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A quantum theory of photodetection of interference fields is developed. Among others, this 
theory deals with the method of two-photon coincidences which can be used to reveal quantum 
effects. It is shown that an interference pattern obtained by this method depends on the state of 
atomic systems creating interfering light beams (packets), especially on the correlation 
between the fields of neighboring atoms: in the absence of a correlation the usual spontaneous 
radiation is generated, whereas in the case of full correlation the result is in the form of 
collective radiation; the visibility of the interference patterns observed in these two cases is 
different. The results are compared with theoretical relationships derived in earlier 
investigations. 

INTRODUCTION 

Problems related to interference of extremely weak 
Wp = C Bp.xuh, (4) 

h 

light beams and to quantum effects which should then be 
observed are currently attracting much interest. We shall which represents an analytic signal (see, for example, Ref. 
consider the relationship between an interference pattern 2)  for a classical vector potential. 
and the states of atomic systems creating light beams and we According to the theory of photodetection developed 
shall show that, in particular, interference is different in the by Glauber3 (see also Ref. 21, the result of ~hotodetectionof 
case of individual spontaneous emission from atoms in each a field in a state I $  > by one and two ~hotodetectors is de- 
group and in the case of collective spontaneous emission. scribed by the functions 

1. INTERFERENCE OF LIGHT BEAMS FROM TWO ATOMS J = ( 9 1 A + A - ( $ > ,  J ' 2 ' = ( ~ J A + A + ' A - A - ' I $ > ,  ( 5 )  

We shall consider a linearly polarized electromagnetic where 
field; the operator of the vector potential for this field has a 
single Cartesian component A+ =  ah+^/, A- = akuh 

b .4 

~ ( r ,  t)= [aIuh(r, t ) f  ahtuh*(r, t )  I ,  ( 1 ) are operators dependent on r and t (representing the coordi- 
x nates of one of the photodetectors and the instant at which it 

operates), whereas A '+ and A ' are the same operators 
where a, and a; are annihilation and creation operators of dependent on r' and t ' and representing the second photode- 
a photon, corresponding to a plane wave tector. The functions of Eq. (5 )  represent the correlation 

properties of the field. In the case of a field in the state 
U&(r, t ) =  ( 2 n h ~ ~ J o ~ V ) " ~  exp [ i  (khr-wht)], wh=ckh (2) b:){O)) wehaveJ= IWp12andJ'2'=0. 

traveling in a quantization region V which is a rectangular The operators of Eq. < 3) satisfy the relationships 
parallelepiped for which the wave vectors k, are specified by 
the conditions of periodicity. 

We shall assume that this field is created by two groups 
of identical two-level atoms (the number of atoms in each 
group is m,  and m, ) and we shall consider interference be- 
tween the fields emitted by these groups of atoms. If initially 
at t = 0 there is only one excitedpth atom, then after t )  T ( T 
is the spontaneous emission time) the field is in a state 
b: I(O)), where ({O)) is the vacuum state of the field, and 
b: is the photon creation operator corresponding to a 
spherical wave diverging from thepth atom. This operator is 
described by 

where 

is the spatial correlation coefficient of the fields emitted by 
atoms p and q. Bearing in mind that the emitted fields are 
quasimonochromatic (a, =a0) ,  we find that the functions 
Wp are described by the following approximate relation- 
ships 

h h 
which show that the quantity Rpq determines also the differ- 

wherep,, are constant coefficients; if the atom emits in free ence between the energy of the sum field Wp + W, and the 
space, then ,Bpn = ,B;, exp( - ik, rp ) . Operators of this type sum of the energies in fields Wp and Wq . If the atoms emit in 
are introduced in Ref. 1. The operator (3)  is associated with free space, then Rpq ZO for Irp - r, 1 )  A and R,, z 1 for 
a complex function Jrp - rq 1 4 1, where the distance A (correlation radius) is of 
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FIG. 1. Interference of one-photon beams ( 1  and 2 are the centers of 
spherical mirrors and foci of paraboloidal mirrors). 

the order of the wavelength 2vc/w0. In the former case the 
excited atoms emit practically independently of one another: 
this is the case of generation of the usual spontaneous radi- 
ation, which will be discussed in Sec. 2 on the assumption 
that R, = 0 whenp#q. In the latter case the atomsp and q 
interact strongly and collective spontaneous radiation (su- 
perradiance) is generated. These estimates can be refined,4 
but they are sufficient for our purpose. When the interaction 
takes place, the quantities P,,, change generally differently 
for different atoms: superradiance will be considered in Sec. 
3  on condition that R,, = 1 for atoms in the same group and 
R, = 0 for atoms in different groups. Clearly, these are the 
limiting cases, but the formulas obtained for the more gen- 
eral conditions are very cumbersome. 

