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A new model of the transition from a one-dimensional ferromagnetic metal to the insulating 
phase with a spin-density wave (SDW) is proposed. Below the transition point the spins 
develop a spiral structure, in which analogs of domain walls exist in the form of self-localized 
states of the order parameter (solitons and polarons). In systems with higher than twofold 
commensurability the SDW is an electrically active collective mode capable of giving rise to a 
nonlinear soliton conductivity. The SDW parameters depend on the external magnetic field. 
The role of magnetic anisotropy is investigated. The commensurability energy of the SDW is a 
nonmonotonic function of the occupation state of the electron energy band. 

INTRODUCTION the SDW order parameter. However, in the framework of 

It is well known that at sufficiently low temperatures 
quasi-one-dimensional metals undergo a transition to the in- 
sulating state. The main cause of such a transition is either a 
structural (Peierls) transition, Mott-Hubbard correlation 
interaction, or the effect of disorder. In a Peierls transition a 
charge-density wave (CDW) state characterized by a new 
lattice constant and by electron-density modulation speci- 
fied by the quantity 2kF (k, is the Fermi momentum of the 
electrons in the direction of variation) arises.' The Coulomb 
correlation interaction of the electrons also gives rise to the 
formation of a superstructure with scale 2k,, but, in the 
subsystem of the electron spins, to a so-called spin-density 
wave (SDW).* 

From a conceptual point of view the CDW and SDW 
are due to Umklapp processes between the "right" and 
"left" branches of the spectrum of the one-dimensional elec- 
trons and holes. The order parameter of the CDW is propor- 
tional to the anomalous average (a& b - ,, ), where a$, is 
the creation operator for a "right" electron, b - ,, is the 
annihilation operator for a "left" hole, .r is the spin-projec- 
tion index, while the order parameter of the SDW is propor- 
tional to (a&b k F  T ) ,  i.e., the SDW is formed by Umklapp 
processes with a spin flip. 

The commom origin of CDW and SDW gives rise to the 
largely similar behavior of the collective degrees of freedom 
of the order parameter in these phases-in particular, the 
collective conductivity, as was noted in Ref. 3. In a Peierls- 
Frohlich system (CDW with higher than twofold commen- 
surability, or an incommensurable CDW), the collective 
conductivity is due to the dynamics of the phase q, (of the 
order parameter heiq) describing the large-scale variations 
of the Fermi energy.4 In turn, the evolution of the phase q, is 
intimately related to Umklapp scatterings through 2kF, as is 
formally manifested in the appearance of the so-called CDW 
chiral-anomaly c ~ r r e n t , ~ . ~  i.e., the collective CDW current 
is an Umklapp current. The modulus A of the Peierls order 
parameter determines the gap in the spectrum of the elec- 
trons that have become nonconducting, and its nonuniform 
states are deep polarons of large radius -lo = fiv,/A (v, is 
the Fermi velocity). The theory of such self-localized states 
was expounded in detail in Ref. 6. 

It is rather natural to expect analogous behavior from 

the existing approach to the description of SDW (Ref. 2) 
these analogies with Peierls systems have not been clearly 
traced, because of specific features of calculations in the 
Hubbard model. Therefore, it is of undoubted interest to 
create a theory of SDW on the basis of a scheme that is relat- 
ed to the Peierls scheme and in which the nontrivial role of 
Umklapp processes is considered explicitly. Such a descrip- 
tion is proposed in the present paper. We use thes-f model of 
a ferromagnetic metal7 and study the transition to the SDW 
phase in the system ofs conduction electrons. The advantage 
of this description lies in the possibility of the explicity intro- 
duction of electron-magnon interaction and, consequently, 
Umklapp processes with emission or absorption of magnons 
with momenta 2kF. It is natural to call such an ordered 
phase a magnetic Peierls insulator (MPI),  in order in distin- 
guish it from the SDW state which arises in the Hubbard 
model. The term SDW in our approach will be reserved for 
the description of the dynamical phase degree of freedom, in 
analogy with the use of the term CDW in the Peierls-insula- 
tor (PI )  state. In the framework of thes-f description we are 
able to formulate a scheme analogous in many respects to the 
Peierls scheme, i.e., to formulate a field model of an MPI and 
to investigate nonuniform and nonstationary states of the 
order parameter. It is found that the transition to an MPI in 
a one-dimensional ferromagnetic metal leads to the forma- 
tion of a spiral structure in the magnetic subsystem, with a 
simultaneous transition of the conducting subsystem to the 
insulating state. The period of the spiral is specified by the 
quantity 2kF, as we should expect in accordance with the 
theory of Dzyaloshinskii spiral structures.' Just as the 
Peierls transition is a consequence of the enhancement of the 
Kohn singularity in the one-dimensional case, so the transi- 
tion to the MPI state is an enhancement of the interaction 
that is responsible in three-dimensional metals for the for- 
mation of Dzyaloshinskii spirals. The self-localized states of 
the modulus of the order parameter of an MPI are to a cer- 
tain degree analogous to domain structures in magnets. 

