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A general method is proposed for constructing fully-integrable dynamic models in 
quasicrystals. This method is illustrated using the example of a spin model for a quasiperiodic 
tiling of a plane by two rhombi. A second example constructed in this paper is a spin model for 
icosahedral filling of three-dimensional space. The free energy is calculated for these models. 

1. INTRODUCTION 

The quasiperiodic tiling of a plane by two rhombi which 
was proposed by q en rose'.^ is a canonical example of a two- 
dimensional quasicrystal. The rhombi tile the entire plane 
and do not intersect one other, and no translation maps this 
covering into itself. However, any finite portion of this cov- 
ering occurs within the covering an infinite number of times. 
In a number of cases the tiling can possess additional sym- 
metries, for example a five-fold axis. De Bruijn3 succeeded in 
explaining the properties of this tiling with the help of duali- 
ty transformations. It turns out that the lattice dual to this 
tiling is simply a set of straight lines on the plane. In Ref. 4 a 
three-dimensional generalization of the Penrose tiling was 
proposed, in which the rhombi are replaced by rhomboids. 
The rhomboid is a special case of the parallelepiped, in 
which all the sides are the same length while each face is a 
rhombus. The filling of three-dimensional space by two 
rhomboids has icosahedral ~ymrnetry.~ The experimental 
discovery of icosahedral symmetry6 (in the rapidly cooled 
alloy has played an important role: the crystal structure of 
this alloy was elucidated in Refs. 7-9. The Penrose tiling has 
attracted a great deal of interest (Refs. 10-14); in Refs. 3, 5 
and 10-1 3 it was shown that the method of duality transfor- 
mations provides a general method of constructing quasiper- 
iodic tilings (in a space of arbitrary dimension). Specifically, 
this method will be used in the present paper to construct 
exactly solvable models in quasicrystals. The properties of 
dynamic systems in quasicrystals have been discussed in the 
literature (Refs. 15-1 8).  On the other hand, fully integrable 
models have attracted the close attention of theorists; see, 
e.g., Refs. 19-30 and citations therein. 

In the present paper, fully integrable models in quasi- 
crystals (among them the two-dimensional Ising model) are 
constructed (and solved). A preliminary communication on 
this subject was published in Ref. 12. In the present paper a 
general method is presented for constructing exactly solv- 
able dynamic models in quasicrystals. In Section 2 the basic 
properties of the quasiperiodic tiling of the plane by two 
rhombi are described; these properties allow us to construct 
the eight-vertex model of interacting spins for this tiling in 
Section 3. In Section 4 we described the icosahedral filling of 
three-dimensional space by two rhomboids. Section 5 is de- 
voted to the Zamolodchikov model, which describes inter- 
acting spins in the three-dimensional case. The model is 
based on the solution of the tetrahedron equations. This so- 
lution is used in Section 6 to construct an exactly solvable 
spin model for icosahedral filling of three-dimensional 
space. 

2. THE PENROSE COVERING 

In this section the basic properties of quasiperiodic til- 
i n g ~  of the plane by two rhombi are presented. This covering 
will be denoted by the letter Q. Each rhombus belonging to 
the tiling can be obtained by translations and rotations of one 
of a pair of rhombi. This pair consists of a wide rhombus 
(angles 72" and 108") and a narrow rhombus (angles 36" and 
144"). The length of each side equals one. So as to describe 
the orientation of the rhombi of the tiling, it is convenient to 
introduce five vectors: 

dj=i esp  ('/,inj), j=O, 1, 2, 3, 4. (2.1) 

Here we use complex coordinates for the plane. All the vec- 
tors d, belong to the left half plane; with each pair of vectors 
d ,  , d, ( k  > j )  we associate a rhombus r,, . The vectors dk , d, 
are orthogonal to the sides of the rhombus rkj, see Fig. 1; in 
this way the set of vectors (2.1) determine ten basic rhombi, 
five narrow and five wide (oriented in various ways). All 
rhombi belonging to the quasiperiodic tiling Q can be ob- 
tained from the basic rhombi by translations alone. An im- 
portant characteristic of the tiling Q is the relative frequency 
w,, of occurrence of a basic rhombus within the entire cover- 
ing. In the case where the tilin has the symmetry of a regular 
pentagon,'92 the frequencies of all the narrow rhombi are the 
same, which is also the case for all the wide rhombi. Let us 
denote by w ,  the frequency of occurrence of a narrow rhom- 
bus, and that of a wide one by w, .  These frequencies are 
given by the following expressions: 

Here, T is the golden mean: 

(we note that the plane can be tiled in a periodic fashion with 
the help of translations of one of the basic rhomboids). 