Spontaneous radiation emitted by atoms may be fully 
correlated in an extended region4 and it is then directional. 
However, if the radiation emitted by atoms in each group is 
not directional, it can be converted into a directional wave 
beam by, for example, a system shown in Fig. 1  and consist- 
ing of small spherical and large paraboloid mirrors. Systems 
of this kind are used widely in antenna technology and they 
make it possible to convert radiation from atoms in each 
group (which occupies a volume considerably greater than 
the wavelength) into a single quasiplane wave. Two such 
waves intersect in the interference zone Vi. 

We shall apply the Eqs. ( 7 )  to the interference between 
fields created by two atoms (m, = m, = 1, p = 1 or 2) 
which at t = 0 are in the state 

characterized by constant values ofp, and up ; here, ( 1, ) is 
an excited state of thepth atom and 10, ) is its ground state. 
Therefore, for t ) T and R ,, = 0 the field is in a state 

We then have 

A-I$)=(p,W,c,++p,W,c,+) 1{0) ), 

where the following notation is used: 

so that 

J=IplW,l2+ ( p ~ W ~ ( ~ + 2  Re (ptot'p,'azWtW,*), 

J(2)=l~tpzw,21=. ( 1 3 )  

FIG. 2. Interference of cylindrical optical beams with an arbitrary num- 
ber of photons. 

We shall be interested mainly in the interference of qua- 
sirnonochromatic and quasiplane waves in the interference 
zone K.. We need not then consider a specific optical system 
and we can discuss (as in Fig. 2)  two light beams (packets) 
with a finite transverse cross section and a finite length (and, 
consequently, a finite energy) which intersect in the zone c. 
These beams pass through the zone V, at a velocity c and 
they interfere for a finite time. If in this zone we have 
1 W, 1 = 1 W2j and the beams are characterized by wave vec- 
tors ky and k: . then we can substitute in Eq. ( 13 ) 

where J, and cP, are slowly varying functions of r and t .  
Assuming, moreover, that 

we obtain the expressions 

@=cpi-cpt'-'pz+~2'=(k,0-k,0) (r-r'). (16) 

The first expression shows that the interference recorded by 
one photodetector occurs only if a , # O  and a2#0, i.e., it 
occurs when the number of photons in each beam is indeter- 
minate and depends on the phases @, and $,. The second 
expression (for J '~ ' )  does not contain these phases and the 
visibility is always v = 1, which is essentially a quantum ef- 
fect (see Sec. 4).  In general, the visibility is defined as fol- 
lows: 

z)= ( Jrnm-Jrnin) I(Jnto,+ Jrnin). 

2. INTERFERENCE OF LIGHT BEAMS IN THE CASE OF THE 
USUAL SPONTANEOUS EMISSION 

If light beams (Fig. 2)  are created by groups of atoms 
and these atoms emit independently (R,, = S,, ) beginning 
with an initial state described by Eq. ( lo) ,  then the state of 
the field at t )  T is given by 

which is a generalization of Eq. ( 11 ); the subscript p as- 
sumes m = m, + m, values and labels the atoms in the first 
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group (from 1 to m, and then in the second group (from 
m , +  1 t om,+m, ) .  

The functions J and J',' for the state ( 17) are 

where in the case of four different subscripts we have 

(pq; rs)=o,'o,'o,o,, (19) 

and when two subscripts are identical (for example, if 
p = r ) ,  then the corresponding values of a vanish (the prod- 
uct a,*o, vanishes); (pq;pq) = 1. Using Eqs. ( 14) and ( 15), 
we can rewrite Eqs. ( 18) and obtain 

J= Jo [ r, I P. 1 '+2 E I P P ~ P P P ~ J .  I COP (rp.+~~,P-cpP-%) 1, 
P P < q  

@p*-a,. 
x (cos 

f cos @Pq+@ra 1 
2 

where 

which has the value @,, = 0 if the atoms p and q belong to 
the same group, but @,, = @ if the atom p is in the first 
group and the atom q is in the second group; in the opposite 
case we obtain @,, = - @. In the process of formation of 
@,, the additional phases @, due to the distribution of 
atoms in space cancel out and the function J',) contains the 
phase shift @ = (k: - k: ) ( r  - r ') ,  which is recorded by the 
method of two-photon coincidences, moreover, this function 
contains phases qP which depend on how the atoms are ex- 
cited. 

