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The cyclotron-wave spectrum in bismuth is calculated in the range O<kR< 10 ( k  is the wave 
number and R is the orbit radius in the magnetic field.) The locations of the turning points in 
the wave spectrum are compared with the experimentally observed impedance singularites. 
The calculation agrees with experiment to within 0.1 % in the case of cyclotron waves near 
hole resonances. In magnetic fields close to the light-electron cyclotron resonances, another 
structure, not yet fully explained, is observed in addition to the singularities obtained by 
calculation. 

INTRODUCTION 

Various weakly damped waves can propagate in bis- 
muth, such as fast magnetosonic and Alfven waves, cyclo- 
tron waves, or waves due to the anisotropy of the medium 
(see the references in Edelman's reviewsIs2 ) . These waves 
exist if the sample is placed in a magnetic field H such that 
the characteristic cyclotron frequencies R are comparable 
with or much higher than the frequencies w of the applied 
electric field. The oscillations observed in most cases are 
long-wave, such that the sample thickness spans an integer 
number of half-waves as the field H is varied and the surface 
impedance of the metal oscillates resonantly. However, sin- 
gular points in the wave spectrum, which correspond to one 
of the conditions k = 0 or dk  /dw = cc , can lead to singulari- 
ties of the impedance of a semi-infinite metal. Such points 
are present in the cyclotron-wave spectrum. 

Cyclotron waves are classified in accordance with the 
value of the parameter kR (R is the Larmor radius) and with 
the orientation of the electric field E relative to the external 
field H. The wave is called ordinary if EllH and extraordin- 
ary if ElH. Long waves are excited for kR < 1 and short ones 
for kR > 1. 

I t  is known that in metals having spherical Fermi sur- 
faces the dispersion curves k(w)  of the cyclotron waves be- 
gin ( k  = 013 and end (k-  cc ) 4  at cyclotron frequencies 
R = w/n (n is an integer). In the intermediate case kR 2 1 
the wave spectrum  oscillate^.^ The situation in bismuth is 
made more complicated by the presence of several types of 
carrier. The value of k can reach zero even outside the cyclo- 
tron-resonance field,' the wave propagation regions may 
overlap near the hole and electron  resonance^,^ various wave 
types exist simultaneously in the vicinity of hole reson- 
ance~,~- ' '  etc. 

Cyclotron resonances were observed in the long-wave 
limit kR < 1 in alkali metals" and in bismuth near elec- 
tron"-l4 and hole" resonances. Singularities related to turn- 
ing points of the dispersion curve can occur in the intermedi- 
ate region. Accurate identification of these singularities calls 
for a numerical calculation of the cyclotron-wave spectrum. 
Spectrum turning points in the plots of the impedance vs the 
magnetic field have so far been observed only in silverI5 and 
potassium. '' 

A second-harmonic signal reflected in bismuth from 
the surface exhibited singularities that were identified in 

Ref. 7 with turning points of the spectrum of cyclotron 
waves propagating near high-multiplicity hole resonances. 
Note that in the linear regime the dependence of the bismuth 
impedance on the magnetic field is extremely intricate and 
entangled. Furthermore, the better the sample quality, the 
more diverse the "fine" structure. One example is cited in 
Ref. 2, where it is suggested that some of the additional sin- 
gularities are due to excitation of short-wave cyclotron 
waves. 

The first theoretical investigations of high-frequency 
waves in bismuth were started by Fal'kovskiiI7 two decades 
ago. Practical cyclotron-wave calculations, which become 
quite laborious at qR > 1, have become feasible only quite 
recently. A computer algorithm described in Ref. 7 has en- 
abled us to undertake a calculation of the cyclotron-wave 
spectrum and its comparison with the experimental depen- 
dences of bismuth impedance on the magnetic field. The re- 
sults are described below. 

EXPERIMENT 

The experimental results discussed below were actually 
obtained in the course of a study1' aimed mainly at finding 
the frequency and temperature dependences of the cyclo- 
tron-resonance linewidth; the results described here have 
not been published previously. Since the experimental pro- 
cedure was described in detail in Ref. 18, we mention only 
some details of importance below. 