In contrast to a Peierls-Frohlich system, in SDW there 
is no microscopic modulation of the electron-charge density, 
whence it follows that the collective current in transitions 
caused by mixing of branches of the electron spectrum is 
(contrary to what is sometimes stated) in no way connected 
with the average variations of the density. In addition, im- 

568 Sov. Phys. JETP 65 (3), March 1987 0038-5646/87/030568-06$04.00 @ 1987 American Institute of Physics 568 



portant differences between the models are manifested in the 
commensurability effect and the role of the magnetic field. It 
is found that the parameters of the MPI are easily controlled 
by a magnetic field, while the commensurability effect 
differs for systems with even and odd commensurability in- 
dices, which does not happen in the Peierls phase. The latter 
follows from the fact that in a PI  the spin does not change in 
Umklapp scatterings, and so the symmetry of an MPI, in 
contrast to a PI, is determined not only by the relationship of 
the Umklapp vector 2k, to the Brillouin vector, but also by 
the number of spin flips in the Umklapp processes. 

The proposed approach can be applicable to the de- 
scription of the properties of quasi-one-dimensional con- 
ducting magnets (metals or degenerate semiconductors), in 
the form of rare-earth compounds of the type Eu,04, 
Eu2Lu204, and EuGd204 (Ref. 8 ) .  

1. DERIVATION OF A CONTINUUM MODEL OF A MAGNETIC 
PEIERLS INSULATOR 

The nonuniform states of an MPI and the response to 
external fields can be studied conveniently in an continuum 
model. Below the metal-insulator transition point, the char- 
acteristic length scales over which the components of the 
order parameter vary become much greater than the intera- 
tomic distance a -  k ,  '. Therefore, it is natural to obtain a 
description of the system in terms of large-scale fields, by 
averaging the microscopic Hamiltonian over interatomic 
distances. 

The starting point of this program is the one-dimen- 
sional s-f Hamiltonian 

Here Ja are Heisenberg-exchange integrals between f atoms, 
A is thes-Jinteraction constant, S, is the spin operator of the 
f atom at the site n, a; is the creation operator for an s 
electron whosez-component of spin is equal to r a t  the site n ,  
r is the set Pauli matrices, and t is the Bloch transfer integral 
of the s electrons. 

We shall consider a metal below the ferromagnetic-or- 
dering temperature T,. Let the spontaneous magnetic mo- 
ment of the lattice be directed along the z axis and let the 
atomic spin Ss  1. We represent the spin operators in the 
linearized Holstein-Primakoff form 

In the one-dimensional problem the effective electron- 
scattering amplitude and the polarization operator of the 
magnons have a logarithmic singularity for momenta 
& 2k, (Ref. 7) ,  analogous to the Kohn singularity in the 

electron-phonon system. Therefore, intending to study the 
rearrangement of the magnon and electron spectra, we shall 
retain in the Hamiltonian ( 1 ) only magnons with momenta 

2kF, i.e., 

( 2 / S )  '"SnX = exp (2ikFna)  ( C , , ~ + C ? ~ ~  11)  

