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We have investigated the thermal conductivity of two samples of vanadium in the 
superconducting and mixed states, along with the electrical resistivity ratios p300 /p4,2 for 
these samples, which equal 14 and 14.4. From comparison of theory and experiment, we have 
identified the lattice component of the thermal conductivity for the "dirtier" sample in the 
superconducting state. Analysis of the behavior of the lattice thermal conductivity in a 
magnetic field for the mixed state near Hc, allows us to determine the effective scattering 
cross-section of phonons by vortex filaments, which turns out to be the same order of 
magnitude as the scattering cross-section of electronic excitations by vortex filaments. 

Investigation of the thermal conductivities of type I1 
superconductors (included among these are the supercon- 
ductoring elements-i.e., niobium and vanadium-and su- 
perconducting alloys) is especially interesting, because with 
its help we can study a phenomenon which has not been 
throughly investigated-the interaction of heat carriers 
(electrons, phonons) with the elementary magnetic-field 
quanta (Abrikosov vortex filaments) in mixed-state super- 
conductors. We present here a fairly detailed investigation of 
the thermal conductivity of pure vanadium samples in the 
mixed state, and an analysis of the interaction of electrons 
with Abrikosov filaments near the critical magnetic fields 
Hc, and Hc, ,' In metals which are in the superconducting 
state, the heat carriers can be electronic excitations or phon- 
ons. The lattice component of the thermal conductivity in a 
pure metal at temperatures close to Tc (the superconducting 
transition temperature) is small compared to the electronic 
component. As the temperature decreases, the electronic 
component falls sharply because of the exponential decrease 
in the number of electronic excitations, and the lattice com- 
ponent can exceed it. Thus, for pure vanadium the lattice 
component of the thermal conductivity exceeds the elec- 
tronic component for T < 1.5 K; this result was also obtained 
by the authors of Ref. 2. In order to observe the effect of the 
lattice component of the thermal conductivity in vanadium 
in the superconducting state at temperatures above 1.5 K, it 
is necessary to decrease the magnitude of the electronic com- 
ponent of the thermal conductivity down to that of the lat- 
tice at these temperatures. We accomplished this by intro- 
ducing impurities into the sample, using the fact that the 
electronic thermal conductivity is proportional to the mean 
free path, while the latter decreases in inverse proportion to 
the introduced impurity concentration. In our investigations 
we used a bulk crystal, so as to decrease the scattering of 
phonons by the sample boundaries. 

In Ref. 2, the lattice component of the thermal conduc- 
tivity of vanadium was extracted in samples of various puri- 
ties for T< 1.8 K; however, there was no investigation in Ref. 
2 of the thermal conductivity of vanadium in the mixed state. 
In this paper we present measurements of the thermal con- 
ductivity of vanadium in a magnetic field for T <  Tc on a 
sample in which the lattice component of the thermal con- 

ductivity was comparable to the electronic component for 
T <  3 K; in addition, we will discuss the interaction of phon- 
ons with Abrikosov vortex filaments. 

The investigation was carried out on two vanadium 
samples with resistivity ratios p3M) K / p 4 , 2  of 44 and 14.4, 
and residual resistivities equal to 0 . 4 9 2 ~  lop6 and 
1.60X R-cm, respectively. The first sample was poly- 
crystalline and coarse-grained, with T, = 5.38 K; the half- 
width of the energy gap A, at the Fermi surface ( T  = 0 K )  
equalled 9 . 5 k 0 . 5  K, while the electron mean free path 
1 = 1.17X lop5 cm; the sample dimensions were q5 = 1.4 
mm and h = 40 mm. The second sample was a single crystal 
with T, = 5.06 K, A, = 8.6 I ~ I  0.5 K, I ,  = 3.61 x lop6 cm, 
and dimensions 4 X 4 X 40 mm3. The thermal conductivity 
was measured by driving a steady-state heat current through 
the sample under study in the temperature interval 1.8 to 15 
K; for T <  Tc it was measured by the method described in 
Ref. 1 while the samples were subjected to transverse and 
longitudinal magnetic fields. 

EXPERIMENTAL RESULTS AND DISCUSSION 

1. The temperature dependence of the thermal conduc- 
tivity of the samples under study is presented in Fig. 1; for 
T <  Tc curves 1, 2 correspond to the normal state while 
curves l ' ,  2' correspond to the superconducting state. In or- 
der to restore the normal state for T < Tc , we used a longitu- 
dinal magnetic field H which exceeded Hc, (the critical 
magnetic field at which volume superconductivity is de- 
stroyed). 