We shall assume that all the phases @, and qP are ran- 
dom and independent. Then, averaging over these phases 
gives 

and if we assume that 

I pP1 '=p, when the atomp is in the first group, 
(23) 

IpPl2=P2, when the atomp is in the second group, 

we find that 

+m,m,PiP2(1+ cos 0 )  1. 

Therefore, there is no interference in the case of one-photon 
detection and random phases and the oscillatory term disap- 
pears. However, if 

@p+$p=)c.l, when the atom p is in the first group, 
(25) 

@ p + ~ p = ~ 2 ,  when the atomp is in the second group, 

then instead of the first expression in the system (24), we 
now have 

J=J=J,{m,P,+m,P,+m,(m,-I) P,Q,+m2(m2-1)P2Q2 

+2mlm2(PlP2QiQ,)"' cos [ (klo-k,o)rf xI-x2] ), Q~=I-PI, 

(26) 

i.e., interference is observed. The conditions of Eq. (25) are 
realized when atoms in each group are excited by a laser 
pulse traveling in the direction of the light beam initiated by 
such a pulse (Fig. 2) .  The second expression in Eq. (24) is 
not affected under the conditions described by Eq. (25). 
Equation (26) is formally valid also when cP, and qP are 
constant (and different) in each group, but this means that 
the size ofeach group is small compared with the wavelength 
and then the interaction of atoms and radiation becomes 
collective; the relationships governing this case are different 
(see Sec. 3). 

3. INTERFERENCE OF LIGHT BEAMS IN THE CASE OF 
COLLECTIVE SPONTANEOUS EMISSION 

If the emission of atoms in each group is fully correlat- 
ed, then the state of the resultant field is described by 

where the state 

(bl+) " l ( b 2 + )  

In,, n2)= (n,!n,!) '" I{O)) 

can be represented as n, photons in a cylindrical zone Vl that 
moves along the lines of flow at a velocity c, and n, is the 
number of photons in an identical volume V,, the intersec- 
tion of which with V ,  gives rise to an additional interference 
volume V, (Fig. 2).  In the case of uncorrelated spontaneous 
radiation emitted by excited atoms (p, = 1, a, = O), dis- 
cussed above, we now have a different state: 

with the same number of photons in each beam. Bearing in 
mind that because of the interaction of the atoms the func- 
tions W, change (see Sec. 1 ) and form, # m, it is certain that 
I Wl I # I W,(, we find that the state (29) is described by 

J=Joln,+Jo2n2, 

J~2~=Jo,zn,(ni-l)+Jo,"n2(n,-l)+2Jo,Jo~n,n2(l+ cos Q), 
(31 1 

where J, ,  = I W, I*, whereas in the case of the state (30) we 
have 

J=Jo(n,+n2), 

J(2)=2J0z[n1(nl-l) f n,(n2-l) +nin,(l+ cos c9) 1. (32) 

In these formulas the numbers of photons n, and n, in each 
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beam is fully determinate, and because of complete indeter- 
minacy of the phases one photodetector cannot reveal inter- 
ference, exactly as in the case of a difference between the 
states (29) and (30) when J,, = J,,. Under two-photon de- 
tection conditions the difference can be revealed even in the 
classical limit: for example, if n, = n2% 1, we find from Eq. 
(31) that v = 1/2, whereas Eq. (32) gives v = 1/3. The 
higher visibility ( v  = 1/2) is clearly due to the greater co- 
herence of the state (29), which appears in the case of super- 
radiance. 

Going from Eq. (27) to Eq. (28), we find that the coef- 
ficients y,,, become 

I mi! mi-n  
y1.n = -- ptnal , 

[ N l  (m,) 1''' (n!) ''' (mi-n) ! 

but it is easy to find J and J',' for arbitrary values of y , ,  . If 
1 aln 

yl,.=eap(- - lal 1') - 
2 

(1= 1,2) 
(n!) '" 

a coherent state closest to a classical field is obtained. For the 
general state (28),  we have 

where 

and in the case of the coherent state (34) we have the rela- 
tionships 

corresponding to a semiclassical theory of photodetection in 
which the quantum properties of the field are ignored. 