+ .+ exp (-2ikFna) ( c ~ ~ ~ + c - ~ ~ ~ ) ,  

( 2 I S )  '"Sn"i exp (2ik,na) (c,,, - c L k , )  
(3)  

+i exp (-2ikFna) ( c - ~ , , - c ~ , )  

Following Ref. 4, we represent the electron operators in the 
form 

a , , ,  ,=(2a)- '"(W,,  , exp ( ik ,na)+V, ,  + e x p ( - i k F n a ) ) ,  (4) 

where Wand Vare smooth functions of the coordinate n .  A 
quasiclassical continuum Hamiltonian is obtained after sub- 
stitution of ( 3 )  and (4) into (1 )  and after averaging over 
rapid oscillations with period l/kFa. Here an important role 
is played by the condition (always fulfilled in metals) 
kFa = ?r/N ( N  > 1 ), which can be represented in the form 

where p, = 2r/a is the size of the Brillouin zone. If N is a 
rational number, i.e., N = M /L, where M and L are integers 
( M >  L ) ,  then (5)  is the condition for commensurability of 
the Peierls phase.4 The physical meaning of the commensur- 
ability condition is transparent; it implies that an electron 
must participate N times in Umklapp processes with a 
change of momentum by 2kF in order to return to its starting 
point in the Brillouin zone. An irrational value of N corre- 
sponds to an incommensurable Peierls. Below we shall con- 
sider only the transition to a commensurable phase. Here, as 
in the Peierls problem, in our case we can distinguish two 
possiblities: M >  2 and M = 2. In the former case the density 
of the continuum Hamiltonian of the s-f model is 

The density h,-f takes the same form in the incommensurable 
case. 

For twofold commensurability we have 

In accordance with the principles of self-consistent field the- 
ory we represent the magnon operators in the form 

Correspondingly, the spin components take the form 

whereE = AA(s/2)IJ2 and? = p ~ ( S / 2 ) " 2 .  From (9)  we 
can see immediately what distinguishes the case of twofold 

569 Sov. Phys. JETP 65 (3), March 1987 Krive et at. 569 



commensurability (2k,a = a); of the four independent 
quantities A, p, p, and 8 there remain two: 

@=a cos cp+p cos 8,  q = p  sin 8-A sin cp. (10) 

It is @ and 7 that appear in the Hamiltonian (7) .  
After substitution of (8)  the Hamiltonians (6)  and (7)  

acquire the form 

w h e r e v = y + r x  a n d y = X + r x .  
We now go over to the continuum limit 

(2 ,  ... +a-1$ dx ... ) and in place of the Hamiltonians write 
the corresponding Lagrangians, since this is convenient for 
the subsequent calculations ( f i  = 1 ) . For M > 2 

O = i ~ ~ ~ a ~ l I P + i ~ t . d , x - A T  exp (-iz.cp) Y - p ~  exp ( - i z , 8 ) ~  

- Ap cos (9-0)  
sign (P-J" , 

gz 
(13) 

where 

1 ( E f  1') cos (2k,a) -2J' - = 2  
aA2 7 

gl 
1 ( J"-Ju 1 cos (2k,a) 

(14) 
-- - 4  

aA2 
, v,=ta; 

gz 

where 

The Lagrangians ( 13) and ( 15) corresponds to the 
chirally invariant Gross-Neveu (GN)  model of quantum 
field theory with different coupling constants. We first in- 
vestigate the ground state of the models ( 13) and d(  15) for 
isotropic ferromagnetic exchange J " = J = J = J < 0, 
and then indicate the result of including anisotropy. 

