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An analysis is made of low-temperature chemical reactions occurring in condensed media. The 
reaction constants of elementary events are calculated in the semiclassical (instanton) 
approximation. It is shown that in the case of specific types of vibrational spectra of a medium 
a reaction may slow down, and for symmetric reactions complete stoppage may occur. The 
semiclassical action (argument of the exponential function) and the preexponential factor in 
the rate constant are calculated exactly for a two-well potential in the form of two parabolas 
along the reaction coordinate. The condition for validity of the theory which guarantees 
quasistatic occurrence of the kinetic process (exponential decay of the tunneling probability 
with time) is found. 

1. INTRODUCTION 

Low-temperature chemical reactions in condensed 
phases have been demonstrated convincingly for the major- 
ity of reaction The reaction rates are character- 
ized by a low-temperature plateau, whereas at high tempera- 
tures the temperature dependence is of the activated type. 
Conventionally a chemical reaction is understood to be the 
transfer of a particle from one reaction center to another. A 
necessary condition for a chemical reaction is the breaking of 
old chemical bonds and formation of new ones. We shall 
extend somewhat the range of physical and chemical kinetic 
processes of interest. In particular, we shall understand a 
chemical reaction to be also the transfer of an electron which 
does not alter chemical bonds of the reaction centers, a tran- 
sition between left- and right-hand optically active isomers 
characterized by chiral symmetry, an inversion transition 
between symmetric positions of tetrahedral molecules 
(NH,, CH,, ...) in a condensed medium, and similar pro- 
cesses. 

We shall be interested in adiabatic chemical reactions, 
i.e., the reactions for which the Landau-Zener parameter is 
large: 

where A is the electron matrix element of the interaction 
between the initial and final states; u is the velocity of the 
particle being transported; F,,, are the forces at the term- 
crossing point. In this case the repulsion of the electron 
terms is large, the reaction system is characterized by a sin- 
gle potential surface, and transitions to the upper branch are 
negligible. 

Our purpose is to determine the influence of the medi- 
um on the tunneling rate. We shall select the simplest form of 
a two-well potential: U(x) = fmw2( 1x1 - x,)' . In the case 
of tunnel processes this selection isjustified if the duration of 
motion below the vertex part of the potential is short, i.e., if 

where fl,,,,, is the "frequency" of the vertex part of the po- 
tential and w is the frequency of the well in the initial (final) 
state. However, in spite of such model selection of the tun- 

neling potential, we hope to reproduce all the main features 
of the influence of the medium on the tunneling rate. 

Low-frequency motion of the medium, which cannot be 
described on the basis of the Einstein model, plays a special 
role in the tunnel process. The nature of this process may be 
modified greatly by low-frequency vibrations which in the 
limit of high temperatures are responsible for the Brownian 
motion of the transported particle. 

The low-temperature motion of a Brownian particle 
was first discussed in Refs. 3 and 4 for the tunneling of the 
superconducting phase at Josephson contacts. The general- 
ization to arbitrary temperatures is given in Refs. 5-7. An 
important conclusion which follows from these investiga- 
tions is the slowing down of the tunneling rate in the pres- 
ence of a medium, but one should allow here for renormal- 
ization of the one-dimensional potential in which a particle 
is moving along the tunneling coordinate. The total prob- 
ability of decay is governed by the sum of the contributions 
of the probabilities of quantum tunneling and classical 
above-barrier motion (the range of temperatures where 
these contributions are approximately the same is consid- 
ered in Ref. 5).  We shall be interested only in the quantum 
tunneling mechanism, i.e., we shall consider only low tem- 
peratures. 

One should point out the difference between meta-sta- 
ble decay in Josephson contacts and in chemical reactions. 
In the former case we are concerned mainly with a potential 
in the form of a cubic parabola so that the final state of the 
system is described by a continuous spectrum. In the case of 
chemical reactions the tunneling potential is of the two-well 
type and the final state is not always of the decay type. We 
shall show below that this feature imposes restrictions on the 
temperature, viscosity, and other parameters of the system. 

