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The global structure of the universe is analyzed in the chaotic inflation scenario. It is shown 
that under certain conditions the expansion of the universe in this scenario does not have an 
end and may not have a beginning. The greater part of the physical volume of the universe 
must always be in the inflation stage at a density of the order of the Planck density. During the 
time of inflation, the universe separates into exponentially large regions, within which all 
possible types of metastable vacuum states and all possible types of compactification 
compatible with the presence of the inflation regime are realized. The investigation is made by 
means of the diffusion equation for a fluctuating scalar field p in the inflationary universe. 

1. INTRODUCTION 

In recent years, the main hopes for the creation of a 
consistent cosmological theory have been based on the de- 
velopment of the inflationary universe scenario. By means of 
this scenario, it has been possible to solve numerous prob- 
lems relating to the earliest stages in the evolution of the 
universe. Much less well known (but no less important) are 
the consequences of this scenario relating to the structure of 
the universe in the large. The essence of these new insights is 
that the inflationary universe appears locally as part of a 
homogeneous and almost flat Friedmann universe, but the 
global structure of the universe is very different from the 
Friedmann geometry.I4 The corresponding differences do 
not affect the structure of the observable part of the universe, 
and in this sense they are of no interest from a narrowly 
pragmatic point of view. However, the differences between 
the global structure of the universe and the structure of the 
Friedmann universe are of the greatest importance when one 
is considering the problem of the origin of the universe (the 
singularity problem), the future of the universe, the applica- 
tion of the so-called anthropic principle in cosmology, etc. 

Historically, many different variants of the inflationary 
universe scenario have e ~ i s t e d . ~ - ~  From our point of view, 
the simplest and most natural of them is the so-called chaotic 
inflation scenario9 (for a review of the present status of the 
inflationary universe scenario see Ref. 1 ) . This scenario can 
be realized in a large class of theories, including theories of 
scalar fields with polynomial effective potentials, V(p) -pn 
(Ref. 9) ,  in an extended variant of Starobinskirs model,I0 in 
grand unification theories," in N = 1 s ~ ~ e r g r a v i t ~ , ' ~  in Ka- 
luza-Klein theories,I3 and in superstring theory.I4 " 

Recent investigations have shown that in this scenario 

structure of the universe. Section 4 contains an analysis of 
solutions of the diffusion equation for the scalar field p, and 
in Sec. 5 we discuss the significance of our results for the 
development of our ideas about the global structure of the 
universe. The Appendix contains a brief derivation1' of the 
diffusion equation that we employ.'5r16 

2. CHAOTIC INFLATION 

To illustrate the basic idea of chaotic inflation, we con- 
sider the very simple theory of a scalar field p with Lagran- 
gian 

Here, M, = G is the gravitational constant, M, - 10" 
GeV is the Planck mass, R is the curvature scalar, and il 4 1. 
We consider a region of the universe with scale greater than 
2H- ' ( H I  is the radius of the event horizon in the infla- 
tionary universe, H = a/a is the Hubble parameter, and a ( t )  
is the scale factor of the universe). If the classical field p is 
sufficiently homogeneous and varies sufficiently slowly in 
this region (d ,pbp<  V(p) ), its behavior in this region does 
not depend on the physical processes outside the h o r i z ~ n ' ~ . ' ~  
and is determined by the Klein-Gordon equation for the ho- 
mogeneous field p., 

where V(p) = ilp4 / 4  is the effective potential of the scalar 
field in the theory (2.1 ), and also by the Einstein equation 

inflation of the universe never ends in the greater part of the where k = + 1,0, respectively, for a (locally) closed, open, 
physical volume of the un ive r~e . ' ~  The universe is broken 

or flat universe. For p 2 M,, the solution of Eqs. (2.2), 
up into a large number of locally Friedmann regions, in each 
of which the properties of space-time and elementary parti- (2.3) reaches rapidly (within a time of order H-') the 

asymptotic regime: cles can be different. The aim of this Daoer is to make a more . . 
detailed study of this question by analyzing solutions of the 
diffusion equation for a fluctuating scalar field p in an infla- 
tionary ~n ive r se . ' ~ "~  n 