We investigated a Bi single crystal in the form of a disk 
18 mm in diameter and 2 mm thick, with the normal to the 
flat surface aligned with the trigonal axis C,. The magnetic 
field was set parallel, to the sample plane to within several 
minutes of angle, as monitored by the dependence of the 
cyclotron resonance linewidth on the field inclination. The 
field orientation relative to the crystallographic axes C, (bi- 
sector) or  C, (binary) was determined to - 10-15' from the 
symmetry of the effect. 

The quality of the sample was such that at - 18 GHz 
the parameter w r  ( r  is the relaxation time) reached - 120 
for light electrons and -400 for heavy holes. The value of w r  
for light electrons decreased with increasing frequency.'' 

Measurments at - 10 GHz were made using a strip res- 
onator that ensured a strictly linear polarization of the rf 
electric field E on the sample. Cavity or dielectric resonators 
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were used at higher frequencies. The polarization of E was 
then no longer linear and a mixture of responses correspond- 
ing to both EllH and E l H  was recorded. This fact will be 
taken into account in the subsequent comparison with the 
calculations. 

CALCULATION OF THE WAVE SPECTRUM 

The dispersion equation for waves propagating perpen- 
dicular to a static magnetic field H in an unbounded medium 
is given by (Hllz) 

Here w is the wave frequency, klly is the wave vector (y is the 
normal to the surface if the body is bounded), and 
Uik (k,  w,  H) are the Fourier components of the conduc- 
tivity. 

The electron Fermi surface of bismuth is known to de- 
viate somewhat from an ellipsoid.2.'9 We shall, however, as- 
sume it to be an ellipsoid, in view of the integral character of 
the conductivity tensor components and of the fact that the 
main contribution to them is made, in the case E l H  of prin- 
cipal interest to us, by the electrons near the central cross 
section, where the deviations from ellipsoidal form are im- 
material. According to this model the Fermi surface of bis- 
muth consists of one hole ellipsoid and three electron ellip- 
soids. In the coordinate frame with principal axes, 1,2, and 3 
the energy of the electrons of one of the ellipsoids is 

where aie and P i ,  respectively, are the components of the 
inverse effective-mass tensor and the momenta of the elec- 
trons in terms of the principal axes. The aie are expressed in 
terms of the measured (see Ref. 2)  cyclotron masses mi 
along the axesi = 1,2,3: aje = m ,/m,m,, a,e = m2/mlm,, 
a,e = m,/m ,m,. The volume of the electron surface is 

and hence 2~~ = 5,74X 10-l4 erg. 
We obtain the energy of the hole ellipsoid of revolution 

(h ) ,  whose axis is parallel to the C, axis,' from the condition 
that the volumes of the electron and hole surfaces in bismuth 
be equal: ~h = 1,85X 10-l4 erg. In the crystal coordinate 
frame, the hole dispersion law takes the form 

where p , ,  p,, and p, are the components of the momentum 
vector along the axes C,, C,, and C,, while the values of aih 
are, acording to Ref. 2, 

Let the static magnetic field be applied in the trigonal 
plane of the crystal. We obtain the spectrum of the high- 
frequency waves in Bi for two magnetic-field orientations: 
HIIC, and HIIC,. 

1. Magnetic field directed along the C, axis: HIIC,llz, 

klJC,lly, C,llx. Rotating the ellipsoid (2 ) ,  we obtain in the 
xyz coordinate frame 

where axx = 1,89, ayy = 89,08, aZZ = 164,91, 
axy = 9,88. We refer to the ellipsoid defined by (4 )  as ellip- 
soid a. The energy spectra of the two other electron ellip- 
soids b and c are obtained by rotating ellipsoid a through 
+ 120" around the C, axis. 

Using the chosen electron and hole dispersion laws (4 )  
and (3 ) ,  respectively, we can calculate all the components of 
the conductivity tensor ujk . This was done in Appendix A of 
Ref. 7. We write down here only the component with the 
simplest form, uyy , for one arbitrary group of carriers: 

n' 
d0 sin 0Jn2(kR s ine) ,  (5 )  

where 

Here m, 0, and R are the carrier cyclotron mass, frequency, 
and orbit radius, respectively, v = I/T is the collision fre- 
quency, and J ,  is a Bessel function of order n. 

The integrals in the expressions for Uik can be ex- 
pressed in terms of elementary functions in the limits of 
weak (kR < 1 ) or strong (kR $ 1  ) spatial dispersion. In the 
intermediate case (kR 2 1 ) the conductivity tensor elements 
can be determined only numerically. 