In the next section we shall consider the formulation of 
the problem of the tunneling of a particle in chemical kinet- 
ics and show how the initial Hamiltonian of the reaction 
system can be reduced to the usual Hamiltonian describing 
tunnel transitions subject to dissipation. In Sec. 3 we shall 
find the argument of the exponential function in the tunnel- 
ing rate (semiclassical action), determine the preexponen- 
tial factor, and provide the criterion for validity of the quasi- 
steady approximation. In Sec. 4 we shall discuss several 
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important special cases of the vibrational spectrum of mole- 
cules in the medium. The conclusions will be presented in 
Sec. 5. 

whereas 2. INTRODUCTION OF A TUNNELING COORDINATE 

The state of a reaction system in a medium can be de- 
scribed by a multidimensional potential surface. In consider- 
ing the low-temperature kinetics a good approximation for 
this surface is provided by two paraboloids: 

Y Y 

u, = woi2 ( x ~ + x ~ ~ ) ~ / ~ ,  uj = ZY)~,' ( X ~ - Z ~ ~ ) ' / ? - _ \ I .  
i - I  , = I  

(1) 
We shall assume that at low temperatures the terms of the 
initial and final states can be represented by a set of oscilla- 
tors with frequencies w,, shifted relative to one another by 
2xOi and we shall assume that the oscillator masses are 1, 
which renormalizes the coordinate to the root of the relevant 
mass. The final-state term is located below the initial term 
and the difference is AI  (heat of reaction). The surface of 
intersection of two paraboloids is a plane described by 

N 

Using Eqs. (8)-( 11 ), the Hamiltonian of the system can be 
written as follows: 

N N 

where 

The probability of tunneling of a particle per unit time 
can be found in the semiclassical approximation. It is essen- 
tial to ensure that the de Broglie wavelength of the particle is 
much less than the characteristic linear scale of the poten- 
tial. This is done simply by making the barrier height much 
greater than the energy of zero-point vibrations in the well of 
the initial state.8 In addition to the semiclassical approxima- 
tion, we have to assume that the decay is quasisteady (for 
details see Refs. 9 and lo) ,  i.e., that the width of the level r 
from which a particle is tunneling should be much less than 
the energy of zero-point vibrations. In the case of a finite 
temperature the probability of decay per unit time is defined 
as follows: 

where 

and the following normalization condition is obeyed: 
N 

The spatial coordinate perpendicular to the plane (2)  will be 
called the tunneling coordinate. We shall select it from all 
possible coordinates and choose the coordinates in the plane 
(2)  in such a way that the remainingN - 1 oscillators do not 
interact with one another and are only linearly related to the 
tunneling coordinate. We shall consider an orthogonal rota- 
tion of the coordinate system as a result of which one coordi- 
nate coincides with the tunneling coordinate 

1- 

Here, Z is the partition function of the system which, be- 
cause of decay, is a complex variable. A discussion of the 
validity of generalizations of this expression to the multidi- 
mensional case can be found in Refs. 9 and 10. In calculating 
r it is convenient to represent Z as a path integral": 

Since we are interested in the oscillator states in the initial 
and final states, we can integrate with respect to paths y, (T)  

and with respect to the initial conditions 
y, ( - P/2)  = y ,  ( P / 2 )  (here, B = T - '1 .4,'2 The action 
functional depends only on the path y ,  (T): 

whereas the remaining N - 1 coordinates reduce the poten- 
tial energy in the plane (2)  to the diagonal form: 

Y 

N 

where U ,, = y, . Then the quadratic form 2 w, i 2 ~ f  can be 
i =  l 

reduced to 

where 
&- 

where w: satisfies the following eigenvalue equation (this 
equation is derived in the Appendix): 
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This potential is renormalized, i.e., the adiabatic potential is time T = - ro and reaches the value q, = qo (in the case of a 
introduced (for a discussion of this topic see Ref. 4).  The symmetric potential) at time T = 0. Then, the particle re- 
kernal of the integral term in Eq. ( 16) depends only on the peats the path in the opposite direction. Such a path is called 
oscillator parameters. The Fourier coefficients f, in the ex- an instanton.13-I5 It  is remarkable that the action for the 
pansion of the kernal K ( r )  as a Fourier series are defined as path q, (7) is independent of the position of the center of the 
follows: instanton. The time T, is found from the condition 

Introduction of the time r, makes it much easier to solve Es. 
(22) because step functions of the coordinate can be re- 

Here, v, = 27rnT is the Matsubara frequency. For conven- placed with corresponding functions of time, 
ience in the calculations we shall now shift the coordinate y ,  The path q, (7) will be sought as a Fourier series: 
in such a way that the maximum of the potential v ( y , )  is -- . 
located at the point q = 0, i.e., that 

m 

q~ (7) = $-' ~ X P  ( ivn~) .  
q=yl+ AI/2h. (19) n--00 

Then, Expanding also the 0 functions and the kernal K(T)  as Four- 
ier series, we obtain equations for the Fourier coefficients q, , 

u ( q ) = ' / ~ u , , ~ ( q + q ~ ) ~ O ( - q ) +  [1/2u02(q-q,)2-A1] O(q), (20) which can be solved exactly. We then have 

where 

+ 2uaz(ql+qa) sin V,TO cos V,T 

P 
, (25) 

n = l  

qo=iL/oOLAll2h, ql=hlwo2+A1/2h. 
where l, is found from Eq. ( 18). We shall substitute next 
Eq. (25) in the expression for the action. We then find that 