In Sec. 2, we recall the general scheme of the scenario of a ( t )  =ao{= [pa'--cp2(t) I) .  
chaotic inflation, and in Sec. 3 the elementary theory of 
quantum fluctuations of the scalar field during the time of In this regime p < V(p), + 4 3H@, and H 4~ '. The last in- 
inflation and the influence of these fluctuations on the global equality means that during the time At 5 H - I  
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(At S (67~) '12//2 I I - M ~  ) the value of H(p) hardly changes 
and the universe expands quasiexponentially (it inflates) : 

a ( t + A t )  %a ( t )  eHAt.  (2.6) 

The inflation regime is realized for p 2 M, /3. For p S M, 
/3, the field p oscillates rapidly and its potential energy 
V(p - Mp/3 ) -AM goes over into thermal energy - T4. 
The temperature of the universe TR after its heating may be 
of order A ' 1 4 ~ ,  or less, depending on the strength of the 
interaction of the field p with the other fields. It is important 
that TR does not depend on the initial value q,, of the field q, 
for 9, )M,. The only parameter that depends on q,, is the 
scale factor a ( t 1, which increases by e x p ( ~ p  / M  ) times 
during the inflation time. 

If, as is usually assumed, description of the universe in 
terms of a classical space-time becomes possible when the 
matter energy-momentum tensor becomes less than M i ,  
then at this instant d,,q,bq, 5 M: and V(p) S M i. There- 
fore, the only restriction on the initial amplitude e, = q,, of 
the field in the considered theory is the condition 
Iq, 4/4 S: M :, and the typical initial value of the field q, is of 
the order 

To be definite, we consider a closed universe of typical initial 
scale O(M;'). One can show that if primordially 
d,pdpp 5 V(p) - M $ in this universe, then after a time of 
order M ;  ' the value of d,,pdPp becomes much less than 
V(p), and the subsequent evolution of the universe is de- 
scribed by Eqs. (2.2)-(2.5). After inflation, the total scale 
of the universe is in accordance with (2.5) 

I-MP-' exp (ncpo2/MpZ) -Mp-' exp (nlh'") . (2.8) 

For A - 10-l2 (see below) this gives I- 10'06 cm, many or- 
ders of magnitude greater than the scale ( - loz8 cm) of the 
observable part of the universe. 

As a result of the inflation, the term k/a2 in (2.3) be- 
comes negligibly small compared with H ', and this means 
that the universe becomes flat and its geometry locally Eu- 
clidean. For similar reasons, the universe becomes locally 
homogeneous and isotropic. The density of all "undesira- 
ble" objects (monopoles, domain walls, etc. ) created before 
or during the time of inflation becomes exponentially small, 
and they are never recreated if the temperature T,  is not too 
high. 

We wish to emphasize that for the realization of this 
scenario it is sufficient if the condition d,,pdp 
q, S: V(p) -M: is satisfied in the region of the smallest pos- 
sible scale O(M; I ) .  Since the inequality d,p# q, S M i  is 
satisfied in any region of classical space-time, this condition 
seems completely natural." (Moreover, the condition (do 
q,)' 5 V(p) can in reality be significantly relaxed. '0*2'320) 

We have discussed above the general scheme of the 
chaotic inflation scenario without allowance for quantum 
effects. These effects are indeed unimportant for the study of 
the local structure of the inflationary universe. It is however 
remarkable that it is precisely the quantum effects that de- 
termine the structure of the universe on the very greatest 
scales. 

3. QUANTUM FLUCTUATIONS IN THE INFLATIONARY 
UNIVERSE 

As was shown in Ref. 22, inflation leads to the genera- 
tion of very specific quantum fluctuations of the scalar field 
p .  The spectrum of these fluctuations with wavelength 
I < H - ' ( p )  has the same form as the usual spectrum of 
quantum fluctuations in Minkowski space. At the same 
time, the spectrum of the fluctuations with momentum 
k = I- ' < H has the form of the spectrum of particles in 
quantum statistics with anomalously large occupation 
numbers, n, - (H / k 1 3 )  1. For this reason, the quantum 
fluctuations with wavelength 1)H -' can be interpreted as 
inhomogeneities 6p(x)  in the distribution of the classical 
scalar field The description of this phenomenon is 
completely analogous to the description of Bose condensa- 
tion in samples of finite size.24 This effect is the basis of the 
theory of the formation of density inhomogeneities 6p(x) 
during the time of i n f l a t i ~ n ~ ' - ~ ~  (in the considered case, 
these inhomogeneities are proportional to the inhomogene- 
ities 6p(x)  of the scalar Referring the reader to 

or a detailed discussion of this the original s t ~ d i e s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  f 
effect (see also Refs. 15-17 and the Appendix), we recall 
here the basic phenomenological features of the process of 
formation of the inhomogeneities Sp(x)  of the classical field 
p during the time of inflation. 