Our conclusions about the electronic character of the 
thermal conductivity of samples 1 and 2 in the normal state 
are based on the fact that the Lorentz number does not ex- 
ceed its Sommerfeld value Lo = 2.45X lop8  V 2 / K 2 .  The 
temperature dependence of the thermal conductivity in the 
normal state for both samples was the same: x n  ( T )  a T, 
which indicates that for T <  10 K electrons are scattered by 
impurities and lattice defects. The thermal conductivity in 
the superconducting state, both for sample 1 and for the pure 
sample investigated in Ref. 1, is well-described by the Geilik- 
man f ~ r m u l a , ~  which takes into account the scattering of 
electronic excitations by point defects: 
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FIG. 1 .  Dependence of the thermal conductivity of vanadium on tempera- 
ture for samples 1 and 2. Curves 1, 2 and l',  2' are for the normal and 
superconducting states respectively for samples 1 and 2. Curve 3 and the 
dashed curve 1 '  are calculations of the electronic thermal conductivity in 
the superconducting state using Eq. ( 1).  

where 

The temperature dependence of the energy gap A( T )  
which appears at the Fermi surface in the superconducting 
state is calculated using f(t) given in Ref. 4. Formula ( 1 ) is 
correct for superconductors with weak electron-phonon 
coupling; as was shown in Ref. 1, vanadium belongs to this 
class. The calculated curve (dashed curve 1') is presented in 
Fig. 1. 

In sample 2, along with the electronic component of the 
thermal conductivity there is present a lattice component for 
T <  0.6Tc. It was extracted from experimental data by sub- 

FIG. 2. Temperature dependence of the lattice component of the thermal 
conductivity of vanadium, separated out from the superconducting state: 
0 indicates the result of the present paper, indicates data from Ref. 2. 
The continuous curve is a calculation using Eq. (2)  for AdT, = 1.692. 

tracting off the electronic component, calculated using Eq. 
( 1 ) for Ao/T, = 1.692, and coincides with the experimental 
value of the thermal conductivity for T = (0.6- 1 ) T, . Be- 
low these temperatures we observed a deviation of the ex- 
perimental values from the calculated ones in the interval 1.8 
to 3 K, which increased with decreasing temperature. In Fig. 
2 we present the lattice component of the thermal conductiv- 
ity xi in the temperature range 1.8 to 3 K as extracted from 
sample 2. In this figure we show the data on x; for T< 1.8 K 
taken from Ref. 2, according to which the lattice thermal 
conductivity has a maximum in its temperature dependence 
near T- 1 K; below this maximum it passes over to a de- 
pendence x", T3. In order to compare the experimental 
data on the temperature dependence of the lattice thermal 
conductivity of vanadium to the right of this maximum 
( T >  1 K )  with theory, we used the formula of Geilikman 
and Kresin,' in which they include the interaction of phon- 
ons with electronic excitations of the superconductor. The 
formula has the following form: 

where b = A(T)/T. Calculations carried out using Eq. (2)  
for the dependence of the lattice thermal conductivity on 
temperature for A,/T = 1.692 satisfactorily describe both 
our experimental data on xi and the data of Ref. 2, which are 
presented in Fig. 2. It should be noted that the value of xi 
grows as the temperature decreases, in contrast to the lattice 
thermal conductivity of a normal metal, where xq falls as the 
temperature decreases Eq. ( 2 )  with A = 0 leads to x l  a T 2 ) .  

This peculiarity in superconductors is related to an increase 
in the mean free path of phonons due to the exponential 
decrease in the number of electronic excitations as the tem- 
perature decreases. 

2. The presence of a lattice component in the thermal 
conductivity along with the electronic component for sam- 
ple 2 in the superconducting state when T <  3 K gives rise to 
peculiarities in the field dependence of the thermal conduc- 
tivity in the mixed state compared to the field dependences 
for sample 1, in which the electronic component dominates 
in the thermal conductivity. 