The expression (35) for J shows that in the case of an 
indeterminate number of photons the occurrence of interfer- 
ence can be observed using one photodetector, because 
a,  # 0 and a, f 0. The expression for  is very cumbersome, 
but it can be simplified if we average the quantities a,, a;", 
and a:'' over random phases. In fact, it follows from Eqs. 
(15) and (33) that a, and a:" contain a phase factor ex- 
p(i+, ), where aj2' contains a factor exp(2i+, ), so that after 
averaging we obtain the expressions 

- 
f =Jo,(n,)+Jo2(n,), J(2'=J,,2(n,(n,-1) )+J,2Z(nz(n2-l) > 

+2Jo,Jo2(n1)(nz> (I+ cos @), (38) 

with the structure similar to Eq. (3  1 ). This is to be expected: 
in the case of fully determinate numbers n, and n, the expres- 
sions in Eq. (38) should reduce to Eq. (3  1 ) , and then aver- 
aging over the phases is unnecessary. 

In the case of the state (27) it follows from Eqs. (33) 
that 

(n,)=f(m,), (n,Z)=f(ml) f(ml- l)+f(mt) ,  
(39 

which can be used to calculate (n2), (n), and ( n , )  for m, 
and P, . 

Assuming that J, = J,, (n,), we shall rewrite the ex- 
pressions in Eq. (38) as follows: 

where the parameter 

6(2)={~0,2[<(6n1)2)-(nl)]+JOZ2[((6nZ)Z)-(nZ)l)/(~)2, 

is governed by the quantum properties of the optical field. 
We have (n,) = m:P, for m:P, ( 1 and (n, ) = m, for Q, 
= 0. Therefore, in the simplest case of PI = P, = P and 
m, = m, = m/2, we obtain 6"' = - 2P(m - I )/m2 for 
m2P( 1 and = - l/m for Q = 0, so that S'2'-+ 0 in the 
limit m -. cc ; since d "' < 1 corresponds to finite values of m, 
the quantum effects increase the visibility. The intensity J, 
of each beam is proportional to m: in the case of collective 
emission. At low values ofP, this is achieved without signifi- 
cant changes in the functions W, and J,, whereas at low 
values of Q, the function J,, is compressed by a factor m, (so 
that the same energy as in the case of an individual emission 
of radiation is released in a time T /m, ), so that J,, a m, and 
J, am:. 

The visibility of the interference pattern (both J and 
J"') is not affected if a part of the radiation reaches the inter- 
ference zone and the rest escapes to the sides. This follows 
from the fact that the scattering toward the sides and the 
reflection and refraction alter only the coefficients P , ,  
which occur in Eqs. (3)  and (4).  

4. COMPARISON WITH EARLIER INVESTIGATIONS 

The expressions in Eqs. (40) and (41) were obtained 
(for J,, = J,, = J,) for the first time in our investigation5 
using a simplifying assumption involving replacement of 
each wave beam with a plane wave (within the limits of the 
interference zone); a similar replacement is made in the one- 
mode radiation model in Ref. 4. However, it was not pointed 
out in Ref. 5 that these expressions apply to collective emis- 
sion; in the case of the usual spontaneous emission we have 
to use Eq. (24) for J"'. 

It is worth noting that Eqs. (24), (38), and (40) have 
the same form 
- 
J"'=C+2J,J2 (1+ cos @) (42) 

and differ only by the term C which is independent of the 
photodetector coordinates. The term C depends on the 
quantum state of the field and contains the quantities 
m, (m, - 1)  and n, (n, - I ) ,  i.e., it decreases because of the 
quantum effects, whereas the second term is essentially clas- 
sical. The physical meaning of this is self-evident (see Ref. 
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5 ) :  the term Cis due to the absorption of two photons from 
the same beam and after the absorption of one photon the 
state of the beam generally changes and the second photon is 
absorbed from a beam in the new state. The exception here is 
the beam in a coherent state, which after the loss of a photon 
reduces to the previous form; interference between such 
beams is described by Eq. (40) with = 0. The second 
term in Eq. (42) is due to the absorption of photons from 
different beams: in the case of two one-photon beams (see 
Sec. 1)  only this term is retained, because we then have 
C=O. 

Pure states and mixed states with random phases are 
considered above. In the case of the more general mixed 
states we shall require additional averaging; the appropriate 
generalization of Eq. (40) corresponding to Jo, = Jo2 was 
given in Ref. 5. 