The task of finding the high-frequency-wave spectrum 
in bismuth reduces to calculation of the components Uik 
with allowance for the contributions from all carrier groups, 
and to solution of the dispersion equation ( 1) .  It is easily 
seen that in the present case HIIC,Jlz, kllC,Jly, C,Ilx the off- 
diagonal non-Hall components Uik are zero: 

Equation ( 1 ) breaks up therefore into two equations: 

The ordinary wave is described by Eq. (7) .  It is purely trans- 
verse, and its electric field Ellz. The extraordinary wave sat- 
isfies Eq. ( 8 ) ,  is not purely transverse, and is polarized in a 
plane perpendicular to the magnetic field ( E l z ) .  

We find now the solutions of ( 7 )  and (8 )  in the region 
of the first and second resonances of the b- and c-electrons. 
For HllC2, kllC, we have from (3 ) ,  (4), and (6 )  

Note that the integrals of the small and large values of kR for 
different carriers do not always overlap, in view of the large 
difference between the orbit radii (9 ) .  This circumstance 
must be taken into account in calculations of the resultant 
component of the tensor uik . 
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We are interested in the special cyclotron-wave-spec- 
trum points that lead to the experimentally observed anoma- 
lies of the impedance ofbismuth as a function of the external 
magnetic field. 

In the long-wave limit (kR 4 1 ) these points are dielec- 
tric anomalies, viz., singularities corresponding to k = 0. 
They were first observed in Ref. 6 as maxima of the absorp- 
tion coefficient of Bi (Ref. 6).2 Assuming that the condition 
kR < 1 is met for all carrier groups, the components Uik can 
be expanded in powers of (kR)2 and only the first few terms 
need be retained. Analysis shows that a dielectric anomaly 
exists in this region of the first and second b-electron cyclo- 
tron resonances only for the ordinary wave (7)  : k = 0 for 0 / 

= 0.84. The dispersion curve of the extraordinary wave 
tends to hug the cyclotron-resonance line from the direction 
of the stronger magnetic fields. Equation (8)  has then one 
solution near the first resonance and two solution near the 
second. The extraordinary wave is known to behave in the 
same manner for the case of a spherical Fermi surface." 

In the short-wave limit kR ) 1, it is the turning points of 
the wave spectrum which are special. In this case the expres- 
sions for the conductivity-tensor elements can be represent- 
ed as series in powers of ( l/kR ) (see Appendix B of Ref 7),  
so that the oscillation period of the functions Ojk (kR) is 
equal to n-, and the oscillation amplitude decreases as kR 
increases. It is easy to verify that the leading term uy uyx of 
the left-hand side of expansion (8)  is proportional to 
(kR ) -'. Therefore if only terms of only lower powers of ( 1/ 
kR) are retained, the extraordinary-wave dispersion equa- 
tion breaks up into a pair of equations: 

Equations ( 10) and ( 1 1 ) define the propagation of lin- 
early polarized longitudinal and transverse waves. Figure 1 
shows the solutions of Eq. ( 11 ) for three different frequen- 
cies in the absence of collisions (RT+ co ). The expansion of 
u,, holds through terms (kR ) -' inclusive. The values of R 
and R in Fig. 1. pertain to electrons of ellipsoid b. The verti- 
cal arrows mark certain limiting point of the spectrum, at 
which the wave group velocity vanishes. It can be seen that 
with increase of the alternating-field frequency the spectrum 
turning points are shifted into magnetic fields corresponding 
to lower values of f l ' b ' / ~ ,  and that with increase of kR 'b' the 

FIG. 1. Numerical solution of Eq. ( 11) in the regions of the first and 
second light-electron resonances for three different frequencies f, = 19, 
F2 = 31,f3 = 52 GHz; HIIC?, kllC,, fir- m. 

dispersion curves approach rapidly the cyclotron-resonance 
lines. 