In Figs. 3 and 4 we present the dependence on magnetic 
field of the thermal conductivity of samples 1 and 2 both for 
transverse- and longitudinally-directed fields. When sample 
1 is in the superconducting state the electronic component of 
the thermal conductivity dominates within the temperature 
interval which we investigated, as it does in a pure sample of 
vanadium,' as we noted earlier. The behavior of the thermal 
conductivity as a function of magnetic field for sample 1 
when T< Tc shown in Fig. 3 can be explained using the same 
terms as those used to describe a pure sample of vanadium. ' 
The thermal conductivity of vanadium in the Meissner-ef- 
fect region H < Hcl (where H,, is the lower critical field), in 
which the magnetic field does not penetrate the metal, is 
independent of the magnetic field. For H > Hc, as the field 
increases x ( H )  at first decreases sharply owing to the in- 
creased electron-excitation scattering by magnetic fila- 
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FIG. 3. Behavior of the thermal conductivity of vanadium (sample 1 ) in a FIG. 4. Behavior of the thermal conductivity of vanadium (sample 2)  in a 
magnetic field: curves 5 are for a transverse field ( HlVT) ; curves 2,4, magnetic field: curves 1,3,5 are for a transverse field ( HlV T); curves 2,4, 
6 are for a longitudinal field (HI/ VT). Curves 1,2 are for TIT, = 0.76; 3, 6 are for a longitudinal field (HIIVT). Curves 1 ,  2 are for T/T, = 0.68; 
4 are for T/T, = 0.635; 5 ,6  are for T/T, = 0.454.0 is the forward trace; curves 3 ,4  are for T/T, = 0.48; curves 5 ,6  are for T/T, = 0.364.0  is the 

is the reverse trace. the forward trace. the reverse trace. 

ments, whose density increases with the field H. After pass- 
ing through a minimum, K(H)  begins to increase for two 
reasons: first, because of the increasing mean free path of the 
electronic excitations, which in turn is due to the fact that at 
high magnetic filament densities increasing the density 
further makes the sample more homogeneous on the aver- 
age; second, because of the fact that as H approaches Hc2 the 
number of electronic excitations participating in the thermal 
balance also increases. For H > Hc2, the quantity x ( H )  does 
not depend on the field. Increasing the number ofdefects and 
impurities in the vanadium samples yields an increase in the 
thermal resistance of the electronic excitations as the latter 
scatter off the former; this increased thermal resistance may 
in fact exceed the thermal resistance due to the magnetic 
filaments. The thermal resistivities of electronic excitations 
due to impurities and defects which we identified from our 
experimental data on the thermal conductivity at T = 2.43 
K equalled 0.7, 24 and 59 cm- K/W (for pure vanadium' 
and our samples 1 and 2 respectively). At the same time, the 
thermal resistance of the electronic excitations due to scat- 
tering by magnetic filaments at T = 2.43 K for sample 1 was 
the same as for the pure vanadium sample,' and equalled 2.1 
cm- K/W. These data led us to the conclusion that in the 
pure sample of vanadium the electronic excitations are pre- 
dominantly scattered by magnetic filaments, while in sample 
1 and particularly in sample 2 the electronic excitations are 
predominantly scattered by impurities and defects. This 
scattering also explains the absence of "dips" in the field 
dependence of x ( H )  in sample 2 for temperatures above 
T = 3 K (curves 1,2 of Fig. 4) where the electronic compo- 
nent of the thermal conductivity exceeds the lattice compo- 
nent. Dips in the x ( H )  due to scattering of the electronic 
excitations by vortex filaments are probably undetectable 
for temperatures below T = 3 K .  However, there are dips of 
considerable magnitude in the field dependence of the ther- 
mal conductivity at T <  3 K (curves 3, 5, 6 of Fig. 4) where 

the lattice component of the thermal conductivity is present 
along with the electronic component; these can be attributed 
to scattering of phonons by vortex filaments. The behavior of 
the thermal conductivity with magnetic field in sample 2 for 
T <  3 K comes about in the following way: the thermal con- 
ductivity in the Meissner region H < H,, does not depend on 
H. For H >  H,, (i.e., in the mixed state), as the field in- 
creases, x ( H )  first decreases sharply due to the increased 
scattering of phonons by vortex filaments which permeate 
the superconductor. Under these circumstances, the mini- 
mal value of the thermal conductivity in a transverse mag- 
netic field coincides with the value of the electronic compo- 
nent of the thermal conductivity in the superconducting 
state (curve 3 of Fig. 1 ), which points to the preponderance 
of scattering of phonons by vortex filaments. Subsequently, 
once the thermal conductivity x ( H )  passes through a mini- 
mum it begins to increase, both because the mean free path of 
electronic excitations increases due to the increased average 
homogeneity of the sample as the density of magnetic fila- 
ments is increased and because as H approaches Hc2 the 
number of electronic excitations increases, which causes the 
electronic component of the thermal conductivity to in- 
crease toward that of the normal state at the given tempera- 
ture (curve 2 of Fig. 2) .  The resulting thermal resistance due 
to phonons scattered by vortex filaments in sample 2 for 
T = 2.43 K equals 4.4 cm-K/W, and as the temperature is 
lowered to 1.84 K it increases to a value of - 54 cm K/W. 

