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Dynamic scattering of x-rays in silicon crystals with randomly distributed structural defects is 
investigated experimentally and theoretically for a noncoplanar Laue diffraction. It is shown 
that the static Debye-Waller factor E and the correlation length r for the random elastic 
displacements of the atoms in the crystal lattice can be deduced from x-ray diffraction 
measurements of the mean Laue reflection coefficient R ,  as a function of the inclination angle 
a of the diffraction plane. A simple model is proposed, in which the crystal microdefects are 
assumed to be uniformly distributed spherical inclusions, and formulas are derived which 
relate E and r to the concentration c and mean size r ,  of the microdefects. Measurements of 
R ,  (a) are reported for silicon crystals with oxygen concentrations 1016-1018 cmP3, and the 
results are used to calculate c and r,. 

INTRODUCTION 

The X-ray Bloch waves that form in crystals during 
dynamic scattering (diffraction and reflection) are highly 
sensitive to local disruptions in the periodicity of the crystal 
lattice. This is because small local distortions of magnitude 
comparable to the dielectric susceptibility ( - 10-5-10-6) 
substantially alter the dynamic diffraction parameters by 
preventing coherent interference between the plane-wave 
components of the Bloch wave in the crystal. X-ray diffrac- 
tion measurements of the diffraction parameters can reveal 
the distribution, type, and concentration of local crystal lat- 
tice defects such as clusters, dislocation loops, precipitates, 
and other microdefects. Studies of dynamic X-ray scattering 
(DXS) in crystals containing microdefects are also of con- 
siderable applied as well as theoretical interest, because mi- 
crodefects are associated with local variations in the electro- 
physical properties of semiconductors (they can distort the 
band structure, produce additional levels in the forbidden 
band, and cause the minority carrier lifetime and the specific 
resistance to change locally). 

The early experimental on DXS by microde- 
fects considered the special case of anomalous transimission 
(Borrmann effect) in strongly absorbing crystals. The na- 
ture of the defects (whether they are primarily clusters or 
dislocations, for example) can be ascertained and their mean 
size r,  and concentration c can be estimated in the range 
r,  = 10'-lo4 nm, c = 10'5-1018 cP3 by determining the X- 
ray interference absorption coefficient from the dependence 
of the average Laue reflection intensity on the thickness of 
the crystal. 

In Refs. 5-10, a technique based on three-crystal X-ray 
diffractometry was developed for analyzing DXS in crystals 
with microdefects. This method makes it possible to distin- 
guish (in reciprocal space) the diffuse and coherent compo- 
nents of the Bragg-reflected radiation from the crystal. The 
general theory for the formation and interpretation of angu- 
lar reflection patterns and their relationship to defect struc- 
ture is discussed in Refs. 9 and 10. However, because the 
diffusely scattered component is much weaker than the co- 

herently scattered radiation, it is possible to reliably detect 
relatively large defects ro-  lo4 nm such as those generated 
when the crystal is annealed in an oxidizing atmosphere, 
decorated with impurity, etc. 

An experimental method was developed in Ref. 11 for 
solving the inverse DXS scattering problem by measuring 
the elastic strain distribution in crystal plates. It involves 
measuring the mean Laue reflection intensity as a function 
of the inclination angle a of the diffraction plane about an 
axis normal to the reflecting plane. A least-squares analysis 
is then preformed to deduce the deformation gradient B ( a )  
in accordance with the theory developed in Ref. 12. The first 
results on DXS obtained by this method for crystals with 
microdefects revealed that the angular dependence R ,  (a) 
of the mean reflection coefficient is sensitive to structural 
defects of size r,- 10 nm and concentration c- 1012-10'3 
~ m - ~ .  

