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We have calculated analytically the radiative-recoil correction to the hyperfine splitting in the 
ground state of muonium due to radiative corrections to the electron line. Its magnitude in 
units of the hyperfine splitting energy E, is ( a ( z a ) / r 2 ) .  (m/M) [6<(3) + 377' In 2 + T'/ 

2 + 17/8]Ep or numerically 4.05 kHz. 

1. INTRODUCTION 

At the present time the hyperfine splitting in the ground 
state of muonium has been measured with a relative error 
3.6. lo-" ,' and further improvement of the experimental re- 
sults is planned.2 The theoretical calculations of this quanti- 
ty, which have a history of many years and which have been 
closely related to the principal steps in the development of 
quantum mechanics and quantum electrodynamics, still 
have not reached such accuracy. At the same time, since 
muonium is a purely electrodynamical system, there are no 
fundamental difficulties in the path of increasing the accura- 
cy of the theory of muonium. 

The main contribution to the hyperfine splitting in a 
hydrogen-like ion, which corresponds to the nonrelativistic 
interaction of the two magnetic moments, was calculated by 
Fermi3 and is" 

Here R , = mca2/2h is the Rydberg constant, c is the veloc- 
ity of light, m is the electron mass, h is Planck's constant,pB 
is the Bohr magneton, Z is the charge of the nucleus in units 
of the electron charge ( Z  = 1 for the proton and the muon), 
M i s  the mass of the nucleus a n d p  is the magnetic moment of 
the nucleus. 

I t  is convenient to classify the corrections to the Fermi 
splitting energy ( 1 ) according to their dependence on the 
mass ratio of the electron and the nucleus. Corrections of the 
first type do not depend at all on the mass ratio and are 
calculated in the external-field approximation. Examples of 
such contributions are the Breit correction4 of order (Za) 
which is due to the relativistic behavior of the electron, and 
the radiative correction of first order (contribution 
a ( Z a ) t o  the hyperfine splitting) in the external field. Cal- 
culation of this c ~ n t r i b u t i o n ~ . ~  was one of the first impressive 
achievements of the renormalization technique in quantum 
electrodynamics. At the present time corrections of order 
a(Za)' which do not depend on the mass ratio have also 
been calculated (see for example the review of Ref. 7) .  

Corrections of the second type are linear in the mass 
ratio m/M, i.e., they explicitly take into account recoil ef- 
fects. The relativistic two-particle equations are used for cal- 
culation of these corrections. The early studies made use of 
the Bethe-Salpeter (BS) equation,' by means of which the 
leading correction for recoil of order ( Z a )  (m/M) was ob- 
tained.93'0 Investigation of other corrections has turned out 
to be considerably more laborious and has led to develop- 
ment of various modifications of the BS equation which are 

more convenient for applications (for more detail consult 
Section 2) .  A specially developed two-particle formalism 
has recently been used to calculate the contribution of order 
(Za)2(m/M)." ,7  Radiative corrections to recoil of order 
a (Za) (m/M) were not known until recently. In this order 
there are contributions proportional to the square and first 
power of the logarithm of the mass ratio, and also a term 
which does not depend on the mass ratio. All of these terms, 
which are related to vacuum polarization, were obtained in 
Ref. 12. In regard to radiative corrections to the electron 
line, only the coefficient of the logarithm of the mass ratio 
has previously been calculated analytically. l 2  The present 
work is devoted to analytical calculation of the term which 
does not depend on the mass ratio. (The results of our work 
have been published in the form of letters. I 3 * I 4 )  