FIG. 1. Basic rhombus r, . The vectors d,, dj  are orthogonal to its sides 
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In Ref. 3, a lattice G was constructed which was dual to 
the tiling Q. This lattice was constructed in the following 
way; let us take one of the d, (2.1 ), and investigate the infi- 
nite set of equivalent straight lines parallel to this vector (the 
spacing between neighboring lines equals 1 ). Let us now in- 
vestigate the five such sets which are created by each of the 
vectors d, in turn. The set of all these lines divides the plane 
into an infinite set of distinct polygons (the cells of the lat- 
tice); in this way we define the lattice G. The duality relation 
between G and Q is formulated as follows: each cell of the 
lattice corresponds to a vertex of the tiling Q. To each cell 
edge of G there corresponds an edge of Q. Each vertex of G 
corresponds to a cell of Q, where the cells of Q are rhombi. 

We should point out that there exist many distinct qua- 
siperiodic tilings. Duality transformations are a general 
method of constructing quasiperiodic ti ling^.^-'^-'^ The lat- 
tice always is an infinite set of straight lines on the plane. In 
the three-dimensional case the duality transformation is de- 
scribed in Section 4. 

3. EXACTLY SOLVABLE SPIN MODELS IN A TWO- 
DIMENSIONAL QUASICRYSTAL 

In this section we will construct an eight-vertex model 
for a quasiperiodic tiling of the plane by two rhombi. The 
spins aare  located at the vertices of the tiling (the vertices of 
the rhombi). Each spin takes on the two values * 1. The 
spins interact around the cells of Q. Each cell of Q is a rhom- 
bus. 

The Hamiltonian H of the model is given by the expres- 
sion: 

Here T is the temperature. The summation is taken over all 
the cells of Q (rhombi). The expression in square brackets is 
the contribution from a given rhombus r,, . The positions of 
the spins at the vertices of the rhombus are shown in Fig. 1. 
The quantities P are dynamic coefficients. Let us investigate 
the pair of vectors d , ,  d, orthogonal to the sides of a given 
rhombus r,, . We fill in the sector between the vectors (and 
also the opposite sectors) with hatching (see Fig. 1 ) .  One 
pair of vertices of the rhombus rkj belongs to the dashed 
sectors (a , ,  a , ) ,  while the other pair belongs to the un- 
hatched sectors (a,, a, ). The interaction of the spins in the 
dashed sectors are described by the dynamic coefficients 
P;, ,  while the interaction of spins in the unhatched sectors 
are described by the coefficients P,, . The coefficients P,, and 
P ;, depend on the orientation of the rhombus; in all there are 
21 dynamic coefficients. The partition function is defined in 
the usual way: 

In the thermodynamic limit, the free energy F = - T ln Z is 
proportional to the number of rhombi N. The free energy 
density has a flnite limit 

f=lim (FIN). ( 3 . 3 )  

The model (3.1) can be solved only in the case where the 21 
dynamic coefficients P depend on only 6 independent pa- 
rameters. This parametrization can be written in terms of 

elliptic functions; the modulus k of the elliptic functions is 
one of the parameters. With each vector d, (2.1) we associ- 
ate an independent parameter a,; they form an increasing 
sequence a,  > aj (if k > j ) .  We will call a, the spectral pa- 
rameters. The final parameter is the coupling constant A. 
With each basic rhombus r,, we associate a value 

and obtain the inequalities 

The quantities K and K ' are complete elliptic integrals of the 
first kind corresponding to the moduli k and 
k ' = ( 1 - k 2 ,  ' I 2 .  The dynamic coefficients are expressed 
through the independent parameters via the following for- 
mulae: 

In this way an exactly solvable spin model is constructed. 
It is possible to solve this model in the following way. 

Let us reformulate the model on the lattice G dual to the 
tiling Q, see Section 2. The spins are found to be located in 
the cells of the lattice; they interact through a vertex of the 
lattice. With each straight line of the lattice there is associat- 
ed a spectral parameter u, . Thus, the model is equivalent to a 
special case of the eight-vertex model on an irregular lat- 
tice." This fact allows us to solve the model. The free energy 
density equals 

The summation extends over ten basic rhombi, while 
r > k  > j > O ;  w,, is the relative frequency (2.2); f, is the free 
energy density for the periodic case. In the case of a periodic 
tiling of the plane by shifts of one of the basic rhombi, the 
spin model is determined analogously, and is equivalent to 
the standard eight-vertex model.I9 The solution to this mod- 
el in the periodic case was solved within the context of quan- 
tum-mechanical methods for the inverse problem in Ref. 2 1. 
The periodic model depends only on three dynamic coeffi- 
cients P, P ' ,  P ". The dependence of the free energy on the 
dynamic coefficients possesses a certain symmetry (the du- 
ality property),19*20 This allows us to investigate the dynam- 
ic coefficients only in the region 

In this region the free energy density f, (for the periodic 
case) equals 

1 - - fo (P, P', P") 
T 

.. . 