In the present paper we report systematic experimental 
results on DXS in crystals with microdefects obtained by the 
inclination method. In Sec. 2 we specialize the fundamental 
equations and results in the theory of DXS, first derived by 
Kato,13.14 to the case of DXS in crystals with microdefects. 
Experimental values R,,, ( a )  for the symmetric (220) Laue 
reflection for Si crystals with oxygen concentrations 1016- 
10'' cmP3 are presented and discussed in Secs. 3 and 4, re- 
spectively. 

2. THEORY OF DYNAMIC X-RAY SCATTERING IN 
CRYSTALS WITH RANDOMLY DISTRIBUTED 
MICRODEFECTS 

Kato's statistical theoryl3'I4 of DXS in crystals with 
randomly distributed structural imperfections is based on 
the Takagi-Topen equations for the transmitted and dif- 
fracted wave amplitudes Do, D, : 

dDo 
-= i o - h ( P  ( S O ,  s h )  D h  ( S O ,  s h )  , 

aso 
a D h  -= i o t L ~ '  ( S O ,  s h ) D o  ( S O ,  s h ) .  

as, 
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Heres,, s, are measured along the axes of the oblique coordi- 
nate system formed by the wave vectors of the transmitted 
and diffracted waves; the coefficients a -, , a, are related by 

to the structure factors F - ,  , Fh for a perfect crystal lattice. 
Here Cl is the volume of the unit cell; the polarization factor 
Cis equal to 1 for radiation polarized in the diffraction plane 
(so,sh ) and to cos 29  for radiation polarized in the plane 
perpendicular to it; @ = exp(ihu) depends exponentially on 
the displacement field u(s,,s, ) of the crystal lattice sites 
caused by the defects. 

Writing Do, D, , and p in the form 

Do, h=(DO, h)+dDO, h, (2.2) 

and neglecting correlations of order greater than two in the 
function p, we get from (2.1) the following integrodifferen- 
tial equations13 for the mean amplitudes (Do), (D, ): 

In general, these equations must be solved numerically. 
However, there is a class of problems of practical interest for 
which (Do) and (D, ) in (2.4) vary slowly compared to the 
correlation functiong = ( ( p p  *) - E ' ) /( 1 - E '). System 
(2.4) then reduces to a pair of differential equations of the 
form 

where 

is the static Debye-Waller factor and 

is the correlation length. The derivation of Eqs. (2.5) as- 
sumes that the correlation function g ( z )  is isotropic. 

Equations for the intensities I:,, = 1 (Do,, ) 1' and 
I;,, = / (aDO,, ) l 2  of the coherent and diffuse components of 
the total intensities I , ,  = I :,, + I ;,, of the transmitted and 
diffracted waves can be derived by the same procedure used 
above to derive Eqs. (2.5) for the mean amplitudes from the 
Takagi-Topen equations (2.1) (see Ref. 13 for more de- 
tails). When these equations are solved for the integrated 
intensity of the diffracted radiation for the case of symmetric 

Laue scattering (for which the normal n to the surface of the 
plane-parallel crystal is perpendicular to the diffraction vec- 
tor h ) ,  one obtains the expression14 

where the coherent component R of the intensity is given 
by 

PA 2n(l-E2)y.t) t]  
RhC=fI erp [ ( - - - 

Z Y  h 

X [ 1. (r) dr+l0 ( 2 l x t )  - 1 1  . 
1 

and the incoherent component R is 

yA I-E2 
Rh.=" exp [ - - t ] [, 

nY 

Here J , ( x )  and I,(x) are the zero-order Bessel functions of 
real and imaginary argument, respectively; A = A /C Ix,, I is 
the extinction length; t = .rrT/A) 1 is the dimensionless 
crystal  thickness;^ = 2rxOi//Z is the X-ray absorption coef- 
ficient; H = rlx,, 1/2 sin 29- and K = Ixhi I/Ixhr / are coeffi- 
cients, wherex,, andxhi are the real and imaginary parts of 
the Fourier component X, of the crystal polarizability; 9 is 
the Bragg angle, and y = cos 9. 