2. ISOTROPIC MODEL OF A MAGNETIC PEIERLS 
INSULATOR 

In the isotropic case, g, ' = 0, while g, ' = - 8Jsin2 
(k,a)/aA and g, ' = g, ' = - 8J/aA *, and so the 
ground state of the GN model is stable for J <  0, which, natu- 
rally, coincides with the condition for ferromagnetism of the 
initial metallic phase. The model obtained has been investi- 
gated in detail (see, e.g., Ref. 4), and so we immediately give 
the expression for the order parameter in the uniform 
ground state of the system ( 13) at T = 0: 

A=p=Ao=2 ( E F ' - A ' S ~ / ~ ) ' ~  exp ( - i l k ) ,  (17) 

whereR - '  = 2gc IN -'(O), in which N(0)  is the density of 
states at the Fermi level. The expression ( 17) and the usual 
formula for the gap in the Peierls problem differ in the form 
of the pre-exponential factor (the Peierls pre-exponential 
factor is simply 2.5, ). This difference is connected with the 
fact that in a ferromagnetic metal the number of electrons 
with spin along the spontaneous moment of the lattice differs 
from the number of electrons with the opposite spin, and the 
order parameter, as already stated, is due to pairing between 
these branches: 

It is clear that an MPI exists for so long as there are electrons 
with both spin components, i.e., for E, > IA IS/2 (in metals 
the stronger inequality E, ) JA IS/2 is usually fulfilled7). In 
the case of period doubling the equations of the self-consis- 
tent model ( 15) have the form 

But it follows from the equations of motion that x = Y*; 
therefore 7 = 0 and the order parameter is only the field @: 

@=2 ( E , ~ - A ' S ~ / ~ )  I h  exp ( - 2 / N  (0) g , ) .  (20) 

InthiscaseS; =0 ,  andS:#O (see (9 ) ) .  
We note that because of ( 18) and ( 19) the average val- 

ue of the electron-density operator 

is constant ( ( A )  = no) and, in contrast to the case of a PI, 
does not contain corrections oscillating with frequency 
2kFx. This is a very important difference between the model 
studied here and the Peierls model. 

In the case of isotropic Heisenberg exchange it is not 
difficult to supplement the Lagrangians ( 13) and ( 15) with 
terms describing the kinetic energy of the magnetic subsys- 
tem. In fact, in the one-magnon approximation the Heisen- 
berg Hamiltonian is 

Introducing generalized coordinates (see, e.g., Ref. 9) by 
the formulas 

we write h,  in the form of the potential energy ofa harmonic 
oscillator: 

Correspondingly, the kinetic energy of the oscillator is given 
by a quadratic form of the generalized momenta 

while the Lagrangian of the magnon subsystem for M > 2 is 

where wo = - 4JSsin2 ( kfa 1. Correspondingly, for period 
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doubling we have 

From (26) and (27) it can be seen that the kinetic terms in 
the Lagrangians have the same form as in the Peierls prob- 
lem. 

In contrast to the Peierls continuum model, an MPI is 
formally described by two fermion fields \V and X, and the 
isotropic variant of the model ( 15) is a sum of two Lagran- 
gians of the G N  model with multiplicity Nm = 1 (see e.g., 
Ref. 10). However, because of (19) this sum reduces to a 
G N  model with N ,  = 2(\V =x*) ,  and, when (27) is taken 
into account, coincides exactly with the Peierls model for 
systems with a doubled crystal-lattice p e r i ~ d . ~ . ~  Conse- 
quently, in an MPI with doubled period there should exist an 
identical set of self-localized state-topological solitons and 
polarons of the order parameter. 

The isotropic model ( 13) is the sum of two Lagrangians 
of the chiral G N  model with Nm = 1 (Ref. 10). The coinci- 
dence of the vacua (17) also makes it possible to write the 
model in the form of a two-component chiral G N  model 
( N m  = 2).  Consequently, in the model, as in an incommen- 
surable PI, there exist dynamical solitons of the order pa- 
rameter. It follows from this reasoning that in an incommen- 
surable isotropic MPI we have 8 = - q, as a consequence of 
the equality T* = X, but since the vacuum energy does not 
depend on p, the values of q,, and hence the values of the 
components S2y,  are not fixed. This degeneracy is lifted 
when the commensurability energy of the SDW is taken into 
account. 

