
Fluctuation phenomena in systems with diffusion-controlled reactions 
A. M. Gutin, A. S. Mikhailov, and V. V. Yashin 

(Submitted 23 June 1986; resubmitted 16 September 1986) 
Zh. Eksp. Teor. Fiz. 92,941-954 (March 1987) 

A new diagrammatic technique is used to investigate the annihilation reaction kinetics of 
particles executing diffusive motion in a medium. The effective reaction rate is found with 
allowance for the potential interaction between the particles, and the fluctuations in the 
steady-state regime with steady particle production are investigated. The deviations from a 
Poisson distribution in the steady-state regime are discussed. 

In a number of situations the motion of excitations, 
quasiparticles, or defects in a crystal is well described by 
modeling it as a classical particle executing diffusive random 
walk. As examples, we can cite exciton-type excitations, ra- 
diation-induced defects in solids, electrons in ionic crystals, 
etc. Often, the diffusion process is accompanied by two-par- 
ticle annihilation or recombination reactions in which de- 
fects and/or excitations participate (see Refs. 1-3). Similar 
phenomena occur in excitation quenching in  solution^,^ as 
well as in binary chemical reactions in weak ~olut ions.~ 

The kinetics of diffusion-controlled reactions has been 
the subject of a substantial number of papers (in particular, 
Refs. 6-14; a comprehensive bibiliography can be found in 
Refs. 9, 10, and 14). The purpose of the majority of these is 
to compute the effective quenching, annihilation, or recom- 
bination rate for different specific systems. The calculations 
are, as a rule, based on various generalizations of the Smolu- 
chowski method, which was developed back in 1917 for the 
description of the coagulation process (see Ref. 15). Com- 
putational schemes have also been developed in which the 
system of equations for the many-particle distribution func- 
tions are uncoupled with the aid of the Kirkwood approxi- 
m a t i ~ n . ~ , ~ . ' ~  Much less thoroughly investigated is the prob- 
lem of the fluctuation characteristics of the highly non- 
equilibrium steady state that arises when the annihilation 
proceeds concurrently with particle (excitation or defect) 
production. At the same time these fluctuation effects can be 
quite interesting. Thus, for example, numerical experi- 
m e n t ~ ' ~ " ~  indicate the tendency of particles of two kinds to 
form clusters. 

The present paper is devoted to a systematic analysis of 
the fluctuations in highly nonequilibrium media, in which 
the diffusion-controlled annihilation process occurs simul- 
taneously with the steady production of the reacting parti- 
cles. The analysis is carried out using the new version of the 
diagrammatic technique developed earlier by the present 
authors in Refs. 18-21 for classical reacting systems with 
diffusion. 

1. FORMULATION OF THE PROBLEM 

Let us consider a system of classical particles of two 
kinds, A and B, executing random walk with diffusion coeffi- 
cients D, and D, in a continuous three-dimensional medi- 
um, and undergoing spontaneous decay and an irreversible 
annihilation (or recombination) reaction A + B-C, the 
products of which do not have any further effect on the sys- 
tem. Let us assume that the particles A and B interact with 
each other via the pair potentials u,, ( r ) ,  u,, (r) ,  and 

u,, ( r ) .  Finally, we shall assume that uniform independent 
production of the reacting particles occurs in the medium. 
The probability for two particles A nd B located at a distance 
r from each other to react in unit time is given by the function 
W(r), and the decay and uniform single-particle production 
are characterized by the intensities yA and y,, SA and S, . I '  

The complete probability description of the system is 
furnished by the set {PN,, 1, whose elements PN,, (x,, ... 
,xN; y,, ... ,yM; t )  are the probability densities for finding in 
the system at time t N particles of the type A, located at the 
points x,, ... ,xN , and M particles of the type B, located at the 
points y ,, ... ,y, . On account of the indistinguishablity of the 
particles, the functions P , ,  are symmetric in the inter- 
change xi c txj  and yittyj. The normalization condition 

takes account of the nonconservation of the total number of 
particles of the two kinds. 

