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The structure of the mixed state of a triplet superconductor with a nonunitary order 
parameter, a large value of x ,  and weak spin-orbit interaction is considered. It is shown that a 
magnetic field (greater than H,, ) penetrates such a superconductor without the formation of 
singularities (Abrikosov vortices), and a distinctive spin texture is formed. One of the possible 
textures is investigated, and expressions for H,, and the magnetization curve near H,, are 
obtained. The transition from the superconducting to the mixed state can be first-order or 
second-order, depending on the mutual orientation of the external magnetic field and the axes 
of the spin-orbit anisotropy. 

1. INTRODUCTION 

The superconducting properties of organic compounds 
of the type M2X (Bechgaard salts), where M is the molecule 
TMTSF or TMTTF and X are different monovalent anions 
(e.g., PF,, ClO,, Br) , are ususual in many respects (see, e.g., 
the reviews in Refs. 1 and 2) .  Superconductivity in Bech- 
gaard salts is strongly suppressed by lattice  defect^,^ and as a 
result it has already been postulated that the superconduc- 
tivity has a triplet character ( S  = 1) in these substances4 
The values of the upper critical field Hc, along one of the 
axes of the crystal are anomalously large5 and are two-three 
times greater than the Clogston paramagnetic limit. As al- 
ready discussed in Ref. 6, this fact also argues in favor ofp- 

plify the theoretical analysis, because of the local character 
of the electrodynamics. It is shown that the phase transition 
from the superconducting to the mixed state can be first- 
order or second-order, depending on the mutual orientation 
of the external field and the axis of the spin-orbit anisotropy. 

We note that the results discussed in this paper are not 
applicable to superconductors with so-called heavy fermions 
(e.g., UBe,,, CeCu,Si,, etc.), in which the pairing is also 
apparently p-type'' but the spin-orbit interaction is large 
and the spins of the superconducting pairs are frozen into the 
crystal lattice and cannot form an independent spin texture. 
In the organic compounds discussed in the present paper the 
spin-orbit interaction is relatively weak. 

pairing. 
2. THE FREE ENERGY AND GINZBURG-LANDAU The aim of the present work is to investigate, in the 

approximation of the Ginzburg-Landau functional (i.e., 
near T, ), the structure of the triplet state in a magnetic field The order parameter of the superconductor in the case 

in the case when the superconducting order parameter is ofp-~airing can be written in the form (see, e.g.9 Ref. 1 1 ) 

nonunitary (the spin of the electron pair has a definite direc- 
tion) and the spin-orbit interaction is weak. We note here 
that the electronic specific heats of the Bechgaard salts ap- 
parently have an exponential dependence on the tempera- 
ture below T, (Ref. 7), while for a nonunitary state we 
should expect a linear dependence (with a density of states 
equal to half that in the normal phase), because the energy 
gap vanishes exactly for half the elementary excitations (see, 
e.g., Ref. 8) .  However, even if the superconducting order 
parameter in Bechgaard salts is unitary, i.e., the average 
pair-spin projection along any axis is equal to zero, the study 
of the nonunitary superconducting phase is of definite inter- 
est because of the unusual magnetic properties that it pos- 
sesses. The extra degree of freedom associated with rotation 
of the spins of the superconducting pairs in the case when the 
spin-orbit interaction is small leads to the result that for a 
sufficiently strong magnetic field a distinctive spin texture, 
analogous to the nonsingular vortex in the A-phase of super- 
fluid 3He (see, e.g., Ref. 9) ,  is formed. In the given case the 
superconducting current cannot be represented in the form 
of the gradient of the phase. This leads to the result that a 
magnetic field (greater than H,, ) penetrates the crystal 
without the formation of singularities ( Abrikosov vortices). 
Expressions are obtained for the lower critical field H,, and 
the magnetization curve near H,, . The large values of the 
Ginzburg-Landau parameter ?c = 20- 100 considerably sim- 

where $(p) is the orbital part of the pair wavefunction and 
(6d)i&,, is a symmetric spinor with S = 1; (6d)  is the scalar 
product of a and d. 