It should be noted that both sample 1 and sample 2 
show substantial hysteresis in the form of x ( H )  for the tem- 
perature at which the dips are observed. When the course of 
variation of the magnetic field is reversed-both for the 
HlVT and HllVT orientations of the magnetic field-the 
curve does not retrace its initial path, but rather stays at the 
level of its minimum value (Figs. 3, 4). This experimental 
fact allows us to conclude that the magnitude of the magnet- 
ic field trapped in the sample equals H,,, zH,,, . As a result 
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of this, the heat carriers (electronic excitations in sample 1, 
phonons in sample 2)  are scattered by magnetic filaments 
even in external magnetic fields less that H,,, . 

When sample 2 is placed in a longitudinal magnetic 
field at T >  3 K, at which temperature the phonon compo- 
nent of the thermal conductivity is small compared to the 
electronic component, the magnitude of the total thermal 
conductivity when traced in reverse exceeds its value when 
traced forward when the magnetic field is close to H,, (see 
curve 2 of Fig. 4).  This is apparently related to the fact that 
electronic excitations within pinned nonequilibrium Abri- 
kosov vortex filaments begin to play a significant role in the 
thermal conductivity of the single-crystal sample, because 
the coherence length (6 = 450 A; Ref. 6) is comparable to 
the mean free path of the electrons (I, = 3.6X cm). At 
temperatures below T = 3 K, a lattice component along with 
the electronic component to the thermal conductivity is also 
present in this sample. Therefore, the influence on the over- 
all thermal conductivity of the electronic excitations within 
the pinned magnetic filament when the field is traced back- 
wards (HI I VT) near H,, is decreased due to the presence of 
the phonon component, which includes additional (com- 
pared to the forward trace) scattering by the pinned vortex 
filaments (curves 5, 6 of Fig. 4) .  

In a transverse magnetic field the curves obtained by 
tracing the field backwards (to the minimum value of the 
thermal conductivity x(Hmin ) ) for sample 2 in the tempera- 
ture range investigated practically coincide with the for- 
ward-traced curves (curves 1, 3, 5 of Fig. 4) .  This is indica- 
tive of the weak influence of the normal excitations 
contained in the volume of the pinned vortex filaments on 
the metal's thermal conductivity as a whole, because the di- 
rections of the heat current and the magnetic filaments are 
mutually orthogonal. 

3. At the present time no unique theory exists describ- 
ing the behavior of the thermal conductivity of superconduc- 
tors in the mixed state; however, there are theories describ- 
ing x ( H )  near H,, and H,, . An analysis of the thermal 
conductivity of vanadium near Hcl for a pure sample for 
T >  2 K, in which the electronic excitations are responsible 
for the heat transfer (I,/<$ I ) ,  was presented by us1 using 
the theory of Cleary. The effective scattering width of elec- 
tronic excitations by Abrikosov vortex filaments is found to 
equal 6 x  lo-' cm. 

Because of the absence of a theory describing the behav- 
ior of the lattice thermal conductivity near H,, , we present 
an estimate of the scattering cross-section of phonons by vor- 
tex filaments based on experimental data obtained for the 
thermal conductivity of sample 2. In our analysis of the func- 
tion x (H) ,  we will neglect scattering of electronic excita- 
tions by the vortex filaments because their contribution, as 
was pointed out earlier, is indeed negligible. Therefore the 
change in the overall thermal conductivity in a magnetic 
field near H,, originates as a result of phonon scattering by 
Abrikosov vortex filaments, and equals 

Ax ( H )  = x; ( H )  - x; , (3) 

where xi (H), x5 are the lattice component thermal conduc- 
tivities in a magnetic field H and for H = 0, respectively. For 
the lattice thermal conductivity near Hcl we can categorize 
the scattering in terms of two mechanisms-scattering by 
vortex filaments and scattering by all other contributions. 

