 
rate of the beam instability in a uniform plasma. Curve 1 corre- 
sponds to the value of the parameter a  of (46) equal to 2; curve 2: 
a  = 1; curve 3: a  = 0.5. The dashed curve depicts the same func- 
tion in a uniform plasma ( a ,  1 ). The change in sign of 6 of (40) 
corresponds to a charge in the signs of Sk and y, (6- - 6, 
6k- -Sk,  y b -  - y , ) .  
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From (48) there follows an important fact: if the quantity 
@(r,v,k,w) is real, the correction E is Hermitean. This means 
that taking the inhomogeneities correctly into account does 
not lead to an incorrect instability either in the next order in 
the parameter p. The instability is determined only by the 
real processes of wave emission by a moving charged particle 
which in our case are Cherenkov radiation and bremsstrah- 
lung. 

$4. RELATIVISTIC PLASMA IN A NON-UNIFORM MAGNETIC 
FIELD 

We consider a medium which is a stationary beam of 
relativistic charged particles with a Lorentz factor y s  1 
moving along a very strong curvilinear magnetic field. In 
such a medium each separate charged particle emits electro- 
magnetic waves as they move along a curved trajectory. This 
so-called curvature (or  magneto-drift) radiation is com- 
pletely analogous to the usual synchrotron radiation:'' it has 
the same characteristic frequency w =:cy3/~ (wherep is the 
radius of curvature of the magnetic field line) and is directed 
into a narrow cone of opening 8- l / y  < 1 along the direction 
of motion of the particle, i.e., along the magnetic field. 

The study of this radiation under conditions of a rather 
dense relativistic plasma when the distance between the par- 
ticles is less than the wavelength of the emitted wave is of 
great interest in astrophysics, in particular, for an under- 
standing of the origin of the extraordinary powerful and 
strongly directed radio-emission flux from pulsars. This 
problem has not been solved before. 

We emphasize that there is no emission from the plasma 
as a whole in contrast to emission by a separate particle un- 
der stationary conditions as a constant current does not ra- 
diate. The curvilinearity, i.e., the non-uniformity ofthe mag- 
netic field, plays a decisive role in the generation of the 
radiation considered here. Yet another important feature of 
it is that since the velocity of all particles in the plasma is 
close to the light velocity c, Cherenkov interactions between 
the radiation and the plasma become possible for an oscilla- 
tion mode with a refractive index barely larger than unity. In 
that case all or almost all particles in the plasma turn out to 
be at resonance. The simultaneous coexistence and the inter- 
action of curvature and Cherenkov radiation must lead to 
the appearance of new oscillation modes which are com- 
pletely different from the oscillations of a uniform plasma. 

The radiation of the plasma considered is determined 
by the permittivity tensor (22) .  It is convenient for its eva- 
luation to introduce at  each point r three unit vectors: h 
along the direction of the magnetic field, n the vector of the 
normal, and 1 the binormal vector. As the particles move 
along the magnetic field their distribution function has the 
form 

pil is the momentum component along h, p, that at right 
angles to h. We used here the fact that in a very strong mag- 
netic field w, - co the Larmor rotation is instantaneously 
stopped-de-excited so that all particles are in the zero Lan- 
dau level. Transverse drift motion with p, = p,, ( r )  is in 

principle possible but we consider here conditions when it is 
unimportant. Since possible transverse rotations are instan- 
taneously "forgotten" as w, + W ,  we have 

It  thus follows from (22) that 

The function q*(r,p,t - t ') occurring in (49) can be found 
from the particle equation of motion (23) which in our case 
takes the form 

a i 
r-r'=v(t-t') - - (t-t')' + - (t-t')3-. . . , 

2 G 

Here p ( r )  is the radius of curvature of the magnetic field 
line, and p, its torsion radius. We shall in what follows as- 
sume thatp, -- W ,  i.e., that the particle trajectory is planar. ' '  
We have limited ourselves in (50) to the cubic terms in t - t ' 
for the same reasons as in (38);  each higher term makes a 
smaller contribution and the quadratic term in fact vanishes. 
Indeed, substituting (50) into (23) we find 

(51) 

In  deriving ( 5  1 ) we must bear in mind that the vectors h and 
n are functions of the velocity v or of the momentum p which 
is the independent integration variable: 

We get a similar expression for v ( t  ' ): 

When integrating in (49) there occurs in all expressions the 
quantity w-the value of the particle velocity at the point 
r + q*/2: 

Using this the functions o f t  - t ' occurring in (49) equal (cf. 
(39) 

1 VIl3 
q' (w) =oil (t-t') h - - - (t-t') 

24 p- 

The term quadratic in t - t ' disappeared from the expression 
for q *  as should be the case. 
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Finally we have the following expression for the con- 
ductivity tensor: 

eR 
oa9 ( r . k . ~ ) = - e 2  j s s d p l l j  E ( a . k , p , , r )  

dPl1 0 

v113TJ ( + ( k )  ( 1  . (52) i(o-kllvll) T + - -- 
24 pi 

Considering a mode propagating at a small angle to the di- 
rection of the magnetic field 0 5 l /y  (as only they can turn 
out to be unstable) we can neglect the last term in the expo- 
nent (when hdp/dr < y) .  Integrating in (52) over r we final- 
ly get 

Ai (a) +it ~i ('g) - ~ ] ) d p l l ,  
.n 

Hereg = 2(w - k ul l  )P 2 1 3 / ~ 1 1  k ;1'3. Inits structure Eq. (53) 
is close to (36). 