We write the Ginzburg-Landau free energy in the form 

h2 
+pi (d'd) '+PI  (d'd') (dd) +fi,dihd, + -) d3r,  

8n (2)  

where a - T - Tc , and the spin-orbit interaction is de- 
scribed by the termA,d ydj. It can be seen from (2)  that for 
p2 < 0 a real vector d is energetically favored, i.e., the struc- 
ture of the order parameter ( 1 ) is such that the spin of the 
electron pair has any orientation in the plane perpendicular 
to d with equal probability (analogously to the A-phase of 
3He). For /I, > 0 a complex d, with the condition dd = 0, is 
favored. This order parameter corresponds to a definite pair 
spin S = i [dd*] /dd *, where [dd * ] is the vector product ofd 
and d*. From the derivation of (2)  in the weak-coupling 
approximation it follows that 8, > 0 and P, < 0. Assuming, 
however, that the order parameter ( 1 ) is nonunitary (i.e., 
that d is complex), we shall not specify the values of the 
coefficients fi, and p2 in what follows. 
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Near T, the principal contribution to the gradient part 
of the free energy (2)  is made by soft modes associated with 
rotation of the vector d and, correspondingly, of the pair spin 
S. When the vector d is normalized by the condition dd* = 2 
we have 

We now derive the Ginzburg-Landau equations de- 
scribing the nonunitary superconducting phase. Varying 
(2)  with respect to A, we have, as usual, 

ien. 4ie 
= - m i i ' {  2 (dvAdS-d*vhd) + - ~ ~ ( d d . ) } ,  (4)  

C 

where we have taken yik = n,mi, '/4. Taking the curl of 
both sides of (4 ) ,  after certain transformations we find 

4e2n, 
curl (Glj) = - - h+ (en,) ea,,Sa[ VS,, VS,], ( 5 )  

C 

which is analogous to the Mermin-Ho equation'' for curlv, 
in the A-phase of 3He. 

Varying (2) with respect to d and d* with the condition 
d(6d* ) + d* (Sd) = 0, we obtain 

Together with the Maxwell equation 

4n 
curl h=- j  

C 

Eqs. ( 5 )  and (6) form the complete system of Ginzburg- 
Landau equations. 

We note, finally, that the gradient part of the free ener- 
gy (2)  can be brought, after certain transformations, to the 
form 

(we have used the conditions dd = 0 andAj =Ai ). 
The crystal lattice of the Bechgaard salts is almost or- 

thorhombic. We take the crystal axes as our coordinate axes, 
and let the xy plane coincide with the surface of the sample; 
the external field H is perpendicular to the surface (see Fig. 
1). In this case, obviously, S and h do not depend on the 
coordinate z. We shall assume that in the spin-orbit interac- 
tion tensorJ, only one componentf,, = f is nonzero. Then 
the contribution of the spin-orbit interaction to the free ener- 
gy F is equal to 

which for f > 0 corresponds to an easy axis (z), and for f < 0 
corresponds to an easy plane (xy) . 

We write the electron-pair spin S in polar coordinates: 

&=sin 0 cos q, S,=sin 0 sin cp, S,=cos 0, 

and, with the aid of ( 7 ) ,  rewrite (5 )  in the form 

where h = h, (since h, = h, = 0)  and R f = mic2/167ie2n,. 
We now transform (6) .  We note that when (6 )  is multi- 

FIG. 1 .  Unit cell of the spin texture. The cell (nonsingular vortex) is 
rectangular and carries four quant? of magnetic flux. The coordinate axes 
are chosen so that my < m, . The polar angle @of the spin vector S depends 
only on the coordinate x and the azimuthal angle p = ky. On the dashed 
line the direction of rotation of the spin is reversed (i.e., k- ( - k )  ), The 
magnetic field is h = h(x) .  