The article is organized as follows. In the second section 
we describe briefly the two-particle formalism version used 
by us. The third section is devoted to selection of diagrams 
which lead to the contribution of order a(Za) E, to the hy- 
perfine splitting. Here we also discuss questions related to 
the choice of gauge and the problem of infrared and ultravio- 
let divergences. In this section it is found in what mode it is 
necessary to calculate the diagrams which contribute to the 
hyperfine splitting. In the fourth section for the case of dia- 
grams with a self-energy correction we have illustrated the 
basic procedures with which we have been able to obtain an 
answer in closed form. Here we also give the results of calcu- 
lation of the remaining diagrams which give a contribution 
of order a ( Z a ) E , .  The last section contains the principal 
result of the present work-the radiative correction to recoil 
of order a ( Z a  ) (m/M) E,. In  this section we also discuss 
prospects for further improvement of the value of the hyper- 
fine splitting in the ground state of muonium and for im- 
provement of the value of the fine-structure constant. 

2. THE EFFECTIVE DlRAC EQUATION 

The BS equation has a number of shortcomings which 
complicate its use in exact calculations: the existence of a 
nonphysical variable of the relative energy (or  relative time) 
in the BS wave function, which hinders its physical interpre- 
tation; irreducibility of the ladder approximation to the 
Dirac equation if one of the particles is very heavy; absence 
of an exactly soluble zero approximation, and so forth. 
While the first shortcoming reflects to a certain degree the 
multiparticle nature ofbound states in quantum field theory, 
the remaining result primarily from the nonphysical nature 
of the diagram classification used in the BS equation by 
means of the concept of two-particle irreducibility. Actual- 
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ly, the contributions of ladder graphs and graphs with cross- 
ing photons have a tendency to cancel, while the means of 
dealing with these graphs in terms of the BS equation are 
completely different. It is therefore natural to reconstruct 
the BS equation in such a way that these graphs enter more 
equally and to attempt to avoid simultaneously all of the 
enumerated shortcomings. We shall follow the procedure of 
Gross,'' who proposed to select the free two-particle propa- 
gator in a form corresponding to propagation of the heavy 
particle on the mass shell. This choice of the bare propagator 
corresponds to the physics of the problem, since it is clear 
that in a weakly bound system the heavy particle is mainly 
near the mass shell. Specification of the free propagator de- 
termines all the structural blocks of the two-particle equa- 
tion. The corresponding formulas have been obtained in 
Refs. 16 and 17, and we shall not give them here. We note 
only that a three-dimensional equation is obtained for the 
wave function, which is a four-component spinor in the elec- 
tron index and two-component spinor in the muon index. 
This equation is close in form to the ordinary single-particle 
Dirac equation, the wave function in it depends only on the 
three-dimensional momentum, and we shall call it the effec- 
tive Dirac equation (EDE). The kernel of the EDE is ex- 
pressed in terms of the kernel of the BS equation by the for- 
mula 

K=K,,+K,,(S~-S) K,,+Kss(So-S) Kss (So-S)  Kss+. . . . 
(2)  

where K and KBs are respectively the kernels of the EDE and 
the BS equation, and the difference of the free two-particle 
propagator and the Gross propagator is 

In this difference the factors which contain the electron mass 
m act on the electron indices, while those in the muon mass 
M act on the muon indices. The EDE and the series for its 
kernel ( 2 )  are shown graphically in Figs. l (a)  and l (b) ,  
where the "small rectangle" denotes the difference propaga- 
tor (3) .  

We choose the zeroth kernel approximation KO, which 
includes Coulomb exchange, in a form which permits exact 
solution." The obtained energy-level values correctly de- 
scribe the fine structure (with inclusion of the reduced 
mass), and the wave functions can be approximated with 

FIG. 1. Effective Dirac equation for bound states (a)  and the series for its 
kernel (b )  in terms of the Bethe-Salpeter equation. 

accuracy sufficient for our purposes by the product of the 
Coulomb functions for the reduced-mass Schrodinger equa- 
tion and the free electron spinor. In the limit of infinite mass 
of the heavy particle the EDE, in contrast to the BS equation, 
goes over already in the zeroth approximation to the Dirac 
equation in an external field. As a consequence of the de- 
pendence of the perturbation SK = K - KO on energy, the 
perturbation-theory formulas contain in addition to the usu- 
al terms the derivatives of the perturbation with respect to 
energy (in what follows derivatives are indicated by 
primes) : 

En=Eno+(nl iGK(EnO) In) 

Here G,, (E )  is the Green function of the EDE with the bare 
kernel KO, in which we have carried out the subtraction 

Gno (E) =Go(E) - 1  n) (nl/(E-Eno). 