The field p ( x )  in the inflationary universe can be repre- 
sented as a sum of a relatively homogeneous (over scales 
much greater than H -  ') classical field p, that satisfies Eq. 
(2.2) and quantum fluctuations Sp(x)  near p,. As in Min- 
kowski space, the quantum fluctuations can be represented 
in the form of a set of waves with different momenta k. How- 
ever, in the inflationary universe the momentum k corre- 
sponding to each given wave is exponentially decreased by 
the inflation. When the corresponding wavelength -k - '  
becomes greater than H -  ' the fluctuations ofthe field in this 
wave cease and there develops in space a field distribution 
Sp(x)  whose characteristic wavelength continues to in- 
crease as eH', while the amplitude hardly depends on the time 
(6p(x)  decreases slowly as @). The reason for the "freez- 
ing" of the long-wave fluctuations of the field p is to be 
sought in the presence of the term 3H@ in (2 .2) ,  which has 
the meaning of a friction force. In the subsequent expansion 
of the universe, more and more new fluctuations Sp(x)  of 
the scalar field "freeze" in amplitude, having at the time of 
freezing the wavelength I- H - I .  As a result of this, there are 
formed on the background of the originally homogeneous 
classical field p inhomogeneities Sp(x)  with characteristic 
wavelength H- ' .  These inhomogeneities are stretched 
(without their amplitude changing), the distribution of the 
field q, again becomes homogeneous, inhomogeneities of 
wavelength H-' again arise on this background, etc. The 
rms amplitude of the inhomogeneities generated during the 
time t is 

In particular, the rms amplitude of the inhomogeneities 
Sq,(x) with wavelength -H- ' generated during the charac- 
teristic time At = H- ' is 
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During this same time At = H -' the classical field pc is 
decreased in accordance with (2.4) by 

AT (x) =Mp2/2n(p. (3.3) 

Comparison of (3.2) and (3.3) shows that for p <p *, where 

we have 16p(x) I 4 Ap(x), so that the fluctuations of the 
field p hardly influence the rolling down of the field p to the 
minimum of V( p) . 

Much more complicated and interesting is the behavior 
of the regions of space with p s p  *. In such regions, 
(Sp(x) ()Ap. As a result, during the time At = H- ' any 
region of initial size O(H-  ') expands bye times linearly and 
e3 times in volume, so that it can be represented in the form of 
a collection of O(e3) regions each having the dimension 
H- ' .  In almost half of these regions the field p does not 
decrease during this time but increases. It is important that, 
in accordance with the "no hair" theorem, for de Sitter space 
the events taking place within each of the regions of dimen- 
sion I 2  O(H- ') are practically independent of what hap- 
pens in the other regions of the universe. '8219 This means that 
during the time At = H - '  any region of scale Z?O(H-' 
(p) ) containing a field p %p * increases and breaks up into 
O(e3) independent regions (mini-universes) of scale 
O(H -I), and in almost half of these regions the field p in- 
creases. As a result, during the inflation time the total vol- 
ume of space filled by constantly increasing fields p s p  * 
increases approximately as exp[ (3  - In 2 )H(p )  t] ') If it 
is now borne in mind that H(p) increases with increasing p 
(3.2), then it may be concluded that the greater part of the 
physical volume of the inflating universe must be in the state 
with maximally large value of p ,  i.e., with p-pp 
-A -'I4Mp, above which the classical description of the evo- 
lution of the universe becomes irnpos~ible.'-~ It is interesting 
to note that as p approaches p, -2 - " 4 ~ p  the process of 
creation of inflationary mini-universes with increasing field 
p becomes suppressed, since for V(p) 2 M; the energy den- 
sity associated with the field inhomogeneity Sp(x)  and pro- 
portional to d, (Sp )# (Sp) - H4 becomes greater than 
V(p) and the corresponding regions of the universe cease to 
inflate.4 