The asymptotic expansion of the conductivity tensor 
cannot be used for b-electrons in the intermediate case 
( kR'b' - 1 ). A solution must be sought for the complete 
equation (8 ), and the components u::' must be calculated 
directly from general expressions of type ( 5 ) ,  retaining in 
the sums only a number n,,, of terms, such that the result is 
not changed, at the required accuracy of a ik,  by adding 
terms of higher order. As to the contribution made to con- 
ductivity by the holes and electrons of ellipsoid a, we can 
state the following. In view of the finite relaxation times of 
the electrons and holes, it can be easily shown that at kR 'b' 

5 2 inclusion of larger numbers of cyclotron resonances of 
these carriers in the region considered, 0.7 i u / R ' ~ '  < 2, 

does not alter the values of C a!:' and C u;:) calculated for 
n n 

n < 10. At kr'b' > 2, according to (91, one can use for the 
components a!:' and uji' asymptotic expressions in the 
short-wave limit. The extraordinary cyclotron wave spec- 
trum calculated in the interval 0 ~ k R ' ~ ' <  10 will be consid- 
ered in greater detail later (Fig. 8).  

2. Let the magnetic field now be directed along the C, 
axis: HIIC, IIz, kllC311y, C211x. The hole dispersion law is de- 
scribed as before by expression (3) ,  and for the electrons of 
ellipsoid a we have 

wherea,, = 164.91, ayy = 89.08, azz = 1.89, ayz = 9.88. 
The relations between the cyclotron masses and the radii of 
the different carrier groups are, according to (3),  (6),  and 
(121, 

In the case considered with HIIC, and kllC, all the ele- 
ments of the conductivity tensor differ from zero, and to find 
the wave spectrum we must solve the general dispersion 
equation ( 1 ) . Such a calculation (with somewhat different 
parameters of the carrier dispersion law) was carried out in 
Ref. 7 for the region of the first two cyclotron resonances of 
the b-electrons. The use of the asymptotic expressions for the 
components Uik in the limiting cases kR < 1 and kR ) 1 has 
made it possible to separate the different branches of the 
spectrum. 

At large wavelengths (kR 9 1 ) the non-Hall off-diag- 
onal components Uik are small compared with the remain- 
ing elements of the conductivity tensor to within terms of 
order (kR)2, and Eq. ( 1) breaks up into the system of two 
equations (7)  and (8).  The special point of the ordinary- 
wave spectrum is the dielectric anomaly - the k = 0 singu- 
larity in the field = 2.36. The dispersion curve for 
the extraordinary wave at kR < 1 as calculated in Ref. 7 is in 
error. The correct answer is the following. At k = 0 the ex- 
traordinary-wave branch coincides with the cyclotron-reso- 
nance line; R ( b ) / ~  = 0.5 and R ( b ) / ~  = 1. In addition, a di- 
electric anomaly exists at R ( b ' / ~  = 0.68, and with increase 
of kR the branch that starts out in this magnetic field hugs 
the line of the first cyclotron resonance. These two anoma- 
lies were distinctly noted in Ref. 6 (Fig. 11, peaks at fields 

562 Sov. Phys. JETP 65 (3), March 1987 M. R. Trunin and V. S. ~del'rnan 562 



FIG. 2. Bismuth cyclotron-wave spectrum obtained in the region of the 
first two cyclotron resonances by numerical solution of the dispersion 
equation ( 1 )  H/JC,,kJjC,, o / 2 r  = 10.22 GHz, or- CO. 

H z 2 7 5  Oe and H z 9 5 0  Oe; the structure in the field 
HZ 2650 Oe is due to the second hole cyclotron resonance). 

The spectrum of the cyclotron waves in the intervals 
O<kR'*'< 10 and 0.5<fl'*'/w(2.6 is shown in Fig. 2. The 
letter o marks the ordinary-wave branch (7 ) ,  and the letter I 
that of the longitudinal wave, described in the kR $1 limit by 
Eq. ( 10). The longitudinal waves propagate in the regions of 
the first electron resonance and of the high-number hole re- 
sonances from the direction of the weaker magnetic fields. 
The unmarked branches near the electron resonances corre- 
spond to the extraordinary wave. This spectrum was ob- 
tained by numerical solution of the general equation ( 1 ) , 
with the first 15 terms of the sum (n2t:h = 15) included in 
expressions of type (5)  for the components ujk.  The error in 
the calculation of the spectrum is less than 0.1 % in terms of 
R(*)/w. 

The spectrum of the high-frequency waves, shown in 
Fig. 3, was calculated similarly in the region of the first hole 
resonances. Let us examine in greater detail the origin of the 
branches of this spectrum. 