3. DIAGRAMS GIVING CONTRIBUTIONS OF ORDER a(Za)E, 

The main contribution ( 1) to the hyperfine splitting is 
from the part of the one-photon exchange entering into the 
perturbation SK, which depends explicitly on the muon spin. 
Of course, in calculation of this contribution we obtain as the 
factor p, in ( 1 ) the Dirac value of the muon magnetic mo- 
ment. To obtain the total value of the magnetic moment it is 
necessary to take into account the vertex correction to the 
muon line. As we shall see, the contribution of order 
a ( Z a )  (m/M)EF is due to integration over the large virtual 
momenta, when the vertex correction to the muon line al- 
ready does not reduce to an anomalous moment. Therefore 
all corrections below are calculated in units of v, (see Eq. 
( 1 ) ), wherep is taken to be the Dirac value of the magnetic 
moment. The contribution of radiative corrections to the 
muon line must be calculated individually. 

In this study we shall investigate contributions of order 
a ( Z a ) E F  associated with radiative corrections to the elec- 
tron line. In analysis of these corrections it is convenient to 
use the Fried-Yennie gauge (FY) gaugela for the radiative 
(attached at both ends to the electron line) photon. This 
gauge is distinguished by the fact that in it infrared diver- 
gences are softened; for example, there is no Abrikosov loga- 
rithmI9 in the infrared asymptote of the electron propagator. 
In the FY gauge it is not necessary to introduce the infrared 
mass of the photon in the usual subtraction procedure on the 
mass shell. The exchange photons (fastened at one end to the 
electron line and at the other end to the muon line) are taken 
in the Coulomb gauge, since it is well known that any other 
gauge for the exchange photons leads to fictitious contribu- 
tions to the energy of bound states. The possibility of using 
different gauges simultaneously for the radiative and ex- 
change photons is due to the Abelian nature of quantum 
electrodynamics. In non-Abelian theory vector particles 
carry charge, and therefore all of their propagators must be 
chosen in the same gauge. In the FY gauge the subdiagram 
with the radiative correction has a softer behavior at low 
momenta than does the corresponding skeleton block. This 
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FIG. 2. Complete gauge-invariant set of diagrams contributing to radia- 
tive corrections to the recoil: (a)-diagrams with two exchange photons, 
(b)--diagrams with a renormalized vertex operator, (c)-diagrams with 
a renormalized self-energy operator. 

greatly facilitates the analysis of the possible contributions 
and is the main reason for use of the FY gauge. 

Even in the FY gauge the analysis of all diagrams with 
radiative corrections to the electron line entering into the 
kernel of the EDE (2 )  and into the perturbation-theory for- 
mula (4 )  remains a very awkward problem. We shall give 
here only the results of this treatment. All diagrams with 
radiative corrections are conveniently classified depending 
on how many exchange photons the radiative photon spans. 
I t  can be shown that diagrams in which the radiative photon 
spans more than two exchange photons do not lead at all in 
the FY gauge to contributions of order a ( Z a ) E F .  ( In  any 
other gauge these diagrams have even a still larger contribu- 
tion aE,.) The contribution of all diagrams spanning two 
exchange photons reduces to the diagrams of Fig. 2 ( a ) .  The 
matrix element of these diagrams must be calculated be- 
tween the large components of the electron and muon spin- 
ors, neglecting the momenta of the wave functions inside the 
diagrams. That is, in calculation of the loop integrals it is 
assumed that the external momenta are on the mass shell, 
and that their spatial components are equal to zero. The con- 
tribution of individual diagrams to the energy reduces to the 
product of the matrix element calculated in this way by the 
square, at zero, of the Coulomb wave function of the Schro- 
dinger equation with reduced mass. The contributions of the 
diagrams encountered in the following must also be calculat- 
ed under these, as we shall call them, standard conditions 
(SC).  