(3 .9 )  
Here 

(3.10) 
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The local magnetization and polarization for the quasiperio- 
dic tiling equal 

Thus, the spin model for the two-dimensional quasicrystal 
has been solved. In the case P" = 0 it is equivalent to two 
noninteracting Ising models. 

In conclusion, it must be emphasized that we have pre- 
sented a general method of constructing exactly solvable 
models in quasicrystals. The quasicrystal can be obtained 
with the help of a duality transformation from the lat- 
tiCe.3.5.~o-~3 The eight-vertex model can be solved for an arbi- 

trary lattice.20 It is clear that not only the eight-vertex model 
but an arbitrary R matrix satisfying the Yang-Baxter model 
 relation^'^.^'.^^ can be used to construct an exactly solvable 
model in some quasicrystal. However, the models we can 
construct are not limited to fundamentalz2 (spin) models; 
any L-operator satisfying the bilinear relationsz3 with some 
R matrix generates a fully integrable model in the quasicrys- 
tal. 

4. ICOSAHEDRAL FILLING OF THREE-DIMENSIONAL 
SPACE 

The three-dimensional case is investigated in a way 
analogous to the two-dimensional case. The quasicrystal Q 
here is a quasiperiodic filling of three-dimensional space by 
shifts of a finite number of rhomboids. (The rhomboid is a 
special case of a parallelepiped, all of whose faces are identi- 
cal rhombi.) The rhomboids are constructed as follows: we 
take an icosahedron, which has six fivefold axes. Let us in- 
vestigate the six unit vectors 

directed along these axes. Each triad of these vectors gener- 
ates a rhomboid ekj : 

The quantity p is a real number. In all there are twenty (3.f 
these rhomboids, which form the basic rhomboids. By shift- 
ing these rhomboids we can fill the entire space. Ten of these 
rhomboids can be obtained by rotation from a narrow rhom- 
boid which is generated (see (4.2) ) by the vectors 

The other ten basic rhomboids are obtained by rotation from 
the wide rhomboid, which is generated (see (4.2) ) by the 
vectors 

ec=Y (0, -1, 71, es=y (T, 0, I ) ,  ea=y(O, 1, z). (4.4) 

The relative frequency wikj of appearance of a given basic 
rhomboid Fik, throughout the quasicrystal Q is also of inter- 
est. In the case of icosahedral symmetryI4 the individual fre- 
quency for each narrow rhomboid equals 

The individual frequency of each wide rhomboid equals 

~ w = l / l o T .  (4.6) 

The lattice G is dual to the quasicrystal Q, and will play 
an important role in constructing exactly solvable models. 
The lattice is constructed in the following way: we investi- 
gate an infinite equivalent set of planes orthogonal to a given 
vector e, (4.1 ) (the spacing between neighboring planes 
equals 1 ). In all there are six of these sets of planes (4.1 ) : we 
investigate them all. This system of planes divides the three- 
dimensional space into an infinite set of polyhedrons (each 
of which is a cell of the lattice); this is how the lattice is 
constructed. The duality relation between G and Q can be 
expressed in the following way (see Refs. 5, 10-13): to each 
cell of the lattice there corresponds a vertex of Q, while to 
each face of G there corresponds an edge of Q and to each 
edge of G corresponds a face of Q. Cells of Q (rhomboids) 
correspond to vertices of G. 

In conclusion we should point out that there exist many 
distinct quasiperiodic fillings (quasicrystals) of this sort. 
Icosahedral symmetry is not necessarily one of their proper- 
ties. The dual transformation is a general method of con- 
structing q u a ~ i c r y s t a l s , ~ ~ ~ ~ ' ~ - ' ~  for which the lattice is always 
a system of planes. In Section 6 we will construct an exactly 
solvable spin model for an arbitrary quasicrystal, using a 
solution to the tetrahedron equations described in the next 
section. 

5. THE ZAMOLODCHIKOV MODEL 

Zamolodchikov constructed a fully integrable model of 
interacting spins in the three-dimensional case.24.25 The 
Boltzmann weights of this model satisfy the tetrahedron 
equations. In order to prove that they satisfy all the tetrahe- 
dron equations, it is convenient to reformulate the model on 
the dual latticez6; this formulation will be used below. Let us 
investigate a standard cubic lattice 2 (with an edge of 1 ) in 
the three-dimensional space. The spin a are located at the 
vertices of this lattice. Each spin a can take on two values 
+ 1. They interact around the cube, and there is a Boltz- 

mann weight W associated with each unit cube. The loca- 
tions of spins a,. . . , h at the vertices of a unit cube are shown 
in Fig. 2. The Boltzmann weight connected with this cube we 
will write as 