Equations ( 7 )  and ( 8)  are valid in the limit kR & 1. In 
strong magnetic fields $ w, the product of the Hall com- 
ponents of the conductivity is smaller by a factor (fl'h'/w)2 
than the product of the diagonal ones, and Eq. (8 )  breaks up 
into ( 10) and ( 11 ). Equation ( 10) has no roots under condi- 
tions of weak spatial dispersion, while the solution of ( 11 ) 
determines the linear spectrum and the polarization of the 
magnetosonic wave: w/flCh)- k. As the magnetic field de- 
creases, the Hall elements of the conductivity tensor become 
equal to the diagonal ones, and the magnetosonic-wave spec- 
trum becomes nonlinear. In addition, as follows from (8 ) ,  
there exists one more cyclotron branch of the spectrum, hug- 

FIG. 3. Bismuth wave spectrum in the region of the first three hole reson- 
ances; HIIC,, klJC,, o/27r = 10.22 GHz or- m .  The arrows mark the 
turning points of the spectrum in the region of the second resonance. 

ging very closely the line of the first hole resonance on the 
side of the stronger magnetic fields (not shown in Fig. 3) .  
The maximum deviation of this branch from the resonance 
line, which takes place at kR"' = 0.48, is equal to L I / R ' ~ )  
= 0.993. Analysis shows that the magnetosonic and cyclo- 

tron branches coalesce at this turning point, and with further 
increases kR ' h '  they hug the resonance line. Finally, at kR 'h' 

z 0 . 5  Eq. (8 )  acquires a new solution corresponding to a 
cyclotron wave whose existence region extends to magnetic 
fieldsA numerical calculation for the region kR 'h '  k 1 shows 
that the dispersion curve of this wave (which appears to be a 
continuation of the magnetosonic branch) does not reach 
the second hole resonance, but instead turns around, oscil- 
lates at large kR'h', and approaches the first resonance from 
the direction of the weaker fields. For kR ' h '  > 5 the spectrum 
of this wave is well described by Eq. (10) if the asymptotic 
expression foroyy (Ref. 7) is used. The ordinary wave (7 )  is 
practically merged with the resonance line in the entire re- 
gion of variation of kR'h'. 

The above picture of the spectrum of the high-frequen- 
cy waves in the vicinity of the first hole resonance was ob- 
tained under the assumption fly--+ W .  The various branches 
of this spectrum cannot be separated if damping is taken into 
account. We note also that, given the carrier dispersion laws 
( 3 )  and ( 12), the locations of the turning points of the spec- 
trum in the magnetic field are determiend by only one pa- 
rameter, viz., the frequency w of the alternating field. As the 
frequency rises from the value w / 2 ~  = 10.22 GHz, the turn- 
ing point of the spectrum, located in Fig. 3 at kR 'h '  < 5, shift 
into the region of weaker magnetic fields. For example, when 
the frequency w is increased threefold, the branch located 
near the second hole resonance on the side of the stronger 
fields merges with the resonance line. The spectrum of the 
longitudinal wave ( 10) is independent of the frequency w. 

COMPARISON WITH EXPERIMENT 

If we recognize that the hole Fermi surface is quite close 
to ellipsoidal,z.'9 it is natural to compare first with experi- 
ment the hole cyclotron resonances, for which one can ex- 
pect good quantitative agreement beforehand. 

We begin with the experimental plot of the bismuth im- 
pedance at the frequency w / 2 ~  = 10.22 GHz at HI1 C,, k/l C,, 
HIE in the region of the second hole resonance, has a well 
resolved fine structure not distorted by resonances from 
standing waves (Fig. 4) .  This plot shows singularities in 
fields fl'h'/w = 0.513, 0.485, 0.476, 0.471 near the reso- 
nance minimum f l ' h ' / ~  = 0.5. The amplitudes of these sin- 
gularities are comparable with or even exceed the signal at 
the resonance itself. In addition, a deep minimum is present 
at fl'h'/w = 0.408. All these singularities, which are marked 
by arrows, are manifestations of the wave-spectrum boun- 
daries indicated in Fig. 3. 

