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A standard formal derivation is offered for the dissipation function, the rate of heat evolution 
in a unit volume, for a medium in which a static shear stress and an irreversible (plastic) strain 
are possible. An expression [expression ( l o ) ]  is derived for the tensor of the rate of plastic 
strain. It is shown that the effect stems exclusively from the shear stress in the medium. This 
effect, if it occurs, is linear in the rates and can have a decisive inverse effect on the process of 
plastic deformation. The possibility of an avalanche fracture of the medium when the initial 
temperature decreases is studied in a simple example. 

1. Irreversible processes which occur in a liquid and 
give rise to an evolution of heat in the volume and to an 
increase in the entropy are associated with a molecular 
transport of momentum and energy. Added to the corre- 
sponding fluxes are components proportional to the gradi- 
ents of the velocity and temperature distributions, multi- 
plied by viscosity coeficients and thermal conductivities.' 
The expression for the dissipation function is quadratic in 
these gradients. In a solid, in addition to the expression 
which directly generalizes the results for a liquid,' the heat 
which arises from plastic deformations characterized by 
hysteresis leads to a fundamentally new and frequently 
dominant effect. While the elastic strain is related in an un- 
ambiguous way to the thermodynamic state of the object, the 
plastic strain is a function of the process. The microscopic 
mechanism for plastic deformation involves a motion of dis- 
locations and is determined by the dislocation density and 
the rate of change of this density, both of which are tensor 
quantities.2.3 

In $2 we offer a formal derivation of a general expres- 
sion for the dissipation function, containing specific effects 
which are linear in the rates of plastic strain. We show that 
these effects always stem exclusively from the shear part of 
the stress tensor. In $3 we take up an example which illus- 
trates the governing effect of the heat which is evolved dur- 
ing plastic deformation on the course of the process. 

2. We use Eulerian coordinates for the calculations, and 
we retain the notation of Ref. 1 to the maximum extent possi- 
ble. The complete system of equations in continuum me- 
chanics can be formulated as conservation laws: continuity 
equations for the mass, momentum, and energy, 

T, the velocity vi, and the stress tensor o, . The hydrody- 
namic approximation corresponds to the case in which the 
gradients of these quantities are small. The thermodynamic 
identity for the potential of a unit mass from these variables, 

formally determines a purely thermodynamic state function, 
the specific-volume tensor, whose trace is equal to the re- 
ciprocal of the density: 

We will discuss the relationship between this tensor and the 
derivatives of the displacement vector of points in the object 
below. 

The energy density of a unit mass is found by means of 
Legendre transformations: 

de=Tds+dH.  

Here we have introduced the streamlined notation 

for the change in the elastic energy of a unit mass in an adia- 
batic process. 

Expressions for the dissipation function and the energy 
flux density are found from the continuity equation for the 
energy, (3 ) ,  for which the time derivative of the energy den- 
sity of a unit volume, E = P ( E  + v2/2), is expanded and 
transformed with the help of Eqs. ( 1 ), ( 2 )  and (6)  : 

(II, is the momentum flux tensor, and oi, is the stress ten- 
sor), supplemented by the equation of state of the medium. dR 
The latter equation can be found by differentiating the corre- ax, - p v k ~ .  
sponding thermodynamic potential with respect to its inde- 
pendent variables. The most convenient approach is to By grouping terms and using some identities, we can 
choose for these variables parameters whose constancy char- pull out a divergence and a total derivative with respect to 
acterizes the thermodynamic equilibrium: the temperature the time: 
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The energy flux should be found from 

Using Eq. (3)  for energy conservation, we find an expression 
for the dissipation function: the total time derivative of the 
entropy of a unit volume, S = ps, multiplied by the tempera- 
ture: 

Here we have used expression ( 7 ) for dR . 
Remarkably, the expression in parentheses on the right 

is orthogonal to the unit tensor, so that it has a vanishing 
trace ( Fi = l/p ), and we can write 

dv, d l  -- p--=o. 
axk d t p  

The work of hydrostatic pressure thus always leads to re- 
versible changes in the density, and the expression for the 
dissipation function contains only the shear parts of these 
tensors: 

The quantity in square brackets in ( 10) phenomenologically 
determines a tensor of the rate of plastic strain. Since the 
velocity of a point is the total derivative of its displacement 
with respect to the time, by multiplying ( 10) by dt we find a 
readily interpreted relation: The increment in the heat is 
equal to the work performed by shear forces minus the elas- 
tic internal energy of the shear stress which has been stored 
in the medium, dRsh = rik d Vik : 

Expression ( 11 ) vanishes identically only if the strain 
tensor at each point in the medium determines the stress 
state of the medium unambiguously. In this case, dissipative 
effects are usually related exclusively to the viscosity and 
heat conduction. 