The weight depends not only on the spins but also on three 
real parameters OZ3, 8,,, 8,, (angles). So as to define these 
parameters, we will introduce three unit vectors n,, n,, n, 
(they need not necessarily coincide with vectors belonging 
to the lattice 2 ). The vectors n,, n,, n3 are analogous to the 
spectral parameters, and define the angles 8: 

So as to write out an explicit expression for W, it is conven- 
ient to introduce the spherical excesses 

Here i ,  j, k is a permutation of 1,2, 3. 
We further define 
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J lodchikov model can be formulated on an arbitrary set of 
planes; the partition function will be Z-invariant. It should 
be noted that Bazhanov and Stroganov proposed still an- 

P other three-dimensional exactly solvable which 

I also can be used to construct fully integrable models in qua- 
sicrystals. 

\ 
'\ 6. EXACTLY SOLUBLE SPIN MODEL IN A THREE- 

\ 
\ 

DIMENSIONAL QUASICRYSTAL 

e d The three-dimensional case is investigated in a way 
analogous to the two-dimensional case, see Section 3. Let us 

FIG 2 Posit~ons of spins a, . . , h on the vertices of a cube. 
investigate the icosahedral filling of R ', see Section 4. Below 
we will construct an exactly soluble spin model for this qua- 

&=[ tg(6J2) ]'", sl= [sin(6,/2) ] -, sicrystal Q. The spins a are located on the vertices of Q; each 
(5.4) spin takes on the two values + 1. They interact around the 

C I = [ C O S ( ~ ~ / ~ ) ]  ' I 2 ,  I=O, 1, 2, 3, rhomboid. The Boltzmann weight associated with a given 
and also rhomboid F,,, (4.2) is denoted by 

In terms of these quantities, the Boltzmann weight Ware 
presented in the table. The partition function Z is standard: 

where the product is carried out over all cubes. The free 
energy density fo is calculated in Ref. 27: 

Here k ,  is the Boltzmann constant, T the temperature. The 
quantities a , ,  a,, a, are the three sides of the spherical trian- 
gle opposite the angles O,,, 813, 8,,. The perimeter of this 
triangle we denote by 2s: 

The polylogarithm function @ ( x )  is defined thus: 

sin (2mx) 

ni= 1 

In this way we reformulate and solve the model. 
If we turn from the model with lattice 2 to its dual 

lattice Y D  (which also is a standard cubic lattice), we can 
obtain the original formulation of Zamolodchikov. Here the 
Boltzmann weights are related to the vertices of the lattice 
Y,. In analogy with the two-dimensional case, the Zamo- 

The spins a, . . . , h are located on the vertices of the rhom- 
boid just as they were on the vertices of the cube in Fig. 2. 
The weight W depends on the angles 8; so as to introduce 
these angles, we associate a unit vector n, with each of the six 
vectors eJ (4.1 ) which belong to the crystal. (The vectors nJ 
do not necessarily coincide with eJ .) The Boltzmann weight 
Wassociated with the rhomboid F,,, (4.2) depends on three 
angles 8 which are defined by 

The explicit expression for W is given in the table (after 
replacing 6,, -+ BkJ, 6,, -+ 8,, , 6,, -+ 6 ,  ) . The partition func- 
tion is standard: 

the product extends over all rhomboids. It depends on 9 an- 
gles (the scalar products of the six unit vectors nj ). The 
partition function is Z-invariant, so that the weights Wsatis- 
fy the tetrahedron equation. This implies that the model can 
be solved in a way analogous to the two-dimensional case. It 
is sufficient to reformulate the model on a lattice dual to the 
quasicrystal. This will be a special case of the Zamolodchi- 
kov model on an arbitrary set of planes. Using the unitarity 
hypo the~ i s ,~~ , ' ~  we obtain the following expression for the 
free energy density f for the spin model in a quasicrystal 
(6.3): 

The summation is limited by the condition 6>j  > k > i> 1. 
The sum consists of twenty terms, each of which corre- 
sponds to one of the basic rhomboids (4.2). The quantities 
w,,, are the relative frequencies of occurrence of the rhom- 

TABLE I. 

acih 
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boid &,, (4.5), (4.6); f, is the free energy density for the 
periodic case (5.7). 

An exactly soluble model can be constructed in an anal- 
ogous way for any quasicrystal. 

It should be emphasized that the properties of the dy- 
namic models in quasicrystals constructed in this paper are 
closer to the properties of analogous models in the periodic 
case than properties of dynamic quasicrystal models dis- 
cussed previously in the literature. 

I want to thank R. Baxter, A. B. Zamolodchikov, and 
V. V. Bazhanov for discussions of the properties of three- 
dimensional fully integrable systems. 
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