Equations (2.9) and (2.10) show that the coherent and 
incoherent components R ', , R ;, of the average intensity R, 
depend differently on the crystal thickness-R ', oscillates 
with period A/E, while R ;, decreases monotonically with t. 
Both are governed by two parameters, the static Debye- 
Waller factor and the correlation length r, which describe 
how the crystal defects influence the dynamic X-ray scatter- 
ing. The different thickness dependences can be exploited to 
solve the inverse DXS problem for crystals with microde- 
fects, i.e., determine the parameters E and r. Indeed, one can 
find E by using the inclination method to measure the oscil- 
lation period A/E of R, ( t )  (Refs. 15-17, see Sec. 3) and 
then calculate T from Eqs. (2.8)-(2.10) and the general ex- 
perimental dependence R, ( a )  by a least-squares analysis. 

3. EXPERIMENTAL METHOD AND RESULTS 

In the inclination method (first proposed in Ref. 15) 
the DXS plane is inclined so that the diffraction is nonco- 
planar, as shown in Fig. 1. The ordinary expressions for the 
extinction and absorption lengths for Laue diffraction must 
be modified when the diffraction plane is inclined; for an 
asymmetric inclined configuration, we have 

(cos2 a cos2 $ cos2 6-sin2 .tC, sin")')'" 
A,, = A, (3.1) cos 6 

cos a cos $ cos 6 
"lf = coi2 a cos2 $ cos2 *-sin2 $ sin2 6 

Pa (3.2) 

Most experiments employ a symmetric configuration 
(I) = 0), which is particularly advantageous in our case (see 
below). Equations (3.1 ) and (3.2) then simplify, and 

A,, = (cos a )  '1, (3.3) 
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FIG. 1. Sketch of the inclination system for Laue diffraction. 

which is equivalent to introducing an effective thickness 

in the standard coplanar diffraction problem. 
Expressions (3.1) and (3.3) for the extinction length 

A,, can be interpreted physically as giving the beat length 
for two Bloch waves which are excited in the crystal during 
DXS of an incident plane wave satisfying Bragg's law. Fig- 
ure 2 shows the projections of the two wave vectors on two 
mutually orthogonal planes for a symmetric DXS configura- 
tion. 

Figure 3 shows the experimental configuration used to 
study DXS in crystals by the inclination method. The crystal 
A was mounted on a goniometer whose axis of rotation was 
normal to the reflecting planes of the crystal. The reflection 
conditions thus remained unchanged when the crystal was 
rotated about the goniometer axis. The X-ray diffraction 
measurement were carried out using a-polarized Mo K,, 
radiation ( C  = 1) for the (220) reflection from (100) sin- 
gle-crystal silicon plates. The primary X-ray beam was first 
polarized by reflecting it at the 44"401 Bragg angle from an 
Fe-3% Si crystal in a monochromator ( M ) ;  the emerging 
radiation was 99% u-polarized. A collimating tube K, (Fig. 
3) set the angular divergence of the beam incident on the 
crystal (S denotes the radiation source); the divergence was 
the same in both the vertical and the horizontal directions 
and was equal to 2'. A second collimator K, was used to 
decrease the background noise in the radiation reaching the 
detector D. A Philips "Norelko" diffractometer measured 
the curves R, (a) automatically while the inclination angle 
a was incremented from - 40" to + 40 "C in steps of 0.2". 

In the measurements we were careful to keep macro- 
scopic elastic deformations of the crystal from distorting the 
mean DXS intensity. This was accomplished by using thick 
( - 1 mm) single-crystal silicon plates whose sides were pol- 

FIG. 2. Cross sections through the diffracting surface in two mutually 
perpendicular directions. 