The evolution of the system is governed by the principal 
kinetic equation 

533 Sov. Phys. JETP 65 (3), March 1987 0038-5646/87/030533-08$04.00 @ 1987 American Institute of Physics 533 



It follows from (A.7) and (A.8) that 

<ci,ci,+>=cci,+~,>+l=xf+l, ( 5  

where V is the volume of the medium and we have 
Uii ( r )  = uij (r)/O, O being the temperature of the medium. 

Doi22 and, independently, Zel'dovich and Ovchinni- 
kov23 have proposed a formal "second quantization" proce- 
dure with the aid of which the system of equations (2)  can be 
represented (see the Appendix) in the form 

h 

where I@) is a state vector and H is a linear operator ex- 
pressed in terms of the Bose creation and annihilation opera- 
tors: 

Here W(k) and Uv (k)  are the Fourier transforms of the 
corresponding functions and A(k) is the Kronecker symbol 
(A(k) = 6k.o 1. 

Thus, the state of the system is specified by the state 
vector I@), whose evolution is governed by Eq. (3) ,  which is 
similar to the Schrodinger equation-with imaginary time 
and a non-Hermitian Hamiltonian. Note that the procedure 
for computing the averages differs from the quantum-me- 
chanical procedure (see (A.3)-(A.6) in the Appendix). 

The operator formulation of the basic relations allows 
us to develop a diagrammatic perturbation theory tech- 
nique. A detailed description can be found in Refs. 20 and 
2 1. As the "free Hamiltonian," let us choose in this case 

h h 

all the remaining terms in H being lumped in Hint .  

Therefore, the operators 2,  and ii,i can be considered to be c- - - 
numbers in the limit m, - CO, V -  a,, n ,  = N , / V  = const. 
Since we are interested only in the steady state, let us make 
tJe substitutions 2,- E, V, b,- E, V, 2; -+ 1, b ,i - 1 in 
Hint .  These substitutions indicate that we are ignoring the 
fluctuations in the total number of particles in the system, 
and the whole procedure is similar to the procedure for se- 
parating out the condensate in the theory of the nonideal 
Bose gas.24 The free Green's functions (GF) have the form 

exp (- (Djk2+yj) t ]  npa 
~ , ( k , f ) =  { 0 

t>O , j=1,2. 
nplr tGO 

It is convenient to introduce a diagrammatic notation. 
To do this, let us establish the correspondence between the 
GF and the condensate 

h 

and to each term in Hint assign a vertex where an ingoing line 
corresponds to an annihilation operator and an outgong line 
corresponds to a creation operator. The rules for calculating 
the diagrams are standard (see, for example, Ref. 24). Let us 
only note that, since the GF's vanish in the interval t<O (i.e., 
there are only retarded GF's in this technique), diagrams of 
the type 

etc., will be absent. 

2. THE EFFECTIVE REACTION RATE 

As we have already noted, quite a large number of pa- 
pers (see, for example, Refs. 6-14) have been devoted to 
calculating the diffusion-controlled reaction rates in differ- 
ent systems, and this problem has been fairly well investigat- 
ed. Below we show how the application of the diagrammatic 
technique allows us to arrive at results that generalize those 
found earlier for the various particular cases of the expres- 
sion. At the same time this analysis serves as additional cor- 
roboration of the new diagrammatic technique. 

The temporal evolution of the mean reacting-particle 
densities Ei = m , / V  is, according to (3)  and (A.8), gov- 
erned by the equations 

We can, by expressing the density-density correlation func- 
tion in terms of the operators 

rewrite the first term on the right-hand side of (7)  in the 
more usual form 

Let us assume that the particles A and B are produced 
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with the same intensity S. In time the system will get into the 
state in which the particle creation and annihilation pro- 
cesses occur at the same rate (i.e., in which Ei = 0) .  One of 
the most important characteristics of this steady state is the 
effective reaction rate 

where 

It should be noted that the quantity K,, can, in the general 
case, depend on T i i .  Knowing the reaction rate, we can find 
the steady-state value of Tii : 

To find K,, , let us use the diagrammatic technqiue de- 
veloped above. We shall neglect the disintegration processes 
in the calculations, assuming them to be sufficiently weak 
(the limits of applicability of this assumption are indicated 
below). 