Analysis of diagrams with a vertex correction is compli- 
cated by ultraviolet divergences. Accurate investigation 
with use of gauge-invariant ultraviolet regularization (for 
example, by introduction of a heavy photon) shows that as a 
consequence of the Ward identity the divergent parts of the 
vertex and self-energy corrections cancel. This cancellation 
occurs not in the kernel of the EDE (2 ) ,  but only in the 
expression for the energy (4).  Next we shall deal only with 
the finite part of the vertex, and then with the self-energy 
corrections. The contribution of the anomalous magnetic 
moment we shall also consider separately. This is due to the 
fact that the anomalous magnetic moment behaves in a dif- 
ferent way than the remaining form factors, which in the FY 
gauge fall off rapidly on approach to zero of the momentum 
transfer and of the virtualities of the electron ends. I t  is possi- 
ble to show by explicit calculation that the anomalous mo- 
ment does not lead to corrections of order a ( Z a ) E F .  We 
shall assume further that the anomalous moment has been 
subtracted from the vertex. A detailed analysis shows that 

the contribution of all diagrams with a vertex correction re- 
duces to the sum of the diagrams of Fig. 2 ( b ) ,  which must be 
calculated under the standard conditions. Note that in con- 
structing the kernel of the EDE (2 )  and the perturbation 
theory for the energy levels ( 4 )  a nontrivial cancellation of 
the subtraction diagrams with the vertex correction has oc- 
curred. 

The investigation of diagrams with a self-energy correc- 
tion is distinguished by a number of features, as a result of 
the fact that the simplest kernel of the BS equation with this 
correction contains the inverse muon propagator. No other 
kernel contains such an object, which plays a specific role in 
perturbation theory. We note also that terms with deriva- 
tives of the kernel in Eq. ( 4 )  act just for diagrams with a 
divergent part of the self-energy correction and provide can- 
cellation of ultraviolet divergences, which was mentioned in 
discussion of vertex corrections. The subtractive diagrams 
with a self-energy insert cancel, as in the case of diagrams 
with a vertex correction. The entire contribution of dia- 
grams with a self-energy correction reduces therefore to the 
sum of the diagrams of Fig. 2 ( c ) ,  which must be calculated 
under the standard conditions. 

Therefore in calculation of the contribution of radiative 
corrections to the electron line it is sufficient to calculate the 
sum of the diagrams of Fig. 2 under the standard conditions. 
These diagrams form a complete gauge-invariant set, and 
the standard conditions mean that all outer ends are on the 
mass shell. Therefore we can by means of a Feynman trick go 
over to a covariant gauge in the exchange photons. It is pos- 
sible also to go over to a Feynman gauge for the radiative 
photons, since in the diagrams of Fig. 2 there are a renormal- 
ized mass operator and a renormalized vertex. This transfor- 
mation permits us to use the well known expression for a 
renormalized vertex with one virtual electron end.20 

As we have already mentioned, the sum of the diagrams 
of Fig. 2 does not contain infrared divergences. The individ- 
ual diagrams in the FY gauge also do not contain them. 
However, in the Feynman gauge the individual diagrams 
diverge in the infrared and we regularize them, introducing a 
mass of the radiative photon. The cancellation of these diver- 
gences in the sum of the diagrams can be understood also 
without reference to the FY gauge. Indeed, the diagrams of 
Fig. 2 describe radiative corrections to forward scattering of 
an electron by a muon at threshold. Ordinarily in the scatter- 
ing cross section the infrared divergences due to emission of 
virtual photons cancel the divergences from emission of real 
bremsstrahlung photons. In forward scattering there is no 
bremsstrahlung, and therefore there are no infrared diver- 
gences associated with the radiative corrections. In  regard to 
the divergences at  threshold, which exist already in the sum 
of the two-photon graphs without radiative corrections, the 
addition of these corrections to the electron line removes the 
divergence, since the corrections are weak functions of the 
loop momentum. 