FIG. 3. Sketch of the experimental system. 

ished chemically and mechanically under identical condi- 
tions. In addition, R, (a) was measured using a symmetric 
DXS configuration, for which only torques that "twist" the 
crystal plate can generate a deformation gradient capable of 
distorting the reflecting crystal planes. Distortions of the 
DXS by elastic macroscopic deformations can thus be ne- 
glected, since according to Ref. 11 the torgue in this case is 
an order of magnitude less than the bending moments, and 
measurements of the deformation in our crystals by the incli- 
nation method using the asymmetric ( 11 1 ) reflection yield- 
ed curves R , , , (a)  that were essentially identical to those for 
perfectly flat plates (the effective bending radius of the 
plates was at least 2000 m). 

Figure 4 shows the experimentally recorded mean Laue 
reflection coefficient R, (a) for the (220) reflection for sili- 
con crystals with oxygen concentrations c,, = 1016 cmP3 
and c,, = 1018 ~ m - ~ .  For crystals with c,, = lo f6  cmP3, 
R,,, (a) is nearly identical to R,,, (a) (solid curve in Fig. 
4a) calculated for a perfect crystal with A, = 36.40pm. The 

FIG. 4. Reflection coefficient R, (a) for the (220) reflection from a sili- 
concrystal: a )  c,, = 1016cm-3; b) c,, = 101%m-3; R, (a) is normalized 
by R i  ( a ) ,  the corresponding value for a perfect nonabsorbing crystal. 
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period of the oscillations is somewhat greater for crystals are present due to systematic errors in measuring T, which 
grown by the Czochralski technique (Fig. 4b). According to cause the errors in A, and A, at the two angles a, and a, to be 
Eqs. (2.8)-(2.10), this is because the extinction length for mutually correlated. We observe that because the errors in 
X-rays is greater by a factor ofE - ' for crystals with random- the extinction lengths hi are not statistically independent 
ly distributed microdefects. In other words, the effective ex- [cov(Ai ,A, ) #O], the variance d (x)  can easily be shown 
tinction length is A = A,/E and hence the static Debye- to satisfy the inequality 
Waller factor E can be found from the oscillation period of 
the experimental curve R,,, (a). Since E is nearly equal to a"(n (6T)  ' /Z2, (3.10) 

unity, i t  is important to consider the error incurred in deduc- 
ing it from R,,, ( a ) .  

The following procedure was used to find the mean ex- 
tinction length x and its variance d (x)  from the experi- 
mental data R,,, (a) and the formulas (2.8)-(2.10). The 
extinction lengths Ai where calculated for the inclination 
angles a, at which the oscillations in R i,, (a) vanished, be- 
cause the error 6ai  = SR,,, (JR, /dai ) - ' in measuring the 
position of the ith oscillation is least at these points for a 
fixed mesurement error SR,,, (in our case 6Rhgi was -0.05 
Rhgi ). The values Ai where then analyzed by the least- 
squares method (see, e.g., Ref. 18), and and a2(x) were 
computed by the formulas 

i.e., the relative error in determining is greater than the 
error in measuring the crystal thickness, regardless of the 
total number of measurements n. 

Table I lists the extinction lengths x found from the 
expeirmental data R,,, (a) shown in Fig. 4. For comparison, 
some extinction lengths and atomic scattering amplitudes 
found previously by other methods are also given. 

The second parameter in the DXS theory, the correla- 
tion length T, can be calcualted similarly. Here it is conven- 
ient to use the nonoscillating component (averaged over an 
oscillation period) of the mean reflection coefficient 
R,,, ( a ) .  For each a , ,  - the corresponding T, is found by re- 
quiring that IRhsk - Rh (a, ,T, ) 190.03 E,,, . The error in 
T,, the mean correlation length 7, and the variance a2(7)  
were computed by the formulas 

where D 7 ' are the components of the weight matrix D - '  (3.12) 
inverse to the error matrix 

/ 02(Al) cov (Al, A,) . . . cov (AI ,  A,,)\ 
cov (Al, A,) o2 (A2) . . . cov (Az,  A,) 

D = [  . . . . . . . . . . . . . . . . . . . . . . .  
\COV (All A,) cov (A2, A,,) . . 0 2  (4,) 1 