We have, by definition, 

The prime on the summation sign indicates that the summa- 
tion is performed over all k except k = 0. According to the 
rules for constructing the diagrams, 

Therefore, we can write 

introducing the quantity I,. 
In the steady state we have 

ca 

where D = D, + D,. 
Let us assume that the pump intensitysis so low that, in 

the steady state, the mean distance between the particles is 
much greater than the reaction radius, i.e., E,r; $1, This 
allows us to separate out from the series ( 10) the diagrams 
containing the minimum number of condensate lines (spe- 
cifically, two) : 

The summation of such ladder diagrams offers no difficulty, 
and amounts to the solution of the integral equation 

where 

-k 

Analytically, Eq. ( 12) can be written in the form 

Ik- W (k) +DkZU,, (k) 

It follows from the relations (8 )  and (13) that 

Thus, to find K,, to lowest order in the concentration, 
we must solve the integral equation ( 13) with the substitu- 
tion 

After carrying out an inverse Fourier transformation, we 
obtain from Eq. ( 13) the following equation for the correla- 
tion function f(r)  : 

n d iv  (grad fff grad U , ? )  -W'/=O. (14) 

A similar equation was obtained earlier in Refs. 6-10 
through truncation of the chain of equations for the many- 
particle distribution functions with the aid of the Kirkwood 
approximation. It has also been derived in the theory of exci- 
tation quenching in solutions in the U,, = 0 case.".12 

For arbitrary W(r) and U,, ( r )  functions it is not possi- 
ble to calculate in analytic form the correlation function f 
and the reaction rate K,, from Eq. ( 14). As additional as- 
sumptions, we shall suppose that, first, the annihilation reac- 
tion can occur only when the two particles are at some dis- 
tance r, or less from each other, i.e., that W(r) = W, for 
r e ,  and W(r) = 0 when r >  r,; secondly, the variation of 
the potential U,, in the region r <  r, can be ignored, i.e., 
U,,(r) = U, = const. Then, solving (14) in the regions 
r < ro  and r >  r, separately with the requirement that 
If(0) 1 < w and f( oc, ) = 1, and matching the solutions at 
r = r,, we find the function f ( r )  and then the quantity K,* 
from the formula (9)  : 

where 
DD 

The expression ( 15) includes a number of well-known 
results as limiting cases. In particular, in the absence of po- 
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tential interaction between the particles involved in the anni- 
hilation reaction (i.e., for U,,(r) = 0), it gives2' 

Notice that r,, = ri/D is the characteristic time spent by a 
particle in its diffusive walk inside a sphere of radius r,. It 
can be called the diffusional collision time. Since W, gives 
the probability for annihilation in unit time when the parti- 
cle separation is smaller than r, and the quantity A can be 
represented in the form A = W,.r,, we see that, for A ,) 1, 
virtually every collision ends in annihilation, whereas for 
A 2 <  1 the relative fraction of such collisions is small. If 
A 2, 1, then ( 16) gives K,, = 4n-Dr,, which coincides with 
Smoluchowski's resu1t,l5 but if A < 1, then 
K,, = (4n-/3) W,r;. 

For A )  1 and U,,(r) $0, the formula ( 15) gives ap- 
proximately K,, = 4n-D /J. This is a classical result, first ob- 
tained by D e b ~ e . ~  

In conclusion, we give without derivation the expres- 
sion for the effective reaction rate for the model of "hard 
spheres" with potential U12(r) = + cc for r(a and 
U,,(r) = 0 for r > a in the case when a < r,: 

th h a ch ct - sh a 
K., = 4 x D r . ( 1 - ~ ) (  1- ) (17) 

hchiL-shh ' 

where a' = W,,a2/D. 
Allowance for the disintegration processes does not 

have much effect on the effective annihilation rates ( 15 ) and 
( 17) when the conditions y/ W,, yro2/D < 1 are fulfilled. 