3. CALCULATION OF THE TUNNELING RATE IN THE ONE- 
INSTANTON APPROXIMATION S~3=200~ (qo+q,) qi~a-20; ( ~ O + ~ , ) ~ T O ~ / P  

The partition function Z can be calculated in the semi- 
classical approximation. It is assumed that the action S{q) is 
dominated by the path q, (7) (instanton) which minimizes 
the action functional ( 16) and obeys the Euler-Lagrange 
equation: 

p. '2 

au(rlB) - i n ( . ) +  + dr f  K (T-r') yH(r l )  =O, (22) 
dq, -812 

where the path q, ( r )  is sought in the class of periodic func- 
tions 

Q B ( T ) = ~ B ( T + ~ ) .  

Therefore, the quasiclassical action is defined exactly in the 
one-instanton approximation. 

We shall now calculate the preexponential factor. Its 
value is governed by the contribution of the paths located 
close to the instanton. We can do this by expanding the ac- 
tion up to the term quadratic in deviations q - q, and inte- 
grating in the functional space.13-l5 The tunneling probabil- 
ity per unit time can then be written in the form 

r =B exp ( -SB) , 
The path q, ( r )  is shown in Fig. 1. The nature of q, (T)  is 

(27) 

determined from the nature of motion of a particle in the where 
potential - v(q). The particle begins its motion (at zero 
temperature) at the vertex of the potential - v(q), i.e., at B =  [ 4 S 

det (6'S/6q2) ,=-, 
the point - go, then passes through a minimum (q, = 0) at 2n det' (6'S/6qY q,,,B(r, 

e o  

FIG. 1 .  Path of an instanton q, (7). Here, r, is the center of the 
instanton and AT is its width. 

543 Sov. Phys. JETP 65 (3), March 1987 



A = sin i..r0. B = C g, oos v n q .  

and det' means that the zero eigenvalue corresponding to the 
zeroth instanton mode is omitted. It should be pointed out 
that the derivation of this formula is based on the approxi- 
mation of an ideal instanton gas'431s 

where AT is the width of the transition from the initial value 
of the path to the negatve value (see Fig. 1 ). Strictly speak- 
ing, the path q, ( T )  is a sum of two paths: an instanton and 
an antiinstanton. If T, is large, we can assume that the inter- 
action between an instanton and an antiinstanton is weak. 
However, the approximation is invalid at low values of T,. 

We shall therefore consider not an ideal instanton gas but a 
rarefied gas of instanton-antiinstanton pairs. The width 
(AT) will be defined as follows: 

In Eq. (28) the expression det (S2S/Sq2) represents calcula- 
tion of the product of the eigenvalues of the following equa- 
tion13-lS, 

O I L  

The second derivative of the potential with respect to posi- 
tion is taken either for the instanton or at the point of the 
minimum of the metastable potential. In the case of our po- 
tential we have 

where we shall use the condition 

We shall first calculate the eigenvalues of Eq. (32) for 
q = - q,. As in the case of an instanton, the eigenfunctions 
will be sought in the class of periodic functions. Expanding 
the path and the kernal K(T)  as Fourier series, we obtain the 
eigenvalues A,, of Eq. (32) : 

We shall now find the product of the eigenvalues of Eq. (32) 
in the instanton path. The eigenvalue equation then becomes 

+ 1 drf  K (T-T') q  (TI) =0. (35) 
- P I ?  

The solution of this equation will also be sought in the class 
of periodic functions. Expanding q ( r ) ,  S functions, and 
K(T) as Fourier series and integrating with respect to T using 
a factor exp( - iv, T), we find that 

(36) 
where 

Equation (36) can be used to find q,; substitution of q, into 
A and B gives two eigenvalue equations: 

z  sin'^,,^. - z c o s 2 v n r ~  - -- 
n = - 7  Lon -h'Z' ' 

n=-, On 

We are assuming here that 
m 

2mG' (q0+q I )  sin2 vnro I ~ B ( T O )  I =  
i3 n = - m  Lon 

In the first of the above equations there is an eigenvalue 
il = 0 corresponding to the zeroth mode which has to be 
excluded from the product of roots. According to the Viet 
theorem, the product of roots in the first equation (in the 
absence of il = 0 )  can be found exactly: 

We shall similarly determine the product of the second series 
of roots: 

We can finally find the preexponential factor by normaliza- 
tion of the zeroth mode So described in Eq. (29): 

Using Eqs. (38)-(40), we now obtain the preexponential 
factor: 

The problem of tunneling of a particle in the model po- 
tential of Eq. ( l ) is thus solved exactly in the one-instanton 
approximation. The argument of the exponential function is 
determined by the semiclassical action of Eq. (26) and the 
preexponential function B is described by Eq. (41 ). The qua- 
sisteady condition (30) (for an ideal gas of instanton-antiin- 
stanton pairs) imposes restrictions on temperature and oth- 
er parameters of the system. 