We note that in any gauge except the F Y  gauge there are 
many other diagrams in addition to those shown in Fig. 2 
which lead to corrections of order a(Za) to the hyperfine 
splitting. The contributions of these diagrams, as the analy- 
sis given above shows, cancel, and for calculation of the total 
contribution of radiative corrections to the electron line it is 
sufficient to calculate the matrix elements of the diagrams of 
Fig. 2 in an arbitrary gauge under the standard conditions. 
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4. ANALYTICAL CALCULATION OF THE DIAGRAMS 

The simplest diagrams from the calculational point of 
view are those of Fig. 2(c),  which contain a self-energy cor- 
rection. We shall describe below the main steps of the calcu- 
lations, devoting particular attention to those procedures 
which have enabled us to obtain an answer in closed form. 

Substitution of the known expressionZ0 for the self-ener- 
gy operator into the matrix element of the diagrams of Fig. 
2(c) under the standard conditions leads to the following 
contribution to the hyperfine splitting: 

a(Za) m 3i 
6E, = -- ER- 

n 8n2p2 
1 5  

Here x and y are Feynman parameters from the expression 
for the self-energy cor rec t i~n ,~~,u  = m/2Mis a small param- 
eter, and the momentum integration is over the exchange- 
photon momentum made dimensionless by the electron 
mass. The weighting functions of the Feynman parameters 
are given by the relations 

where il is the infrared mass of the radiative photon in units 
of the electron mass. Everywhere below where not specifical- 
ly stated otherwise we shall omit the dimensional factor 
[ a ( Z a ) / r 2 ]  (m/M)E, in the expressions for the energy 
and shall calculate the dimensionless integrals which re- 
main. 

The main contribution of order l /p  to the integral (5)  
is from the residue at the muon pole, which corresponds to 
motion of the muon on the mass shell. This same residue is 
related to the leading infrared divergence of the integral, 
which is proportional toil - 'I2; the remaining contributions 
diverge only logarithmically. These two circumstances 
make it convenient to calculate separately the contribution 
of the mass shell and of the remaining difference, not only for 
the contributions of the diagrams of Fig. 2 (c ) ,  but also for 
the diagrams of Figs. 2(a)  and 2(b).  It turns out that the 
structure of the infrared divergences for all pole contribu- 
tions is the same, and these divergences cancel individually 
within the sum of the pole and nonpole contributions of the 
diagrams of Fig. 2. For the pole contribution to the energy 
shift ( 5 ) ,  leaving in the integrand only the leading term of 
the nonrelativistic expansion with respect to the muon mass, 
we have 

3 n  
6E, (m. s.) = 

21.1 (1+2p)'" 

The result of the integration in ( 7 )  is conveniently repre- 
sented in the form 

where we have introduced the standard infrared-divergent 
integral 

1 

The integral I, does not need to be calculated, since it arises 
also in the pole contributions of the diagrams of Figs. 2 (a )  
and 2(b).and cancels in the sum of these diagrams. 