The dispersion curves at fl'h'/w ~ 0 . 5 ,  shown in Fig. 3, 
were obtained by solving Eq. ( 1 ), in which were substituted 
the conductivity tensor elements calculated from the general 
equations (n2::h = 15). Using the asymptotic expressions 
for the components Cik it is easy to show that the oscillating 
curve is accurately described by Eq. (8 )  at kR 'h'  < 1, and by 
Eq. ( 10) at kR'h' > 4 for a longitudinal wave. The splended 
agreement between experiment and theory is achieved with- 
out any fitting whatever, using the parameters of the energy 
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F I G  4 Surface Impedance of b~smuth vs the magnetlc field 
in the reglon of the second hole resonance The experimental 

1 plot was obta~ned for HIC,, kllC,, sample th~ckness 2 mm, 
frequency 10 22 GHz, T = 0 35 K 

1 1 5  
I 

310 3'6 322 360 3 75 390 YO5 H Oe 

spectra given in Ref. 2 for holes [Eq. (3 )  1 and electrons [Eq. 
(1211. 

This agreement permits certain qualitative conclusions 
to be drawn concerning the singularities of the impedance, 
without calculating the latter. First, it is clearly seen that the 
singularities at R'h'/w = 0.408 and 0.513, which corre- 
spond to turning points that limit the regions in which waves 
are present in the weaker and stronger magnetic field, re- 
spectively, have opposite signs, which is natural. Second, the 
amplitude of the effect is larger for smaller absolute values of 
k at the turning point. A similar behavior can be noted also 
for the singularities R'h'/w = 0.476 and 0.471. The only ex- 
ception is the singularity at Sl'h'/w = 0.485, but it seems 
that in this case several singularities located at kR 'h' > 8 are 
superimposed. 

We consider now the region of the first hole resonance. 
If HIICl, kllC,, E l H ,  weakly damped high-frequency waves 
with wavelength exceeding the Larmor radius are excited in 
this range of magnetic fields. In strong fields, R'h'/w > 1, a 
single wave is excited, and its spectrum is shown in Fig. 3. 
Each successive oscillation of this wave changes by unity the 
total number of half-waves spanned by the sample thickness 
d, i.e., the periodicity of the oscillations is determined by the 
condition nA /2 = d. The experimental curve coincides with 
the theoretical under this condition (Fig. 3) all the way to 
R'h'/w=; 1. Figure 5 shows the two minima numbered 
n = 260 and 261 near the first hole resonance. It can also be 
seen that the amplitude of the oscillations decreases abruptly 
and approaches the point fl'h'/w = 1.007, which marked by 
an arrow and is the end point of the spectrum of the extraor- 
dinary cyclotron wave. The observed damping of the stand- 
ing waves in a narrow region near = 1 is of fundamen- 
tal significant. Indeed, as shown in Ref. 3 and confirmed by 
experiments on samples of lower quality (see Ref. 1 ), the 
hole cyclotron resonance of first order is not manifested in 

I I " !  I I I I I 

7.1 7. Y 7.7 ~ . l i l - .~  Oe 

FIG. 5. The same as Fig. 4., but near the first hole cyclotron resonance. 

the impedance and in the magnetosonic-wave damping 
which is proportional in the local limit to (wr)  I .  The ap- 
pearance of a region with strong damping, which is observed 
only in the better samples, i.e., at larger r ,  attests to the pres- 
ence of a nonlocal interaction. The structure observed in the 
immediate vicinity of = 1 is apparently due to "in- 
termixing" of the cyclotron and magnetosonic waves. Start- 
ing from the field value at which the spectrum branches 
cross, we can conclude that observation of nonlocal damping 
calls for wr% 1/0.007 --, 150. Of all the known experiments, 
this condition is met only by the experiments described here, 
in which wr-400-500 for holes. One cannot exclude in 
principle the possibility of additional wave damping due to 
small ( < 1%, but unknown19) deviations of the hole spec- 
trum from a quadratic one. Since, however, the wave spec- 
trum was calculated assuming it cannot be made to accord 
with the structure of the impedance when the detuning from 
resonance is < I%, nor can attempts be made at all to con- 
clude that the hole Fermi surface is not ellipsoidal. 

With further deviation from resonance, the dispersion 
curve acquires, in accordance with the calculation, a turning 
point at R'h'/w = 0.947 superposed on the oscillatory struc- 
ture that extends farther into the magnetic-field region R 'h'/ 

o < 1. In this field the spectrum branches are quite far apart 
and are ilot intermixed, as attested by the regular interfer- 
ence structure due to the long-wave excitations. 