Note that these results by no means require the entire 
universe to be eternally in a state with p -A - ' 1 4 ~ ,  and with 
Planck (or almost Planck) energy density V(p) -M;. It is 
necessary to distinguish between two possible formulations 
of the problem. In the first case, we need to know what frac- 
tion of the initial volume of the universe is in the state with 
given field p. To solve this problem, we must find the distri- 
bution function PC (p) of the field p in the comoving frame 
or calculate the mean value of the field p and the standard 
deviation A of the distribution of this field in unit coordinate 
volume (i.e., without allowance for the increase in the vol- 
ume due to the expansion of the universe). As will be shown 
in the following section, the value of A during the time of 
inflation is always less than the mean field p, (for 
p, <A - " 4 ~ p  ). Therefore, the mean field pm behaves like 
the classical field p (2.4). This means that the field p in- 
creases in the greater part of the initial (coordinate) volume 
of the universe in accordance with the results of Sec. 2. 

In the other formulation of the problem, one must find 

what fraction of thephysical volume of the universe, i.e., the 
volume with allowance for its increase during the time of 
inflation) is at the present time in the state with given field p. 
It is this question that we investigated above, and the result is 
that the inflation leads to a growth in the volume of the re- 
gions of the universe filled with the largest possible fields p.  
A more detailed discussion of this question is contained in 
the following section. 

4. DIFFUSION OF THE SCALAR FIELD DURING INFLATION 

As we have already said, the value of the inhomogene- 
ities of the field p with wavelength 1 2  H -' changes during a 
time At = H -  ' on the average by 16p(x) 1 - (2a)  - ' and 
during this same time the entire distribution of the field p is 
displaced toward the minimum of V(p) by the amount 
(At /3H) (dV/dp) .  The evolution of the field with wave- 
length I ? H- ' looks like Brownian motion (diffusion) in 
the field of an external force - dV/dp. We first attempt to 
understand qualitatively the behavior of the distribution 
function PC (p,  t )  of the diffusing scalar field,24 and we then 
study PC (p,  t)  in more detail by solving the corresponding 
diffusion equation. 

We recall first of all that inhomogeneities of the classi- 
cal scalar field p ( x )  occur in the inflationary universe only 
on scales exceeding H- This makes possible the follow- 
ing formulation of the problem: We assume that the field p in 
a region of scale O ( H  - ' ) was homogeneous, p = p, , and we 
then study the dynamics of the development of inhomogene- 
ities in this region in the course of its inflation. Thus, PC (p,  
t = 0) a 6 ( p  - p, ) in the considered region. The further 
evolution of the distribution PC (p ,  t)  in the theory with 
V(p) = Ap 4/4 is divided into two basic stages. 

The first stage has duration At- (A '/'M,)-'. In this 
stage, in accordance with (2.4), the classical field p hardly 
changes. But on the background of the field pzp, there 
appear inhomogeneities with wavelength 1 2  H- '(p,) and 
standard deviation A - (H /2a) (Ht)  '/' (3.1 ), this increas- 
ing by the end of the period to 

It follows from (4.1) that for V(p,) = Ap :/4<M$ the 
standard deviation of the inhomogeneities Sp(x)  of the field 
p is negligibly small compared with the mean value of this 
field, i.e., pm z p  z p , .  

In the following stage of the expansion of the universe 
( t  2 (A'/2Mp ) - ' ) fluctuations Sp(x)  are also produced. 
However, their amplitude, which is proportional to H ( p ) ,  
decreases with decreasing field p as p '(t)/p;, and their 
standard deviation decreases as p 3( t ) /p  i. At the same 
time, as is shown in Ref. 26, the amplitude of the previously 
created inhomogeneities decreases only as @-p(t)  (2.4). 
The behavior of the standard deviation A(t) of the inhomo- 
geneities formed in the first stage is the same: 

A ( t )  -h"q ( t )  (po2/Mp2. (4.2) 

Therefore, the form of the distribution P, (9, t )  in the second 
stage is almost completely determined by the fluctuations 
formed in the first stage of the process: 
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where the mean field p ,  ( t )  is determined by Eq. ( 2 . 4 ) .  (In 
accordance with (4 .2 ) ,  the standard deviation A ( t )  of the 
distribution of the field p  is always less than its mean value 
pm ( t )  for V ( p )  -Ap : / 4 < M $ .  This justifies the determin- 
ation of the mean field @, by means of Eq. (2 .4 )  for the 
classical field p ( t )  in all stages of the considered process. 
For potentials V ( p )  of a more complicated form, the condi- 
tion A  < p  may be violated in the late stages in the evolution 
of the field p ( t ) ,  and then the determination of the mean 
field pm ( t )  may become a somewhat more complicated 
problem. ) 