plied by S, the result is identically zero, i.e., only two com- 
ponents of (6)  are independent, as should be the case. By 
taking the sum of the projections of (6 )  along the x and y 
axies, and also the projection along z, we obtain, respective- 
ly, 

1 dcp +en, sir1 0 cos 0 [ / x (  - - ' m , ( a ~ , ~ z l  - 

+4ef sin 0 cos 0=0, (10) 

3. THE SPIN TEXTURE, LOWER CRITICAL FIELD H,,, AND 
MAGNETIZATION CURVES 

One of the possible solutions of the system of Ginzburg- 
Landau equations (7) ,  ( 9 ) ,  ( 11 ) will be sought in the form 

(for ( 12) to be realized the condition my < m, should be 
fulfilled, and everywhere below we shall assume this to be 
SO). Such one-dimensional behavior of the superconducting 
current j can be expected in view of the strong anisotropy of 
the mass tensor of the Bechgaad salts. 

By rewriting the Ginzburg-Landau equations (9) ,  
( lo) ,  and ( 11 ) with the condition ( 12), and eliminating j,, 
from them by means of ( 7 ) ,  we can obtain 

d 2 h  ck d0 
-~,2-+ it--- sin 0=0, 

d x2 2e d x  
4e d h  rn dzO 
-LU2k - sin 0 + 2- - (k2+f)sin 0 cos 0=0, ( 10') 
c d x m, dxZ 
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wheref= 4mY f /n,. From (1 1') it follows that a8 /dy = 0, 
i.e., 8 = 8(x)  (otherwise, if 6'8 /ay#O, from (9') and ( 11') 
we immediately obtain h = 0) .  The equations (9') and ( 10') 
have the first integral 

ForH - H,, <H, ,  the characteristic lengths of the spin 
texture are much greater than A, (as will be confirmed be- 
low); therefore, we neglect the last term in ( 13) and the first 
term in (9') and rewrite ( 13) in the form 

dx m, 1-k2h,2k2sin20 
(de) = m, A-'I. ( k 2 + i )  cos 20' 

(13') 

From (9') we then have 

The unit cell of the spin texture is depicted in Fig. 1. Its 
periods are 

" J [ 1+2hik2sin2 0  
A-'I, ( k 2 + f )  cos 20 

] "' d0, 

Below it will be established that X $  Y near Hc, , and since, in 
addition, A, >A,, we can neglect terms of the form 
A ;  (a 2/6'x2), as was done above, while retaining terms con- 
taining A : k 2. 

Using ( 14) we find the flux through a unit cell: 
X II 

i.e., four quanta of flux. This result can be obtained immedi- 
ately from (9) by integrating both sides of (9)  over the area 
of the cell and making use of the fact that the integral of the 
right-hand side is equal to 4aN, where N is the degree of the 
mapping, implemented by the vector S(x,y), of the unit cell 
onto the unit sphere. Our cell is chosen in such a way that 
N = 2, since the polar angle 8 runs twice over all values from 
0 to a (see Fig. 1 ). 

To determine the texture parameters X and Y, the lower 
critical field H,, , and the magnetization curve, we write out 
the Gibbs free energy G = F - BH/4aper unit volume (B is 
the magnetic induction averaged over the texture). Using 
(8)  and neglecting the first term in the integrand, we can 
obtain 

where the integration is performed over the area of a unit cell 
of the texture. Taking as the independent parameters 

in place of k and A,  after certain calculations we rewrite ( 16) 
in the form 

where 

and K(p)  and E (p )  are complete elliptic integrals of the first 
and second kind, respectively. We give asymptotic expres- 
sions for them forp- 1, which we shall need below: 

where w = ( 1 - p2) 4 1. B~ finding the minimum of ( 17) 
as a function ofp and B, we can determine H,, , the periods X 
and Y, and the magnetization curve near Hcl . 