The interference structure vanishes when the end point 
of the spectrum R'h'/w = 1.502; kR'h' = 1.38 is ap- 
proached (Fig. 3).  This singularity is distinctly observed 
also at other magnetic-field orientations. Figure 6, for exam- 
ple, shows the experimental dependence of the surface im- 
pedance of bismuth on the magnetic field HIIC, (kllC,, 
H I E )  in the region of the first hole resonance. Equation ( 8 )  
was solved using for the conductivity-tensor components 
general formulas of type (5 )  with summation of first ten 
cyclotron-resonance harmonics of all types of carrier 
(na,b,c,h ,,, - - 10). The turning point corresponds to a narrow 

minimum in a magnetic field R ( h ) / ~  = 0.723. 
We consider now the regions of the first and second 

resonances of light electrons at HIIC,. The curve in Fig. 7 
was obtained for a high-frequency current perpendicular to 
the magnetic field, so that an extraordinary cyclotron wave 
with E l H  was excited in the sample. The figure shows also 
the spectrum of this wave, obtained numerically for the re- 
gion O<kR("< 10, 0.7<w/R'b'<2. 

The following procedure was used to calculate the spec- 
trum. To solve Eq. (8) ,  the elements of the conductivity 
tensor in the interval O<kR 'b'<2 were calculated using gen- 
eral formulas of type (5) ,  with the first 15 terms 
(ng:xn~:, = 15) included in the sum over n for a::' and 
cr,',", and the first ten (n,,, = 10) for and a,(:'. The 
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C.B 1.2 ! 6 w / d  

FIG. 7. T o p s u r f a c e  impedance of bismuth vs the reciprocal magnetic 
field; bottom-spectrum of extraordinary cyclotron wave as or- m; 

HIIC,, kllC,, ElH, frequency 18.8 GHz, T = 0.65 K. 
- I  

I 
retaining the quadratic terms of this series. Asymptotic ex- 
pressions for the conductivity tensor in the short-wave limit 
were therefore used, with kR'b' > 2 for the a-electrons, then 
with kR'b' > 3.5 for the holes, and finally with kR"'> 5.6 
for the 6- and c-electrons. It follows from a comparison of 
Fig. 8 (below) and Fig. 1 that the branches approaching the 

0.8 I 1.2 .Qh/w cyclotron-resonance lines from the direction of stronger 
magnetic fields are well described by Eq. ( 1 1 ) at kR 'b' > 4.5 

FIG. 6. Comparison of the locations ofthe experimentally observed singu- 
larities (upper plot) and of the end points of the spectrum of the extraor- 
dinary cyclotron wave (lower curves); HIIC,, k/lC,, ElH, frequency 
10.22 GHz, T = 0.35K. The frequent oscillations n e a r H 2  900Oe aredue 
to excitation of standing waves. The oscilations produced in the region of 
the cyclotron resonance are suppressed by the relatively large magnetic- 
field modulation amplitude. 

Bessel functions and their integrals were calculated accurate 
to lo-! The value of u,!:' obtained in this manner for kR 'b' 

= 2 agreed to within several percent of w/fl"" with that 
calculated by expanding ujf' in powers of ( l / k R )  - 1 and 

and correspond to a transverse wave.  he branch located 
near the first resonance on the weak-field side is longitudinal 
(10). 

It can be seen from Fig. 7, where the resonances are 
assumed to be located at the maxima of the derivative dX / 
dH, the turning points of the extraordinary-wave spectrum 
correspond to the minima with the largest amplitudes. It 
should be noted that, just as for holes, the minima corre- 
sponding to the spectrum boundaries on the strong-field side 
are opposite in sign to the singularity exactly at the reso- 
nance; this is an additional argument in favor of this inter- 

FIG. 8. The same as Fig. 7, at 31 GHz and 0.65 K ( a )  and at 
52 GHz and 1.2 K ( b ) .  Arrows - calculated locations, 
marked by arrows in Fig. 1, of the singular points in the wave 
spectrum. 
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pretation. A few "extra" singularities, however, are also 
present. This additional structure may possibly be of the 
same origin as the additional peaks observed in potassium'' 
and attributed to a multiply valued dispersion curve whose 
ambiguities lead to beats between waves having different k. 
Incidentally, we regard such an explanation as somewhat 
artificial, since we are dealing with traveling waves that 
damp-out in the interior of the sample, so that their interfer- 
ence should seemingly not influence the impedance. More- 
over, in the case of hole resonance this interference should be 
directly manifested in the standing-wave amplitudes, some- 
thing not observed in experiment (see Fig. 5).  At any rate, 
final conclusions on this subject cannot be drawn from mere 
knowledge of the wave spectrum, but call for an impedance 
calculation, which we have not performed. 