Returning to the calculation of the total contribution of 
the self-energy correction (5)  we see at once that the usual 
combining of the photon, electron, and muon denominators 
by means of additional Feynman parameters u and u and 
subsequent momentum integration does not lead to success. 
In fact, in this procedure we arrive at a fourfold integral over 
Feynman parameters with a typical denominator 
( 1 - x)yuu + ,uf(x, y, u, u ) .  In the last term the function f is 
of order unity, but expansion of the denominator in the small 
parameter ,u is invalid since its first term vanishes in the 
region of integration. On the other hand, in an exact calcula- 
tion of the fourfold integral, technical difficulties arise 
which cannot be overcome. Therefore we do not introduce 
additional Feynman parameters into the expression (5) ,  but 
make a Wick rotation (this is valid since the diagram is cal- 
culated at threshold) and symmetrize the integrand in k,: 

3 
6 E , =  7J dx 1 dy hi I dk' I d0 

nF 0 0 0 0 

Direct calculation of this integral is hindered as before by the 
impossibility of using the smallness of the parameter ,u. We 
shall use the obvious identity 

The denominator of the factor in front of the curly brackets 
on the right-hand side of the identity contains two terms, the 
first of them being much smaller than the second, since 
,u2k 4/(k + at ) <,u2< 1. Since we shall follow here only the 
contributions oforder l/,u and 1 to the energy ( lo), this term 
can be omitted, making use of the presence in the problem of 
a small parameter. Now the contribution to the energy, 
which contains the weighting function h ,, after angular inte- 
gration will take the form 

1 I m 
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In the first term of the expression (12) there is a small pa- 
rameter p (we shall call these integrals p-integrals), while 
the second term does not depend on p (we shall call these 
integrals c-integrals). Calculation of a p-integral in closed 
form is impossible. We shall break down the region of inte- 
gration into parts by means of a parameter a such that 

In the region of small momenta OGkGa we shall use the 
smallness of pk in comparison with unity and shall expand 
the integrand in series, after which the integration is easy to 
perform. In the region of large momenta k > a  we shall use 
for simplification of the calculations the fact that k> 1. At 
momenta k -a  the two approximations are applicable si- 
multaneously and therefore in the sum of the contributions 
of the two regions the auxiliary parameter a cancels. After 
making the calculations described, we obtain 

For calculation of the c-integral from Eq. ( 12) we shall first 
carry out the momentum integration 

As we have already mentioned above, it is more convenient 
to calculate the difference of the total and pole contributions 
to the energy shifts. The pole terms, for example (7) ,  contain 
contributions of order 1/p and 1, which we shall denote re- 
spectively by SE 'O'(m.s.) and SE " ' (m.~ . )  , so that SE(m.s.) 
= SE'O'(m.s.) + SE " ' (m.~.) .  Notethatacontributiontothe 

total energy shift of order 1/p is given only by thep-integrals, 
while the c-integrals give only a contribution of order unity, 
since they do not contain the parameterp at all. It is evident 
from (7)  that subtraction from the c-integral (15) of the 
pole contribution SE 4:' signifies the substitution in the inte- 
grand 

1 1 n 
arctg - -+ arctg - - - = - arctg a,. 

a I al  2 
(16) 

It turns out that the rule ( 16) for subtraction of the contri- 
bution of the mass shell has a general nature and is valid for 
calculation of all remaining c-integrals (associated with the 
diagrams of Figs. 2 ( a )  and (b)  ) , differing only in the explic- 
it expression for the weighting function a ( x , y ) .  As a result of 
the calculations we obtain 

6E11-6~,:" (m.  s.) =-21nZ/1G. (17) 

The calculation of the remaining contribution SE,, , Eq. 
( l o ) ,  of the self-energy correction is carried out like that 
described above. The only difference is that now the contri- 
bution of the p-integral is not equated to zero, and we sub- 
tract from it the contribution of the mass shell SE " ' (m.~.) .  
The subtraction leads to the following substitution in the 
integrand for the p-integral: 

This rule for subtraction of the pole contribution, like the 
similar rule for the c-integrals ( 16), is universal and applies 
to all p-integrals. We shall calculate the contribution SEX$ 

- SE i:)(m.s.) by breaking down the region of integration 
by means of the parameter a (see Eq. ( 13) 1. At small mo- 
menta we shall first integrate over momentum, and then 
over the Feynman parameter; at large momenta the reverse 
order of the integrations is appropriate. In the course of the 
calculations, characteristic integrals arise which involve the 
Euler logarithm and frequently are not given in standard 
handbooks. 