3. COMMENSURABILITY ENERGY OF THE SDW 

As is well known,4 in field models with a linearized elec- 
tron spectrum the commensurability effect (i.e., the depen- 
dence of the energy of the system on q, and 8) is due to the 
anharmonic terms in the Hamiltonian that describe Umk- 
lapp processes with the participation of several phonons (in 
the Peierls problem) or magnons (in our problem). Multi- 
magnon terms arise from higher terms of the expansion in 
the Holstein-Primakoff representation: 

It follows from (8  ) that 

In contrast to the Peierls problem, in which the anharmoni- 
cities are given by powers of linear phonon operators4 and, 
consequently, by sums of Umklapp scatterings through 2kF, 
in our case we sum Umklapp scatterings through 4kF. This 
is not an accidental difference; it is connected with the con- 
servation of the electron spin in the case of an even number of 
Umklapp scatterings between branches. It is also not acci- 
dental that the combination q, + 8 appears in the anhar- 
monic terms. In fact, in the ground state (A = p )  the formu- 
las (9 )  take the form 

SnX= (2S)IhA eos (7) eos (2kFna + 
(30) 

s., =- ( 2 s ) '  A sin($) cos ( ~ k , n a  + - - 2 j . 

For M-fold commensurability the unit cell of the MPI con- 
sists o f M  sites and contains two electrons-the condition for 
insulating behavior. Consequently, the expressions (30) 
should be periodic under the shift n -n + M, i.e., the com- 
mensurability energy, which determines the minimum of the 
energy as a function of the position of the SDW relative to 
the original lattice, should be periodic in the argument 
p + 8; this is incorporated in (29) and is confirmed by the 
subsequent calculation. 

We shall calculate the commensurability terms in the s- 
f-exchange Hamiltonian. Since the commensurability terms 
are sought using perturbation theory, in the expansion in the 
parameter A2/S< 1 in formulas (28) and (29) it is necessary 
to keep the largest terms in which rapid oscillations vanish 
when kFa = T/M. It is not difficult to verify that in the gen- 
eral mth term of the perturbation-theory series it is neces- 
sary to keep only 

The remaining terms of the binomial series for the minimum 
value m, (which, in the final analysis, is determined by the 
commensurability index M )  are found to be of higher order 
of smallness in A2/S << 1. We must now substitute ( 3  1 ) into 
the combination representing the anharmonic correction to 
the Hamiltonian (6 )  : 

s,"'"' [ (W++V++I.T-.+V+) exp (-2ik,na) 

+ ( V + + W , f  V,+ Wt)  exp (2ik,na) ] 

+is:'"' [ (V++ Wt-T7++ W,)  exp (2ikFna) 

and separate out the smooth contribution. The result has the 
form 

where for even M we have m, = M /2 - 1, and for odd M we 
have m, = M - 1. The anharmonic terms of Heisenberg ori- 
gin are small in the parameter J / \ A  I < 1 and are discarded. In 
real conducting magnetic systems this condition is, as a rule, 
fulfilled.' 

Having added (33 ) to the isotropic Lagrangian ( 13), 
we can easily separate out from the total Lagrangian of the 
system the Lagrangian of the phase degree of freedom. 
Henceforth, we shall call the latter Lagrangian the SDW 
Lagrangian, by analogy with the terminology adopted for 
CDW. For this it is necessary to subject the total Lagrangian 
to the chiral transformation 
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and integrate over the fermion fields \I, andx (see the details 
of the analogous calculation in Refs. 5 and 11 ). We obtain 

where c, = v,A "*w,/h is the SDW velocity, and 

As expected, the SDW potential is c o ~ ( ~ ' ~ ( q ,  + 8) ), where 
the upper line pertains to even M and the lower line to odd 
M. 

In the next section we shall discuss the role of anisotro- 
py, and also of electric and magnetic fields, in the dynamics 
of SDW. 

4. EFFECT OF ANISOTROPY AND EXTERNAL FIELDS ON 
THE CHARACTERISTICS OF MAGNETIC PEIERLS 
INSULATORS 

As has been shown, in the presence of anisotropic Hei- 
senberg exchange the continuum Lagrangian acquires a 
term that depends on the phase difference q, - 8 (the last 
term in ( 13 ) ) . Consequently, the ground-state energy de- 
pends on the phases even in the absence of commensurability 
terms. It is clear that the phase fixing of the MPD vacuum is 
determined by the relative contribution of the anisotropy 
and the commensurability energy E,,,, . We shall call the 
anisotropy strong if 

and weak if E,,,, B h2/g2. 
In the case of strong anisotropy the difference q, - 6 is 

fixed, while the vacuum value ofq, (or 8) is determined from 
the equations of motion of the SDW (35). For weak anisot- 
ropy the last term in the Lagrangian ( 13) may be disregard- 
ed and the problem is isotropic. 