3. Let us demonstrate the possibility that these effects 
can have a dominant influence on the process of plastic de- 
formation in a simple example, the compression of a sample 
by a piston in a cylinder with rigid, heat-insulating wall. 

There are many empirical criteria for the beginning of 
irreversible deformation-criteria which do not give us the 
details of the microscopic p i ~ t u r e . ~  We choose the simplest 
of these criteria: the attainment of the "plasticity threshold," 
i.e., the limiting value of the modulus of the shear stress 
tensor r ,  ( T), which depends only on the temperature (we 
are ignoring hardening by pressure). Experimental data in- 
dicate that this quantity is usually very small in comparison 
with the elastic moduli of a solid; i.e., the thermodynamic 
functions can be found in the approximation of Hooke's law. 

In particular, the explicit expression for q., in terms of a, 
can be found in linear elasticity theory by differentiating the 
expansion of the potential in powers of the invariants of the 
stress tensor (this expansion depends on three constants): 

The hydrostatic pressure p = - a,, /3 and the shear stress 
7 ,  have been separated out of the stress tensor; po is the 
density of the undeformed medium; and KO and Go are the 
bulk modulus and shear modulus of the underformed medi- 
um. The expansion of the elastic energy begins with quadrat- 
ic terms. In the absence of a plastic deformation,p, Vik = ulk 
is the strain tensor, and ( 10) vanishes identically, since we 
have 

In the case of single-sided compression of a cylindrical 
sample parallel to its axis, there are no displacements in the 
transverse directions, x and y. We denote by 

the relative decrease in length, and we denote by 

components of the stress tensor. The latter equality is an 
unambiguous consequence of the requirement T,, = 0. The 
stored elastic energy of a unit volume, ( 12c), is 

In the region of elastic compression, the specific load on 
the piston is related to the displacement by the single-side( 
compression modulus: 

Added to the volume decrease is a shear part associated with 
the rigidity of the wall: 

When the shear stress reaches the critical level for the initial 
temperature T,, T:~,, = 4G0u*/3, plastic phenomena arise, 
and the heating of the sample becomes important through 
the temperature dependence of the threshold shear stress. 
The thermal effect should be determined from ( 11 ), but to 
illustrate the point we write the complete energy balance 
equation: 

We assume that the heat capacity Co = TdS /dT is constant; 
in condensed matter, it is relatively independent of the pro- 
cess. 

Substituting in ( 13b), and expanding (13d), we see 
that ( 11 ) holds (the effect is determined exclusively by the 
shear). We find1') 
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FIG. 1. Force in a piston versus its displacement. 1-Plastic deformation 
and hysteresis; 2-critical regime; 3-avalanche fracture. 

This equation can be integrated easily: 

Along with ( 13b), it determines the relationship between 

the strains and stresses in the plastic region in terms of the 
temperature, as a parameter. 

Figure 1 shows some representative curves of o ( u )  for 
the very simple function 

which conveys the decrease in the limiting shear stress with 
increasing temperature. All the solutions have the asympto- 
tic behavior o = Ku at o > r ,  with a slope smaller than 
( 14a). The slope dc~/du in the dependence on To, ro, and TI 
can be either negative or positive, so that we have nonmono- 
tonic curves, similar to van der Waals isotherms. The non- 
monotonic curves lie above the monotonic curves in this fig- 
ure. At a sufficiently high initial temperature T,, the curves 
are monotonic, plastic effects come into play in a weak defor- 
mation, and these effects are manifested solely by hysteresis. 
The reduction of the loading should follow line ( 14a), which 
corresponds to the elastic law, with a residual deformation. 

At low temperatures TI the regime is not monotonic; it 
may be unstable and may lead to nonuniform avalanche de- 
struction of the object, possibly involving the appearance of 
fracture surfaces. A study of this process is an exceedingly 
complicated problem involving simultaneous solution of the 
equations of motion and the heat-conduction equation with 
a heat source determined by expression ( 10). 

"If dr/dT<O, the effective heat capacity decreases (!) by an amount 
equal to the magnitude of the change in the shear elastic energy with the 
temperature: Cll- C, + d[3r2(T)/8Gl1] /dT. 
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