As a result we obtain for the sum of the p- and c-inte- 
grals 

3 M 9 M  
6EZ2-6Ez2(m. s.) = - -In2 - - - In - 

4 m 2 m  

The total contribution of diagrams with a self-energy correc- 
tion of Fig. 2(c)  is equal to the sum of the contributions (8),  
(17), and (19): 

The leading logarithms in this expression are due to the 
asymptotic behavior of the self-energy operator and cancel 
in the complete gauge-invariant set of diagrams of Fig. 2. 
This cancellation can easily be proved by means of Ward 
identities, and in any event such logarithms do not appear at 
all in the individual diagrams in the Landau gauge. 

The contribution to the hyperfine splitting of diagrams 
with a spanning photon of Fig. 2 (a )  is given by an integral 
similar to ( 5 ) for the self-energy corrections: 

6E. = -- Sax JdYcx-s) 16n2pZo 

(21) 
Here 

A= [-k2+2bko+ az-iO]y (1-y), 
(22) 

The integral (2  1 ) is calculated by means of the same proce- 
dures as the self-energy contribution (5) ,  but the calcula- 
tions are still more cumbersome. As the result of lack of 
space we do not have the possibility of giving intermediate 
results and shall at once write out the answer: 
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Here c (3 )  is the Riemann zeta function; it arises in calcula- 
tion of integrals with a trilogarithm, similar to the Euler 
dilogarithm mentioned above. As in the preceding case, the 
leading logarithms in (23) are easily obtained from the cor- 
responding asymptotic behavior. 

Calculation of the contribution of the diagrams of Fig. 
2(b) with a vertex correction is extremely cumbersome. We 
used the well known expressionZ0 for a renormalized vertex 
function with one virtual end, which contains six indepen- 
dent form factors. We present the result of the calculations: 

It is easy to see that the leading logarithms in this formula 
are due to the asymptotic behavior of the vertex function 

5. DISCUSSION OF RESULTS 

Collecting the obtained contributions to the hyperfine 
splitting and restoring the omitted factor [a(Za)/.rr2] (m/ 
M) E,, we obtain 

. . 

The first term in the expression (25 ) is the radiative correc- 
tion of first order in the external field and after taking into 
account the anomalous moment of the muon it reproduces 
the known r e s ~ l t . ~ , ~  The coefficient of the logarithm in the 
second term has also been obtained previou~ly. '~ The re- 
maining terms, which we shall write out individually, have 
been calculated analytically for the first time in the present 
work and are its principal result: 

Note that the scale of the correction (26) is characterized by 
a coefficient .rr2 in a number of terms. This also is to be ex- 
pected, since usually in quantum electrodynamics the con- 
stant correction to the leading term of the asymptotic behav- 
ior has a scale .rr2 if this leading term is the square of a large 
logarithm (recall the canceled squares of logarithms in Eq. 
(25) ). The radiative correction to the recoil (26) has recent- 
ly been obtained numerically2' and turns out to be Sv,, 
= 3.83(7) kHz. Our result (26) is Sv,, = 4.05 kHz, which 

differs from the result given above2' by three standard devia- 

tions of the numerical integration. If we recognize that the 
integrands have singularities, the error in the numerical inte- 
gration may very likely be underestimated. The calculations 
in Ref. 21 and in the present work were carried out in differ- 
ent gauges, and different methods of removing the infrared 
and ultraviolet divergences were used. We consider that the 
difference of only three standard deviations between the 
numbers obtained should be regarded as an indication of the 
compatibility of these results. 