We can go over from the distribution of the field p  in the 
comoving coordinate system (4 .3)  to the distribution 
P, ( p ) ,  which takes into account the relative increase in the 
volume of the space occupied by the large field p.  In the 
general case, the transition from P,  ( p )  to P,, ( p )  is fairly 
complicated. However, for us it will be sufficient to have the 
relationship between Pp ( p )  and P ,  ( p )  that is approximate- 
ly satisfied when p - p, % A  after a time At- (A"2Mp)-' 
from the beginning of the diffusion process: 

whence 

where A,  B  = 0( 1 ) .  It follows from (4 .5 )  that in regions 
withp, Z R  -'l6M, during At- (A ' 1 2 ~ , )  -' thedelta-func- 
tiondistribution Pp ( p ,  0 )  = PC (p,O) a S ( p  - p,) goes over 
into a distribution that increases with increasing p.  This con- 
clusion agrees completely with the results obtained in the 
previous section. 

For a more detailed analysis of the behavior of the dis- 
tribution, we can use the diffusion equation (Fokker-Planck 
equation) for the long-wave component of the field p: 

where D = H3(p)/8.rr2 is the diffusion coefficient and 
( 3 H )  - ' is the mobility. This equation was first obtained by 
Star~binskii . '~, '~ However, in Ref. 15 the derivation of this 
equation was merely sketched, a more detailed derivation is 
contained in the rather inaccessible publication of Ref. 16. 
For completeness of the exposition, we derive this equation 
in the Appendix, following our earlier paper.17 

To study the solutions of Eq. ( 4 . 6 ) ,  we shall find it con- 
venient to introduce the dimensionless variables 

In these variables, Eq. (4 .6 )  takes the form (we omit the 
subscript c of PC ( x ,  T) ) 

where A ( x )  = - ah /ax, B ( x )  = h  3/.rr. The relative impor- 
tance of the first ("convective") and second ("diffusion") 

terms in (4 .8 )  can be estimated by means of the ratio 

Thus, the "diffusion" effects are most important in the re- 
gion of maximally large fields p  such that 

As before, we consider the evolution of a distribution 
P ( p )  concentrated at the initial time at p  = p,: 

w e  consider below two possibilities: 1 ) V ( p ,  ) < M  4, and 2 )  
vcpo 1 - M i .  

In the first case, we can, in accordance with the asserted 
smallness of the "diffusion" effects, immediately say that in 
the distribution P ( p ,  t )  there will be a sharp peak displaced 
in the direction of decrease of the potential U p ) .  The width 
of the peak will depend on the position of the maximum of 
P ( p ) .  To study the behavior of P ( p ,  t )  = P(x ,  r ) ,  we intro- 
duce the function Z ( t ) ,  which satisfies the differential equa- 
t ioni  = A ( 2 )  and the initial condition2 ( 0 )  = x ,  p ,  / M p .  
In Eq. (4 .8 ) ,  we make the change of variables ( x ,  7) -+ ( y,  
s): 

At the same time 

and therefore Eq. (4 .8 )  takes the form 

The function I ( t )  actually characterizes the position of the 
maximum of P ( x ) ,  while y  characterizes the deviation from 
the maximum. Because the peak in the distribution P ( x )  is 
narrow, we can restrict ourselves to the leading terms in the 
expansions of the functions A ( Z  + y  ) and B(Z + y )  in pow- 
ers of the small parameter y,  so that Eq. (4.10) takes the 
form 

The solution of Eq. (4.1 1 )  with initial condition P( y, 
0 )  a s (  y )  is given by a Gaussian distribution with 
( ~ ( s ) )  = 0  and time-dependent standard deviation. The 
variance 

can be found without explicit solution of Eq. (4.11 ) . From 
Eq. (4.11 ) there follows an equation for the variance: 

d 
- A2 ((S =2A1 (5 (s)  ) A2 ( s )  +B (5) .  
ds 

(4.12) 

Since we are not in fact interested in the dependence of the 
variance on the time but on the position I  of the maximum of 
the distribution P, we make in Eq. (4.12) the change of vari- 
ables s -2 :  
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A 2 ( x o )  =O. 