4. SPECIAL CASES FOR I;, and d l  

1. The important case of the spectral density of phonons 
is the ohmic damping approximation, i.e., f, = yjv, 1 .  This 
case corresponds to viscous motion of a particle in the classi- 
cal limit when the probability of transition per unit time is 
that calculated by Kramers. l 6  At low temperatures the series 
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in the expression for the action can be summed by the Euler- 
MacLaurin method which gives 

Here, Cis the Euler constant and A1r0,A2r0 $1. We can sim- 
ilarly calculate the preexponential factor 

2~02(qO+q,)  In (llZ/lll) sin (2nt"lP) 
B= 

n2(2y) '" (A2-11,) 

The case of a symmetric potential (7, = D/4,q, = q,) is of 
special interest. The action of Eq. (42) then diverges at low 
temperature 

4qO2 AZ2 ln(Al/ao) --Ai2 ln(A2/ao) 
S, = -- - 

n A12-.\l 

41402 +- +O(p-'), (44) 
X JE 

and the preexponential factor is 

We shall consider the complete expression for the tunneling 
rate: 

where 

It is clear from Eq. (46) that, depending on the sign of the 
power exponent in front of the factorflm,,, we can have three 
cases discussed below. 

a )  If we assume that 

then in the case of sufficiently strong damping a particle 
becomes localized in the well of the initial state. This effect is 
not observed if the reaction is simuIated by a two-frequency 
model.' Localization of a particle means breaking of the 
symmetry for the right and left positions. A similar tempera- 
ture dependence is obtained in a two-level model in Ref. 17. 

b )  When the inequality of Eq. (47) is reversed, it is 
found that the quasisteady condition is disobeyed at low 
temperatures and temperature is limited by the inequality of 
Eq. (30). 

C )  If 4yqO2/77 = 1, the tunneling rate is independent of 
temperature. 

The condition of validity of the theory of the ohmic 
damping case is 

exp (-S,') <I. 

It should be pointed out that the semiclassical action and the 
preexponential factor in the case of a symmetric potential 
can be found at arbitrary temperatures. We shall give only 
the expression for the action (the preexponential factor is far 
too complicated to reproduce) : 

where tC, is the logarithmic derivative of the r function.I8 
2. In the case of a symmetric potential the instanton 

action can be calculated exactly iff, is selected in the form 
of the Drude approximation4: 

where w, is the boundary value of the frequency in the vibra- 
tional spectrum. In this case, we have 

where A ,,A,, and A, are the roots of the following algebraic 
equation: 

At low temperatures (A , f i ,  I ,  where i = 1, 2, 3 ) ,  we find 
that 

As in the preceding case the action diverges at low tempera- 
tures. This divergence is related to the linear dependence 
{ ( v ,  ) in the limit Y,  -40, i.e., the divergence determines low 
frequencies. 

The preexponential factor can also be calculated exact- 
ly but we shall not give the full expression for B, but simply 
point out that the temperature dependence of the decay 
probability is exactly the same as in the optical damping 
case. Moreover, the dependence on the viscosity remains the 
same. 

3. We shall now assume that 

This model is of interest in the theory of tunneling of color 
centers19 in solids. Once again the action can be calculated 
exactly for a symmetric potential. We shall give only its low- 
temperature asymptote: 
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where Ai ( i  = 1, 2, 3) satisfies the algebraic equation 

In this case the action is finite at low temperatures. 
The preexponential factor becomes 

Where B 6 is a coefficient independent of temperature (we 
shall not give the expression for this coefficient because it is 
rather cumbersome). It follows from Eq. (53) that the 
preexponential factor diverges at low temperatures as f l  2, 

but in contrast to the exponential divergence in the one-di- 
mensional case, the divergence in the present case is weak- 
ened to a power law because of the viscous motion of the 
oscillators in the medium. In fact, the divergence is removed 
by the condition that the inequality (30) hold, i.e., by the 
approximation that the kinetic process be quasisteady. 