We shall give the complete theoretical formula for the 
magnitude of the hyperfine splitting with inclusion of the 
correction (26) (see for example the review Ref. 7) : 

3 
S~=vp(l+o.) (1 + - (Za)'+o.+a (Za) 

2 

where a, is the muon anomalous magnetic moment, and the 
radiative correction to the recoil S, is given by the relation 

m 4 az(Za)  m M - (Za) (Z2a) - . 1,037 (9) - -7 - in3 - 
M 3 n  M m 

Let us make clear the origin of those terms in Eq. (28) which 
are not contained in the review of Ref. 7. The last term in the 
square brackets is the result of the present work (26), and 
the next to the last term in (28) is the result of the numerical 
integration of Ref. 2 1 and corresponds to the contribution of 
radiative corrections to the muon line. At the present time 
we are performing an analytical calculation of this contribu- 
tion a id  hope to report the result in the very near future. 
Finally, the last term in (28),  which was obtained in Ref. 22, 
is the leading three-loop contribution. In this contribution 
the cube of the large logarithm contains the extra factor a ;  
we note, however, that there are also other uncalculated con- 
tributions of order a 2 ( Z a )  ( m / M ) E F .  

Calculation of the magnitude of the hyperfine splitting 
according to Eq. (27) gives 

Sv,,, =4463304.77 (98) (133) (60) kHz, (29) 

where we have used the known value of the fine-structure 
constant obtained on the basis of the Josephson effect,23 

aJ-'=137.035963(15) (6=0.11. (30) 

and the experimental value' for the ratio of the muon and 
electron masses 

M/m=206.768262 (62) (6=0.3.10-6). (31) 

The letter S above denotes the magnitude of the relative er- 
ror. In the parentheses in Eq. (29) we have given the errors 
of the last significant digits. The still uncalculated terms of 
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order a2 ( Z a )  (m/M)EF have been estimated as 0.60 kHz 
(6 = 0.13.10-6). The error 1.33 kHz (6  = 0.3.10-6) ori- 
ginates from the error in measurement of the mass ratio 
(31). Finally, the error of 0.98 kHz (6 = 0.22. is due 
to the uncertainty in determination of the fine-structure con- 
stant. The correction (26) obtained in the present work is 
4.05 kHz (6 = 0.91. lop6) and makes a substantial contri- 
bution to the value (29). The experimental result for the 
hyperfine splitting' 

has a substantially smaller value than the theoretical num- 
ber. Note, however, that it is planned2 to make a substantial 
increase in the accuracy of measurement of the mass ratio 
( 31 ), which contributes the greatest uncertainty to the theo- 
retical value (29). The agreement of the experimental value 
(32) and the theoretical value (29) for the magnitude of the 
hyperfine splitting must be considered quite satisfactory. 

From the data on hyperfine splitting in muonium (32) 
it is possible by means of Eqs. (27) and (28) to find the value 
of the fine-structure constant: 

a,: = 137.035992 (22) (6=0.16.10-'). (33) 

We give also the two other most accurate values of the fine- 
structure constant: 

which were obtained respectively from measurement of the 
electron anomalous magnetic moment24 and experiments on 
the quantum Hall effect.25 Without going into detailed dis- 
cussions of the experimental and theoretical problems in- 
volved in the values (34) and (35), we mention only that 
there are real possibilities for improvement of their accura- 
cy. The quantum-electrodynamical values of the fine-struc- 
ture constant (33) and (34) agree beautifully with each oth- 
er, and the rigid-body values (30) and (35) agree equally 
satisfactorily. Only further investigations will show whether 
the discrepancy noted above between the two groups of data 
must be taken seriously. Investigations of this type are being 
carried out in various directions; in regard to the theory of 

the hyperfine splitting in muonium, the problems closest to 
solution are analytic calculations of radiative corrections to 
recoil associated with the muonium line, and purely radia- 
tive corrections of order a2 (Za)EF.  

"Experimentally one measures the frequency, which is related to the en- 
ergy as E, = hv,. In what follows we shall speak of the energy levels, 
having in mind this relation. 
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