The solution of the Cauchy problem (4 .13 )  has the form 
r 

Suppose the Hubble constant depends as a power on the 
field, h ( x )  = pxn/n,  this corresponding to a potential 
V ( p )  = g p  2"/2n and /3 = ( 4 ~ n ~ / 3 ) ' ' ~  M :- 2 .  In such a 
case, the variance is 

It can be seen from this formula that with decreasing 5  the 
variance of the distribution initially increases from zero and 
then begins to decrease if n > 1 or only increases if n < 1. 
When the peak of the distribution function has moved suffi- 
ciently far from the initial position, Z g x , ,  the distribution 
function in the neighborhood of the maximum is proportion- 
al to 

Our discussion is valid if we consider deviations from 
the maximum of the distribution P ( p )  sufficiently small for 
restriction to the leading terms in the Taylor expansions of 
the coefficients of Eq. (4 .10)  to be valid. In the case of the 
potential V ( p )  = Ap4 /4 ,  this means that we must have 

In particular, the conclusions about the Gaussian form of 
the distribution P ( p )  are valid if A ( X )  5 5 / 6 .  

For V ( p )  = Ap4 / 4  it follows from (4 .15 )  that 

It is important that in this case Vo= V ( p , )  < M :  

and therefore the peak of the P ( p )  distribution can be as- 
sumed to be narrow and one can speak of a Gaussian P ( p )  
distribution in the neighborhood of the maximum. It is easy 
to show that our result (4 .16 )  for the Ap 4 / 4  theory is in 
agreement with our previous estimates ( 4 . 3 ) .  In the case 
Vo-M; ,  the peak of the distribution P ( p )  is narrow only 
for a small "departure" of @J from p,: V ( p , )  - V( p )  ( M  4,. 
With further decrease of p, the width of the P ( p )  distribu- 
tion increases sharply and becomes of order p. 

We assume that the representation of the distribution 
function in the semiclassical form P-e  - with S> 1 is val- 
id. In this case, the leading term on the right-hand side of Eq. 
(4 .8 )  is the second term, and the coefficient B ( x )  can be 
taken outside the differentiation sign. We then write the 
equation for P ( x )  in the form 

Going over here from x  to the variable 

dx' '=I [ B ( r 1 ) i 2 ] "  ' 

we obtain the usual diffusion equation 

The solution of Eq. (4 .20 )  that is nonzero at r = 0  only 
at the point x  = x,  is proportional to 

For the potential V ( p )  = gp2"2n, we have 

so that the distribution function is proportional to 

It can be seen that for x  &x, the solution does not depend at 
all on x, : 

The result (4 .23 )  is actually obtained under the as- 
sumption that the "convective" term in Eq. ( 4 . 8 )  is small 
compared with the "diffusion" term. This is justified for 
times r SO short that the "convective" classical motion is not 
capable of significantly shifting the value ofx. (This interval 
of time T may be different for each value of x.  ) We estimate 
the corresponding interval T during which Eq. (4 .23)  can be 
used. The "convective" motion of the point x  is determined 
by the equation 

so that Ax 5 x  for r 5 0  -'x2 - " , whereas at larger the diffu- 
sion regime is replaced by the regime of classical "rolling 
down" of the field p  to the minimum of V ( p ) .  Substituting 
in (4 .23)  the value r = O ( b  - 'x2 - " ), we obtain for the dis- 
tribution P ( x )  at the end of the "quantum" stage the expres- 
sion 

The physical meaning of this result is very interesting: P ( p )  
determines the probability of occurrence of an inflationary 
mini-universe of scale I2 O ( H  - ( p )  ) due to quantum diffu- 
sion (tunneling) from a locally de Sitter region of scale 
I2 O ( M ;  ' ) with V ( p o )  - M :. The probability of existence 
of such regions in a space-time foam for V ( p , )  - M 4, should 
not be exponentially ~uppressed.~' Therefore, the expression 
(4 .26)  could be interpreted as the probability of quantum 
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creation of an inflationary universe in accordance with the 
previous estimates of the probability of such a process. 3'-34 
However, we are not considering here the quantum creation 
of the entire universe "from nothing," but the creation of an 
inflationary mini-universe with V(e, )  ( M :  from a "ground 
state" with V(e,) -M:  filling the greater part of the phys- 
ical volume of the universe. 