Tatarskii6 investigated interference patterns corre- 
sponding to different states of the field, including the states 
(29) for n, = n, = 1 and 2; it was pointed out that an in- 
crease in the number of photons (from n = 2 to n = 4) re- 
duces the visibility of the interference pattern. However, no 
allowance is made in Ref. 6 for the fact that a complete calcu- 
lation of this effect (for Jo, = J,, and any value of n )  gives 
Eq. (40) obtained earlier5 and in this case we have 6"' 
= - l/n, so that there is no need for averaging over the 
phases (see Sec. 3). 

Mande17 considered the interference of fields generated 
as a result of spontaneous emission. In fact, Mandel dis- 
cussed the statistics of photons reaching apertures of photo- 
detectors during a short time interval St after the arrival of 
the field at the photodetectors. Therefore, Mandel consid- 
ered the field near its front and a real photodetector is un- 
suitable for measurement of such a field (see, for example, p. 
276 in Ref. 2),  because the field is not narrow-band close to 
the front. This is important because the functions and J and 
J"' represent the results of photodetection only if within the 
frequency range occupied by the field the spectral sensitivity 
of the photodetector is constant.2x3 Nevertheless, many rela- 
tionships from Mandel's paper7 are valid in the theory of 
photodetection' and only some of the conclusions have to be 
corrected. In particular, the terms m, (m, - l)P,Q, in ex- 
pressions of type (26) should not be attributed to collective 
emission: in fact, these expressions are valid when the dis- 
tances between atoms are large compared with A and there is 
no interaction; in this case the forced phase locking of atoms 
is due to an exciting pulse. Equation (29) in Ref. 7, derived 
by cumbersome combinatorics, follows from our Eq. (20) 
for J'2' on condition that the phases qP are the same in each 
group, which postulates smallness of the dimensions of the 
group compared with A, when we would have to allow for 
the collective nature of the emission. 

In the review by Paul8 the simplest Mandel relation- 
ships7 are derived already on the basis of Glauber's theory3 
but the dynamic aspect, which is the difference between indi- 
vidual spontaneous emission and collective emission (Sec. 
3 ) , is not discussed. 

Equations (24), (31), (32), (38), and (40) for Jcorre- 
spond to Dirac's assertion that different photons do not in- 
terfere, but the expressions ( 16), (20), (26), and (35) for J 
and all the formulas for J'L' suggest that the reverse is true 

CONCLUSIONS 

In experimental investigations of the interference of 
weak light beams the most interesting from the physical 
point of view is the function J"', measured by the method of 
two-photon coincidences, because this function manifests 
the quantum properties of the optical field when the number 
of photons is small; the physical meaning is given after Eq. 
(42). An interference pattern obtained by the two-photon 
coincidence method obeys (for any intensity no matter how 
low) the classical laws in two cases: when the light beams are 
in a coherent state (see Secs. 3 and 4) and when the number 
of independently emitting atoms fluctuates in accordance 
with the Poisson law [i.e., if in the relationships of Sec. 2, we 
have m, (m, - 1 ) = ( E l  )'; see Refs. 7 and 81. Therefore, 
the quantum properties should be observed in experiments 
on interference between fields emitted by a small number of 
atoms. Only thought experiments of this kind have been car- 
ried out so far. 

It should be pointed out that in the experimental part of 
Ref. 5 the two-photon coincidence method was used to de- 
termine for the first time a transient interference pattern 
formed by two independent laser beams. The nature of this 
pattern was found to be the same as the interference of a split 
laser beam and it was independent of the beam intensities 
right up to values approximately an order of magnitude 
higher than the intensities in the experiments of Pfleegor and 
Mandel.9 This result confirmed that the beams in question 
were in a coherent state. Although the passage of light 
through some absorbing and nonlinear media creates non- 
classical light beams with photon antibunching, i.e., with a 
negative value of the parameter 6"' (see, for example, the 
review of Koziero~ski '~) ,  the simplest and most convincing 
way of observing quantum interference is that described 
above, i.e., such quantum interference is best observed when 
the number of atoms is small. However, if a weak intensity is 
achieved by stopping down, reflection, refraction, or ordi- 
nary absorption, the photon statistics and visibility are not 
affected. 
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cussions, and to V. I. Perel' for kind and constructive criti- 
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