It is not difficult to convince oneself that for strong an- 
isotropy the difference q, - 8 is determined by the sign of 
Jx  - Jy . The minimum vacuum energy always corre- 
sponds to the conditions 

Correspondingly, the sign of J " - J determines the polar- 
ization of the SDW: For Jx > JY we have Sz = 0 and 
SY,#O,whileforJx < J Y  wehaveSY, =OandS;#O(inthe 
case of weak anisotropy, both components of the spiral are 
nonzero). 

In the case of strong anisotropy the form of the dimen- 
sionless coupling constant II in the self-consistency equation 
( 17) also changes: 

and the condition g ,  ' > Ag; ' for the existence of an MPI 

becomes a threshold condition. When ( 14) is taken into ac- 
count this condition takes the form 

( J x f  JJ)cos 2kFa-2J2-jJ"--JyI cos 2k,a>O, 

i.e., it coincides with the criteria for stability of the ground 
state of an anisotropic Heisenberg system. 

The above remarks pertain only to exchange anisotro- 
py. It is not difficult to see that the addition of single-ion 
anisotropy Ha = - K 2,  (St )' to the isotropic Heisenberg 
Hamiltonian only renormalizes the coupling constant g,: 

It is clear from the above discussion that in the region of 
existence of an MPI neither exchange anisotropy nor single- 
ion anisotropy has any influence on the spatial dependence 
of the self-localized states of the order parameter. 

The behavior of the magnetic order parameter in an 
external electric field E directed along the axis of one-dimen- 
sional motion of the electrons is identical to the behavior of 
the Peierls order parameter-namely, the modulus of the 
order parameter is suppressed by the field,4 and MPI with a 
doubled magnetic period is not electrically active, and the 
field E affects only the motion of the SDW (35). In the La- 
grangian (35) the field appears in the combination 
eE(q, + 8) (e is the electron charge), in analogy with the 
case of CDW (Refs. 4, 11 ). In analogy with CDW, in SDW 
three-dimensional interactions and Coulomb effects asso- 
ciated with the quasi-one-dimensionality of real materials 
should be manifested. At low temperatures, nonlinear con- 
ductivity, due to phase  soliton^,^^'^ should be observed in 
SDW. 

However, in contrast to CDW, in SDW there appears 
the interesting possibility of initiating collective nonlinear 
conductivity by a magnetic field. We suppose that the spon- 
taneous ferromagnetic moment S is nonuniform and that 
there are domains in the system. In a magnetic field the do- 
mains move, i.e., we haves $;O. In the Lagrangian ( 13) the 
chiral anomaly singles out the terms A(q, - e ) ~ ,  i.e., the 
SDW are acted upon by an effective electric field E * - AS/^ 
due to the imbalance of the branches of the electron spec- 
trum. An experimental verification of this phenomenon 
would be of considerable interest. 

We now discuss the effect of a magnetic field on SDW. 
A magnetic field H acts on both subsystems forming the 
SDW condensate, and should be included both in the Hei- 
senberg Hamiltonian and in the electron Hamiltonian. Since 
the z axis is specified by the direction of the spontaneous 
moment of the lattice, we can consider different orientations 
of H with respect to the z axis. We begin with the electron 
subsystem. In a one-dimensional system of electrons a ma- 
gentic field acts only on their spins and there is no orbital 
effect; therefore, the Hamiltonian of the interaction with the 
field has the same matrix structure as the s-f-exchange Ham- 
iltonian4: 

wherep is the Bohr magneton. The component Hz is added 
to the internal "magnetizing" field AS/2p and, thus, con- 
trols the pre-exponential factor in ( 17). The physics of this 
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effect is trivial: The numbers of electrons with spins parallel 
and antiparallel to the spontaneous moment change. 