5. DISCUSSION 

The results above (see also Refs. 2-4) lead to somewhat 
unexpected ideas about the global structure of the universe. 
Prior to creation of the inflationary universe scenario, the 
main guide for cosmologists was the Friedmann model. Ac- 
cording to this, the universe in the large was represented as a 
hot expanding sphere created from "nothing" (from a singu- 
larity, before which there was no space-time at all). In the 
distant future, the universe would either have to cool to zero 
temperature (if open or flat) or again disappear in a singu- 
larity (if closed). This picture appeared to be an almost ines- 
capable consequence of the general theory of relativity and 
the high degree of homogeneity of the universe on scales 
accessible to observation. At the present time, this picture 
has been replaced by that of a self-reproducing inflationary 
universe that only locally resembles the Friedmann uni- 
verse. The existence of such a universe never ends even if the 
universe is closed, i.e., in the universe there is no finite global 
spacelike singular hypersurface whose existence would 
amount to the "end pf time." Moreover, in this scenario 
there are no grounds for fearing the existence of an initial 
global spacelike singular hypersurface, i.e., a common "be- 
ginning of time," before which "nothing e~isted."~ '  

An important feature of the considered picture, which 
arises only in the framework of the scenario of chaotic infla- 
tion, is that the greater part of the physical volume of the 
universe must be at a density close to the Planck density, 
V(e,) - M i  (although the actual regime of creation of infla- 
tionary regions of the universe with increasing field e, also 
takes place at densities many orders of magnitude less than 
the Planck density). The process of diffusion to smaller val- 
ues of the field e, is essentially a process of creation of infla- 
tionary mini-universes. This process takes place indepen- 
dently in different causally unconnected regions of the 
universe. As a result of this, there arise inflationary regions 
(mini-universes) of all possible types corresponding to all 
possible types of symmetry breaking and all possible types of 
compactification (in Kaluza-Klein theories) compatible 
with inflation of the universe. This makes it possible to jus- 
tify the anthropic principle in co~mology.~It seems to us that 
the change in the ideas about our position in the universe and 
its global structure is one of the most important conse- 
quences of the creation of the inflationary universe scenario. 

We should like to express our thanks to Ya. B. Zel'do- 
vich, D. A. Kirzhnits, L. A. Kofman, M. A. Markov, V. F. 
Mukhanov, I. L. Rozental', and A. A. Starobinskii for dis- 
cussing the problems touched upon in this paper. 

APPENDIX: FOKKER-PLANCK EQUATION FOR SMOOTHED 
FIELD IN AN INFLATIONARY UNIVERSE 

In the main text of the paper, we discussed on several 
occasions the behavior of the variance A2 of the field e,(x) in 
the process of inflation of the universe. As in flat space-time, 

the magnitude of the quadratic fluctuation of the field e,(x) 
in quantum theory is infinite even in the vacuum state as a 
result of the addition of the zero-point vibrations of infinitely 
many modes. However,.averaged over a finite volume of 
space, the field operator has finite quadratic fluctuation. 

Writing down the Fourier expansion of the operator 
e,(x) with respect to the spatial variables (for simplicity, we 
assume that space is flat) 

ask 
1 ( x ) = J  [akrpkeikx + c.c.1, ( ~ ~ 1 )  

we introduce a field operator e,,, averaged over the volume 
b3, as follows: 

Here, a,  and a: are ordinary annihilation and creation op- 
erators with standard commutation relations. 

We consider the evolution of the field e,(x) in an infla- 
tionary universe with H = const (in de Sitter space) with 
metric 

d s 2 = - d t 2 + ~ ~ ( l ) d ? ,  R ( t )  = e H L .  

Being interested in the field e, averaged over a physical 
volume k H -3,  we set in (A.2) b = (ERH) - ', E 4 1. Denot- 
ing the field operator averaged in this manner by the symbol 

we obtain for its rate of change the formula 

where 

The equation of motion of the field e , ( x )  in the de Sitter 
universe has the form 

dT/'(cp) ' ;p+3H$-R-2~2rp + ------ = 0. 
d  rp  

(-4.5) 

Ignoring the interaction between the short-wave modes 
with k k ERH, we obtain a linear equation determining the 
dynamics of such modes: 

The last term in Eq. (A.6) can be ignored if 

In the special case of the potential V(e,) = /ZP4 /4, the condi- 
tion (A.7) takes the form 

The requirement (A.7) can be satisfied for E 1 if @ $ M,, 
but it is precisely this region of @ values that is investigated 
in the paper. 
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Thus, in the region @ ) M ,  the short-wave modes 
(k>&RH) satisfy the equation 

~pk+3~@+kZR-2Cpk=0,  (A.6') 

whose solutions possessing the correct normalization are the 
functions 

For k = ERH, we can set 

cpk=-iH/2'"k" (k=eRH). 

q=- ( H R )  -1. 