Then the frequency for scattering by phonons can be cast in 
the form 

l / r ,  ( H )  = l / ~ ; t I / . r ~ ,  (4)  

where the scattering frequency of phonons by vortex fila- 
ments 1 / ~ ,  can be expressed in terms of the scattering cross- 
section a ,  the density of vortex filaments Nand the velocity 
of sound v in vanadium 

Using (4),  (5),  we substitute the value of the scattering 
relaxation time T, (H) into Eq. (3  ) : 

1  1 
Ax ( H )  = x; ( H )  - X; = - 3 CvZT, ( H )  - - 3 CU2To 

where C = a T  = 2.6 X 10W5 J/cm3-K is the specific heat of 
the vanadium lattice6 for T = 1.84 K. From expression (6) ,  
using T, = 3xs /Cv2, we find the scattering cross-section 

We determine the magnitude of the cross-section for phonon 
scattering by Abrikosov vortex filaments by substituting the 
experimental data for sample 2 at T = 1.84 K presented in 
Fig. 4 (curves 5, 6 )  into formula ( 7 ) :  for HlVT, xi 
= 0.00492 W/cm-K, Ax(H) = - 0.00345 W/cm-K, 

AB = 140 gauss. The density of vortex filaments is deter- 
mined from the dependence N=AB/@, where 
a, = 2X lo-' gauss-cm2 is a quantum of magnetic flux. 
Averaging the velocity of sound in vanadium7 gives 
v = 3.2X lo5 cm/sec. The magnitude of the scattering cross 
section for phonons by Abrikosov vortex filaments for 
H lVT and HllVT equal a, = 9 . 2 ~  cm and 
a,, = 4.5 X lo-' cm respectively. 

Let us compare our experimental estimate of the cross- 
section for phonon scattering by vortex filaments with theo- 
retical estimates. In doing this we will suppose that the mean 
free path for phonons is less than twice the coherence length. 
Then 

where 1: is the phonon mean free path in a normal metal, 
a = N c  is the fraction of normal component where N is the 
density of vortex filaments. As is well-known,8 

where l? is the amplification coefficient for sound waves, v, 
is the Fermi velocity of electrons, w is the frequency of the 
amplified phonon. As a result of this conversion we obtain 

Because 1/1, = Nu, 

a=I/~l,~k,T~~/hv,~3~10-' cm. 

This estimate of the magnitude of the scattering cross-sec- 
tion of phonons by vortex filaments is in fairly good agree- 
ment with the experimental data presented above. 
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I ,  = j cos 0 do/ (cos 0+p) 
0 

FIG. 5. Agreement of experimental values of A x / x n  for sample 1 with 
calculations which were carried out according to the theory in Ref. 10 for 
p = 0.2 at various temperatures: curve 1 is HIIVT; curve 2 is HlVT. 

4. We now present an analysis of the thermal conductiv- 
ity of vanadium near He,, where the primary contribution to 
the thermal conductivity is due to the electronic excitations 
for the temperature range 1.8 K < T <  Tc under investiga- 
tion. In the mixed state near He,, the vortex filaments no 
longer are isolated but ~ v e r l a p . ~  The behavior of the thermal 
conductivity in this case is determined both by impurity 
scattering of the electronic excitations and by scattering due 
to spatial inhomogeneities in the order parameter \I/. The 
function x ( H )  near Hc2 in the theory of Houghton and 
Maki,l0 including both these scattering mechanisms, de- 
pends on the dimensionless parameter 

where kc = ( 2eH  /cfi)  ' I2  is the inverse lattice vector of the 
lattice of magnetic Abrikosov filaments, while 

x ,  is the second generalized parameter of the Ginzburg-Lan- 
dau theory, introduced by Maki," D is the demagnetization 
factor. When the conditionsp < 1 and T = T/Tc -0 are ful- 
filled, the variation in the thermal conductivity near H,, 
(H(Hc2 ) for transverse and longitudinal magnetic fields is 
described by the relations 

is a tabulated integral. 
In Figure 5 we show the relations between the theoreti- 

cal estimates and the experimental values of these quantities 
for various T from sample 1. It is clear that these relations go 
to unity as t-0, i.e., in the approximation that the condi- 
tions for applicability of the Houghton-Maki theory hold; 
this indicates that theory and experiment are in adequate 
agreement as t-0. An analogous result was obtained from 
analysis of the thermal conductivity near H,, for sample 2 as 
well. 

In conclusion, we note that we have succeeded in ob- - 

serving for the first time the dependence of the thermal con- 
ductivity of vanadium with a large concentration of impuri- 
ties on magnetic field near H,, , where it is related to ,'I 

scattering of phonons by Abrikosov vortex filaments, and we 
have estimated the magnitude of the scattering cross-section 
of phonons by the vortices. Our preliminary reports of all 
this are contained in Ref. 12. 

The experimentally observed difference in behavior of 
the thermal conductivity in a longitudinal magnetic field for 
forward and reverse traces of the field above x (H,,, ) can be 
related to the sizable contribution to the thermal conductiv- 
ity from electronic excitations within pinned vortex fila- 
ments for samples of vanadium in which Io<l. 
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