4. It is particularly interesting to calculate the action in 
the limit r0-0. The potential then has the form shown in 
Fig. 2. Expanding Eqs. (25) and (26) as a series in small 
values of T,, we obtain 

The value of T, is found from Eq. (23): 

Substituting T, from Eq. (55) into the expression for the 
action (54), we obtain 

rn 

The above is exactly the same as the analogous relation de- 
rived in Ref. 20. It should be pointed out that the sum in Eq. 
(56) never diverges; and it is calculated for different types of 
spectra in Ref. 20. The action in the case of tunneling of a 
particle in such a potential is not equal to half the action in 

FIG. 2. Potential energy of a particle corresponding to the case when 
To = 0. 

the case of a symmetric potential, in contrast to one-dimen- 
sional tunneling. 

We shall now express the above results in terms of the 
initial parameters of the problem defined by the potential 
energy terms of Eq. ( 1 ). We shall do this by applying the 
following theorem from the theory of analytic functions: 

where f(z) and g(z)  are regular functions on a contour C, a ,  
are zeros of the function f(z) ,  and b, are the poles of this 
function in a region D bounded by the contour C. Therefore, 

where the contour Csurrounds the polesz,, z,, ... and is sepa- 
rated from the real axis by a distance + E .  We can similarly 
calculate the kernel of the integral term 

We shall express the viscosity in terms of the initial param- 
eters of the problem. We shall do this by introducing the 
spectral density function4: 

N 

In the Ohmic damping case, we have 

Then, the sum of Eq. (58)  can be readily calculated and we 
find that 

\- 

We shall now express the frequency w, in terms of the 
initial parameters of the problem [see Eq. (2  1 ) ] : 

Therefore, the problem of calculating the probability of tun- 
neling of a particle in parabolic terms of the potential energy 
( 1 ) has been solved exactly in the semiclassical approxima- 
tion, 

5. CONCLUSIONS 

As pointed out in the Introduction, tnnnel chemical re- 
actions have been observed in condensed phases. The kinet- 
ics of the tunnel transport is discussed above in the semiclas- 
sical approximation. This is done using the instanton 
method,13-l5 which for the potential energy terms of Eq. ( 1 ) 
can be used to calculate exactly the tunneling rate constant. 
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It is shown that for a specific type of the spectrum (ohmic 
damping) of vibrations of the medium and for symmetric 
reactions there is a zero quantum limit, i.e., a particle is al- 
ways localized in the well of the initial state. In the case of 
such "viscous" tunneling it is essential to ensure that there 
are many low-frequency vibrational modes of the medium. 
This condition is fully justified in the case ofviscous polymer 
particles. Such localization of a particle represents the prin- 
ciple of symmetry breaking. This is entirely a many-body 
effect and is characterized by a fairly large viscosity [see the 
inequality of Eq. (47) ] ; it is completely absent in the case of 
ordinary one-dimensional tunneling, in which case the quan- 
tum-mechanical parameter is not always zero (although it is 
small). 

The condition of validity of the theory [Eqs (30) and 
(3  1 ) ] is obtained for the multdimensional case. Violation of 
this condition is related to departure from the quasisteady 
nature of the probability flux (exponential decay of the tun- 
neling probability). The temperature need not be very low in 
the case of one-dimensional tunneling and symmetric poten- 
tial; otherwise oscillations are possible between the wells. I t  
therefore follows that the influence of the medium does not 
always accelerate a chemical reaction. The situation de- 
pends on the spectrum of vibrations of the medium and on 
the initial parameters of the problem. 

The authors are grateful to A. I. Larkin for valuable 
discussions. 

APPENDIX 

We consider diagonalization of the quadratic form 

on condition that the tunneling coordinate is given by Eq. 
(6 )  and other coordinates of the oscillators are selected in 
such a way that there are no terms of the yiyj  type ( i ,  j > 2 )  
and there are terms representing the interaction of the coor- 
dinate y ,  with the coordinates y ,  ( i ) 2 ) .  We do this by dia- 
gonalization of the quadratic form 

N 

where Uji are elements ofan orthogonal matrix. We multiply 
both sides of this equation by q.,i and sum with respect to j' 
between 2  and N allowing for the orthogonality of the trans- 
formation matrix: 

where 

Substituting U,, from Eq. (A.3) into Eq. (A.4), we obtain 
the following equation for the eigenvalues wf 

\- 

Hence, we can see there is one eigenvalue w: = 0, which 
should be ignored. Using Eq. (5) ,  we can transform Eq. 
(A.5) to 

We shall now determine the coefficients C, from Eq. (A.4) 
and the condition of orthogonality of the transformation 
matrix: 
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