Figure 7 shows also in the interval 1. 12(w/R'b'( 1.28 
very weak oscillations due to excitation of cyclotron waves 
and resonances of high a-electron numbers. The correspond- 
ing resonances with numbers n -- 10 were directly observed, 
with somewhat larger amplitude, at R ( h ) / ~  5 0.8. 

Thus, turning points of the extraordinary-wave spec- 
trum are distinctly manifested in the Bi impedance at HIIC2, 
kll C3. AS already noted, given the carrier dispersion laws ( 2 )  
and (3) ,  the positions of the end points of the spectrum, in 
w/R coordinates, depend on the frequency of the electro- 
magnetic wave incident on the sample. Therefore a natural 
check on the validity of the proposed interpretation of the 
observed singularities is provided by experiments performed 
at  different frequencies. 

Figures 8a and 8b show the parameters of the experi- 
mental plots of bismuth surface impedance at the respective 
frequencies f2 = 3 1 GHz and f, = 52 GHz. Since the experi- 
mental setup was such that at these frequencies the current 
head components both along and across the field H, special 
points are expected to appear on the spectra of the ordinary 
as well as extraordinary waves. Indeed, a dielectric anomaly 
of the ordinary wave (arrow A )  can be seen on Fig. 8 at w /  

= 0.84. At larger kR'h' the dispersion curve of this 
wave rapidly approaches the cyclotron-resonance line. The 
remaining arrows, which correspond to those of Fig. 1, indi- 
cate the positions of the turning points of the extraordinary- 
wave spectrum, if the cyclotron-resonance field is taken to be 
at the zero of the derivative dR /dH; this choice agrees with 
the known value of the electron effective mass and meets the 
condition that the cyclotron resonance be periodic in the 
reciprocal magnetic field. 

Note that with increasing frequency the fine structure 
becomes sparser and its resolution worse, owing to the 
shorter relaxation time and to multiparticle effects.'' The 
plots in Fig. 8 are in a certain sense idealized: under the 
natural assumption that the Mathiessen rule is satisified, 
scattering by residual defects no longer contributes in prac- 
tice to the total relaxation time, and better resolution is no 
longer attainable. 

Thus, there are many arguments that indicate that the 
impedance singularities correspond to singular points in the 
spectrum of the cyclotron waves. The additional anomalies 
noted above in the case of electron resonances, however, call 
for additional discussion. The first to which attention must 
be paid is an attempt to assess the role of the deviation of the 
electron spectrum from quadratic. A consistent allowance 
for this deviation should somehow be manifested in the wave 

spectrum; one can expect, in particular, somewhat larger 
regions in which waves can exist near resonances, since the 
mass at a turning points is - 10% larger than on the central 
sections. I t  is certainly impossible, however, to shift the 
spectrum boundary from the value ~ / f l ' ~ )  = 1.66 to 1.53 at 
18.8 GHz  (se Fig. 7) ,  for it must then be assumed that effec- 
tive mass is increased by 10% not just in a small vicinity of 
the limiting point, but on the entire Fermi surface. As seen 
from Fig. 8, at  high frequencies even this assumption does 
not resolve the dilemma. 

The problem of the nature of the additional minima 
thus remains open. A solution may be sought by assuming 
that the impedance receives contributions not only from 
electrons moving in the bulk ofthe metal, but also from those 
interacting with the boundary. In this respect, however, the 
electrons and holes in bismuth differ radically - the holes 
are scattered by the surface diffusely, and the electrons spec- 
~ la r ly .~OThe  latter means, in particular, the existence of sub- 
surface electron states whose spectrum differs from those in 
the bulk.2' I t  is possible that this radical difference is reflect- 
ed by the exact agreement of the calculated and measured 
impedance singularities near hole resonances, as against the 
more complex structure near electron resonances. 
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G. I. Leviev for a discussion of the results. 
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tween the crystallographic C, and 3, is 6"23; the binary axis C, is parallel 
to the 2 axis. 

" Depending on the direction of the electric field of the wave, the singular- 
ities k = 0 were called in Ref. 6 either the dielectric anomaly ( E l H )  or 
tilted-orbit resonance (EIIH). We shall use only the first name (for any 
polarization of the alternating field). 
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