We consider first the case f = 0, i.e., spin-orbit interac- 
tion is absent. The free energy ( 17) then has the form 

en, H  

(18) 
whence we obtain 

which is reached p = 1. We note that ( 19) is smaller by a 
factor of lnx than the expression for H,, for an ordinary 
(with singular vortices) type-I1 superconductor. In the 
Bechgaard salts the parameter x, as already stated, is large. 
Estimating it from the ratio of the critical fields, 
x -- (HC2/Hc, ) ' I 2 ,  we obtain for (TMTSF),ClO, at low 
temperatures the value x =  100 (Refs. 3, 13). 

Using the asymptotic expressions for K(p)  and E (p )  
forp- 1, it is not difficult to find from ( 18) the magnetiza- 
tion curve for H - H :, <H :, : 

H-H,,O='/,B ln  ( H C L o / B ) ,  (20) 

whence it follows that (dB /dH),;, = 0 (see Fig. 2).  The 

periods of the spin texture are given by 

FIG. 2. Form of the magnetization curves. 1 ) f = 0, no spin-orbit interac- 
B=4nc/eXY, p= [ ( k Z + f ' ) /  ( A + ' l z ( k 2 + f )  )]I" tion; 2 )  f > 0, easy z axis; 3 )  f < 0, easy xy plane. 
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i.e., near H :, we obtain X s  Y. 
We now consider the case f > 0 (easy z axis). For B = 0 

the minimum of the free energy (16) is zero, which is 
reached at 8 = 0, i.e., when all the spins are aligned along the 
easy z axis. Substituting into (17) the valuep = 1, we make 
the replacement BK(p) = R and assume that 

?<< (4eRl~)~rn,/m,. (22) 

Then for H,, we obtain the equation 

where H :, is determined by the expression ( 19). From this 
is is not difficult to obtain 

We note that for B-0 (i.e., H -  H,, ) R remains finite, i.e., 
the condition (22) thatfbe small is fulfilled. I t  can be rewrit- 
ten in the form 

By substituting into ( 17) the asymptotic expressions 
for the elliptic integrals, we can convince ourselves that H,, 
is indeed reached a t p  = 1 (we shall not give the correspond- 
ing cumbersome calculations). The form of the magnetiza- 
tion curve, however, differs from that considered in the pre- 
ceding case in that (dB /dH) HcI = cc, for arbitrarily small$ 

The case with f < 0, which corresponds to an easy xy 
plane, is the most interesting. For B = 0 the minimum of the 
free energy ( 16) is equal to - If / and is reached at 8 - a/2, 
q, = const (i.e., all the spins are oriented along some direc- 
tion in the easy xy plane). Minimizing ( 16) for B # 0, we can 
convince ourselves that the resulting texture has k > vl and 
for the free energy we can use the expression ( 17). Between 
these two states a first-order transition occurs at 

(we recall that If1 is small and satisfies the condition (24) ) . 
In contrast to the preceding case, N f is reached a t p  # 1. The 
form of the magnetization curve is shown in Fig. 2. The dis- 
continuity at H = H is equal to 

We note that in this case, as in the preceding case, spin-orbit 
interaction makes the formation of a spin texture difficult by 
raising the value of H,, . 

4. CONCLUSIONS 

We have ascertained that the model that we have con- 
sidered for a triplet superconductor with a nonunitary order 
parameter has unusual magnetic properties. A magnetic 
field can penetrate into it in the form of nonsingular vortices, 
with the formation of a distinctive spin texture. We recall 
that here we are discussing superconductors in which the 
spin-orbit interaction is small and the electron-pair spin is 
not frozen by the crystal lattice. 

One of the possible spin textures was described above. 
Its unit cell (nonsingular vortex) has a rectangular shape 
and carries four quanta of magnetic flux. The spin-orbit in- 
teraction, by pinning the spin vector, hinders the formation 
of a spin texture. It raises H,, and influences the type of the 
phase transition in a magnetic field. 

The authors express their thanks to L. P. Gor'kov for 
useful discussions throughout the course of the work. 
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