(3.7) 

The error SA, in Ai at the point a = ai on the measured 
curve R,,, (a) is given by 

GAi=Ai [ (6TlT) '-t ( t g  ai6ar)']'", (3.8) 

where we have used the fact that the errors in measuring RhVi 
and the crystal thickness Tare statistically independent. The 
terms 

cov (Aj, Aj) = L A j  (GTIT) ' (3.9) 

The calculated results were used to find ~ ( a ) ,  which is 
shown in Fig. 5. We see that T lies between 5 and 13 nm, 
which corresponds to microdefects with a mean radius of 3- 
10 nm (see below). It should be noted that the dependence of 
T on the angle a is inconsistent with the assumed isotropy of 
the correlation function g (z )  (see Sec. 2),  i.e., the displace- 
ment fields caused by the microdefects are anisotropic. 
However, since we seek only qualitative information regard- 
ing the crystal defect structure and confine ourseleves to or- 
der-of-magnitude estimates of the concentration and mean 
size of the defects, we may without loss of generality take the 

TABLE I. Extinction lengths and atomic scattering amplitudes for silicon crystals [ (220) reflec- 
tion of a-polarized Mo K,  radiation]. 

Crystal properties and 
method of study 

By measuring the intensities in the Debye 

By sectional topography 

Inclination methodI5 

' Extinction 
length, pm 

Atomic scatter- 
ing amplitude 

Static 
factor 
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FIG. 5. Correlation length T versus inclination angle a for the (220) 
reflection from a silicon crystal with co2 = 101%mp3. 

correlation length T to be constant and equal to its mean 
value ; = 9 nm (see (3.12)). 

4. DISCUSSION 

We use the simple model proposed previously in Ref. 22 
to relate the empirically determined static Debye-Waller 
factor E and correlation length T (Sec. 3) to the physical 
characteristics of the crystal defect structure. The model as- 
sumes that the defects are uniformly distributed isotropic 
inclusions of radius ro, and the elastic displacement field as- 
sociated with each inclusion is given by the familiar expres- 
sion (see, e.g., Ref. 23) 

where the mismatch parameter E is equal to 0.02 for silicon. 
The correlation function g (7 )  can be written in the 

form2' 

g (q) = (e-T'Q)-E2 )/(I-E2), (4.2) 

where the function T ( T ) ,  which was introduced by Krivog- 
lazov, is given by 

for c n  4 1 (the integration is over the volume of the crystal). 
The static Debye-Waller factor is given in terms of 

by 

where 

Expanding the exponentials in (4.3), (4.5) in powers of 
h.u( 1 and keeping only the lowest-order nonvanishing 

FIG. 6. Correlation function for the (220) reflection of a-polarized Mo 
K,, radiation from a silicon crystal containing uniformly distributed iso- 
tropic inclusions of radius r,. 

terms, we find after a straightforward calculation that 

In deriving (4.6) we have assumed that 1 - E 4 1. 
The function g ( 7 )  is shown in Fig. 6. It is noteworthy 

that according to Eq. (4.6) the integral 

which by (2.7) determines the correlation length r ,  diverges 
logarithmically at the upper limit. However, physical con- 
siderations show that the upper limit in (2.7) is actually 
finite-it must be much greater than the radius of the defects 
and much smaller than the extinction length A. We thus get 
our final estimates 

for the defect concentration and radius from Eqs. (4.6), 
(4.7). The values are c- 1013 cmP3 and ro-7 nm for a sili- 
con crystal with oxygen concentration 1018 cm-' under our 
experimental conditions. 

Our studies thus show that small defects present in low 
concentrations can alter dynamic X-ray scattering in crys- 
tals. X-ray diffraction data obtained by the inclination meth- 
od can be used to find the static Debye-Waller factor and the 
correlation function for the random elastic displacements of 
the atoms in the crystal lattice and thereby gain insight into 
the defect structure in the crystal. 
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