The transverse components H,, flip the electron spin, 
but, unlike the operator components SXzY,  are not connected 
with Umklapp scatterings through 2kF. Therefore, they do 
not mix the right and left branches of the spectrum, but 
merely link the components of the spinors ( W t ,  W L  ) and 
( V T , V L  ) (in the field Lagrangian the components H,, ap- 
pear as interaction constants of the fields Y and x): 

It is clear that the transverse components of H "distinguish" 
the fields Y and x only for pH, cc (for a- 1 K, H, - lo4 
Oe). In weaker fields, in (39) we can set q =x*, i.e., obtain 
a termpH, Y+\V playing the role of a chemical potential. It 
leads to a nonuniform ground state of the soliton-lattice 
type." 

The magnetic field appears in the Heisenberg Hamilto- 
nian in the standard way: p2, S, H. The component Hz re- 
normalizes the coupling constant g, analogously to single- 
ion anisotropy. The transverse components of H formally 
drop out of the Lagrangian in the passage to the continuum 
model, because of the summation over the fast oscillations. 
In fact, however, by virtue of the self-consistency condition, 
the interaction of H, with the average lattice spin remains as 
before, but is contained only in the electron Hamiltonian. 

CONCLUSION 

In this paper we have constructed a new model of the 
metal-insulator transition in one-dimensional ferromagnetic 
metals. The metallic ferromagnetic state is found to be un- 
stable at a certain temperature T M p I  < T, "dielectrization" 
of the electron spectrum and formation of a magnetic super- 
structure-a spiral with period a /kF.  Unlike the traditional 
description of SDW, based on the Hubbard interaction, in 
our model the spiral structure arises as a consequence of s-f 
exchange of conduction electrons with magnetic ions of the 
lattice, and is due to Umklapp processes between branches of 
the electron spectrum with absorption or emission of mag- 
nons with momenta & 2k,. Formally, the model is found to 
be analogous in many respects to models of one-dimensional 
Peierls insulators and reduces to the exactly solvable GN 
models of one-dimensional quantum field theory. 

Here it is necessary to emphasize the fundamental dif- 
ferences between an MPI and a PI. In a magnetic metal the 
crystal lattice does not change, and a new electron Brillouin 
zone of size P ;t; = 2k, = p,L /M  is formed by rearrange- 
ment of the atomic spins in the chain, i.e., the new symmetry 
of the electron wavefunction arises from the symmetry of the 
spin factor of the electron. As a result, the spatial transla- 

tional symmetry with period a remains a true symmetry only 
for MPI with even commensurability indices, since it corre- 
sponds to Umklapp scatterings through the vector L (2n-/a) 
with conservation of the electron-spin projection. For an 
odd commensurability index the minimum number of Umk- 
lapp scatterings is doubled and the amplitude of the com- 
mensurability energy decreases sharply in comparison with 
the case of even M. This nonmonotonic behavior of the com- 
mensurability energy with the label M is specific for MPI 
only, and does not have analogs in the electron-phonon sys- 
tem. 

Thus, the new state of an MPI is characterized by the 
following indicators: There exist two transition tempera- 
tures T, and T M P I  (T, , ,  < T, ); for T M p I  < T <  T, the sys- 
tem is a ferromagnetic conductor, while below T,,, it is a 
magnetic insulator with a spiral structure; inside the spiral 
there can exist macroscopic transitional regions, the analogs 
of domains (they are solitons and polarons of the order pa- 
rameter of the MPI) ;  these regions necessarily contain an 
electron (hole) level within the forbidden band, and this 
level can be determined from the optical or infrared spectra; 
in systems with higher than twofold commensurability there 
exists a collective electrically active SDW mode, nonlinear 
excitations of which (phase solitons) give rise to a nonohmic 
contribution to the conduction; all the parameters of the 
MPI and the SDW can be controlled by a magnetic field, as 
can be observed, e.g., in the dependence of the absorption 
frequencies on H .  

In conclusion the authors express their thanks to A. E. 
Borovik and I. 0. Kulik for discussion of the results of the 
work and useful comments. 
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