Asp-  co (i.e., 6- cc ) the expression for a:; changes 
into the corresponding expression for a uniform plasma (cf. 
(43) ) :  

However, for finite values ofp and w =: k vl l  =: k c the con- 
ductivity of such a non-uniform plasma has practically noth- 
ing in common with the local conductivity of a uniform me- 
dium. This is also understandable: first of all there is no 
curvature radiation in a uniform medium-it is completely 
connected with the inhomogeneity. Moreover, the whole 
plasma consists here of resonance particles and, as we 
showed in $3, the strongest effect of the inhomogeneity just 
turns to be on the contribution from the resonance particles 
to the dispersion properties of the medium. When 6 5 1 the 
real and imaginary parts of the conductivity are of the same 
order. As in (36), in the region w < k ,, vll there occur oscilla- 
tions of the Airy function describing the imaginary part of 
the permittivity. These oscillations appear as the result of the 
interaction between the curvature and the Cherenkov radia- 
tions and with them the complete transformation of the radi- 

ation properties of the plasma may be connected. 
One must use Eq. (53) to find the dispersion equation 

and to determine, using it, the oscillation eigenmodes of the 
plasma considered. An analysis shows that in that case in a 
wide range of frequencies there arises a set of hydrodynamic 
modes part of which possess large growth rates. However, a 
study of this problem is not the subject of the present paper. 
We consider here only the limiting case of a low density 
plasma in order to have the possibility to make a comparison 
with the theory of synchrotron emission. First of all, in a low 
density plasma the anti-Hermitean part of the permittivity 
tensor is small and the refractive index n of electromagnetic 
waves is close to unity, i.e., k z o / c .  Using this we can write 
the dispersion equation in the form 

( I -n2)  + (1-n2 sinZ 0 cos2 r p )  6cL+ (1--nZ cos2 0) 6e,, 
+nz cos 0 sin 0 cos rp  (6~11, .+6c,, ,,) =O. 

Here SE = 4.nia/w. Hence it follows that the imaginary part 
of the wavevector, i.e., the spatial growth rate of the wave 
?t = Im k in the case considered is 

Here 0 is the angle between the wave vector k and the mag- 
netic field B,, p is the angle in the nl plane reckoned from the 
direction of the normal n. We assumed, moreover, that 
p = p, = constant. 

We take further into account that the growth rate of the 
waves 7c describes a stimulated radiation process. In a plas- 
ma with a sufficiently small density it is through the Einstein 
relation connected with the spontaneous emission process of 
a single particle:I5 

Here P, (w,p) is the spectral density of the emission power 
of a single particle into a solid angle dR. Comparing (55) 
and (53),(54) we find the quantity PC, (w,pIl ): 

We have used here the fact that in actual fact the radiation is 
concentrated in a narrow cone of angles 8- l /y  and re- 
placed sin 8 by 0; K, ,,(z) is a Macdonald function. Integrat- 
ing (56) over the solid angle 

w 

we get the magnitude of the spectral power of the particle 
emission: 

m 

This quantity is exactly the same as the well known expres- 
sion from synchrotron radiation theory. l2  This should be the 
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case as synchrotron radiation arising when a relativistic par- 
ticle performs cyclotron rotation along an orbit with a con- 
stant radius of curvaturep, is identically the same as its cur- 
vature radiation when it is moving along a curvilinear 
magnetic field with the same value ofp = p,. 

The obtained agreement with the synchrotron radiation 
theory confirms the correctness of Eqs. (2  1 ), (22) for the 
permittivity tensor of the plasma. The use of other expres- 
sions for E does not lead to the same result. For example, 
using ( 16) we get th.e formula 

e Z o  1 
~ ( o )  = --; - J (z-1)Ai (z) d l ,  

CY- t , 
which does not correctly go over into the frequency depend- 
ence of the synchrotron radiation power. 

The authors are grateful to V. L. Ginzburg, L. P. Pi- 
taevskii, and B. M. Bolotovskii for useful discussions of the 
results of this paper. 

''In the pulsar magnetosphere in the region r ( R ,  where the radio emis- 
sion is generated, both this condition and the condition p,, ( r )  =.O are 
well satisfied. Here r is the distance from the surface of the neutron star 
and R ,  = c/fl the light cylinder radius ( R  is the angular rotation fre- 
quency of the star). 
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