By means of Eq. (A.8) we can readily show that on 
averaging over a state 1 )  in which there are no quanta of the 
short-wave field, a, 1) = 0 (k>&RH), the different-time mo- 
ment functions of the term f ( t )  on the right-hand side of 
(A.3) have a form corresponding to a Gaussian random pro- 
cess: 

where the summation is over all possible partitionings of the 
indices 1, 2, ..., 2n into pairs. At the same time, 

H3 
= - 6 (ti-t2) ~ 2 0 6  (ti-&) . (A. 10) 

4n2 

The first term on the right-hand side of Eq. (A.3) can 
be reduced to a convenient form by substituting in the equa- 
tion of motion (A.5) the Fourier expansion (A.l)  of the 
field p(x)  after first dividing the momentum space into two 
regions with k5kRH. Then by virtue of Eq. (A.6') there is 
no contribution to the first three terms of Eq. (A.5) from the 
region k >ERH. For the integration over the region 
k <&RH, the most important of the first three terms of Eq. 
(AS)  is the second, so that we can write 

Averaging Eq. (A. 1 1 ) over the volume b = ( E R H )  - and 
assuming that [ ~ ( x )  - @]'4Cp2, we obtain for the first 
term on the right-hand side of (A.3) the expression 

As a result, Eq. (A.3) takes the form 

ci,=--- av(Q) + f (t) 
3H dcD 

(A. 12) 

This is an operator equation written down in the Heisenberg 

picture We shall be interested in the expectation values of 
functions of the operator @ in a quantum state It,), that 
possesses the property 

We note that the condition (A. 13) does not~completely de- 
scribe the state vector It, ) since the population of the modes 
with k a R  (to )His  not determined by this condition. For a 
state vector satisfying the condition (A. 13) there is obvious- 
ly satisfied the requirement a, It,) = 0, k>&R (t)H, used for 
calculation ofthe statistical properties off(t), iftpt,. There- 
fore, the time to in (A.13) must be shorter than the times 
over which we consider the dynamics of the system. 

Equation (A. 12) has the same form as the Langevin 
equation used in the theory of random processes. However, a 
difference from the standard situation is that the two terms 
on the right-hand side of Eq. (A. 12) do not commute. How- 
ever, this circumstance does not affect the asymptotic behav- 
ior of the moments 

m,(t; 't.)=(tol [(D(t+'t.)-(D (t) ]"(to) 

as T-0. Therefore, with allowance for the properties (A.9) 
and (A.lO) of the "random force" f ( t )  we can obtain in the 
usual manner from the operator Langevin equation (A. 12) 
the Fokker-Planck equation for the distribution function 
P(@) of the random variable Q: 

where 

This equation for the case H = const was obtained for the 
first time by Starobin~kii'~ (see also Ref. 17). It is also valid 
for the case of slowly varying H ( h g ~  '), i.e., for the qua- 
siexponential expansion that takes place during the time of 
inflation. Equation (A.14) for the regime of slow variation 
of H was obtained in a somewhat different but equivalent 
form in Ref. 16. 

So as not to complicate the system of notation, in the 
main text of the paper we denote by the symbol p the long- 
wave part @ of the scalar field in (A. 14). 

"In the last two cases, however, the realization of the inflationary uni- 
verse scenario is still far from ~omplet ion .~  

"A similar phenomenon can occur in either the "old" or the "new" infla- 
tionary s ~ e n a r i o . ~ . ' ~ - ~ ~  

"Belief in the existence of a "beginning of time" was based on the singu- 
larity theorems in conjunction with the assumption that the global ge- 
ometry of the universe is close to the geometry of the Friedmann model 
at least in the sense of homogeneity of the universe. In the considered 
scenario, the global geometry of the universe has nothing at all in com- 
mon with the geometry of a homogeneous universe. If the universe is 
noncompact, the existence of a global initial spacelike singular hyper- 
surface would contradict the causality principle. 
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