3. DENSITY FLUCTUATIONS IN THE STEADY STATE 

Note that the GF's allow us to determine both the be- 
havior of the local-density fluctuations in the steady state 
and the law according to which the overall (global) particle 
density approaches in time its steady-state value. It has been 
found by Zel'dovich and O v ~ h i n n i k o v ~ ~ . ~ ~  that, in three-di- 
mensional systems in which an irreversible bimolecular re- 
action of the type A  + A t t B  or A t t B  + C occurs, and the 
stationary state is a thermodynamic equilibrium one, the 
equilibrium is established not exponentially rapidly, as the 
law of mass action predicts, but in a power-law fashion: 
Sn - (D,, t )  - 3 1 2 ,  where D,, has the meaning of an effective 
diffusion coefficient. Using the GF  apparatus, we show that 
similar power-law dependences obtain also in two-compo- 
nent systems in which thermodynamic equilibrium does not 
occur, and whose steady state is determined by the competi- 
tion between an external uniform independent pumping of 
the particles and the irreversible reaction between them. 

In a system consisting of particles A  and B, there are 
four single-particle GF's, which can conveniently be written 
in the form of a 2 x 2 matrix: 

' ' C  

- - / p  I i~ PI) ahi ( t )  bk ( t l )  ik+ ( t ) )  qt1 - w))> 
\ d L,, ( t l )  ik+ (t) ik (tl) ;,'+ ( t )  0 

The absence of off-diagonal-in k-single-particle averages 
is due to the conservation of the wave vector of each vertex of 
the diagramatic technique as a separate entity. 

The matrix 2 satisfies the Dyson equation 

(i (k; t. 0 )  = d ( k ,  f )  - k ( k ,  r 1 ) i ( k ;  r,, T,) &(k;  t ,  T2)drl dr,, 

h 
(18)  

where and I; are the free-diffusion G F  and "mass opera- 
tor" (MO) matrices, the matrix g being, by definition, diag- 
onal. In the steady states the time variables enter into the G F  
and MO only in the form of a difference, e.g., 

2 (k; r,, r , )  =Z(k, T..-7,). 
* 

This enables us to solve Eq. ( 18) without difficulty; after a 
Fourier transformation in the time it assumes the form 

(; (k, w ) = G ( k ,  t o ) -E(k ,  o ) P ( k ,  a ) G ( k ,  a ) .  

The solution to this equation is easy to obtain: 

G(k, o )  

k, o )  +Z22 (k, w) =Q-' (k, o )  (6"- ( 
-= i2ck9  a' . -Z2,(k, o )  Gli-'(k, o )  + Zti (k, m) 

(19) 
where 

Q (k, o) = (e1y1(k,  o )  +Eli (k, o )  ) (G: (k, o )  +Z22 (k, ) 

It is clear that all the information about the asymptotic 
forms of the GF's is contained in the roots of the equation 
R(k,w) = 0. 

In the absence of disintegration processes, the free-dif- 
fusion GF, gj, posseses a pole w = - iDj k 2 .  Let us show 
that the total G F  also possesses a diffusion-type singularity, 
i.e., that the equation R(k,w) = 0 has a root that, as k-0, 
behaves like w = - iD,,k 2, where D,, is a constant having 
the dimensions of a diffusion coefficient. To do this, let us 
prove that 

lim [2,,(k,o)Z,,(k,o)-X,,(k,o)X?,(k,o)]=O. (21) 
k , u + d  

Indeed, the expression for the MO has the form 

The thick lines here represent the total GF's and 

represents total irreducible triple vertex. The indices in the 
diagrams indicate the types of ingoing and outgoing lines. By 
comparing the expression (22) for j = 1 and j = 2, we can 
easily verify that 

lim Zil (k, o) = lim Ziz(k, a), i = l ,  2. 
k,o+O k ,o-0  

From this we immediately obtain (2 1 ). 
It should be noted that, in the analogous one-compo- 

nent system (A + A-0 in the presence of uniform genera- 
tion), allowance for the reactions between the particles 
causes the diffusion-type singularities in the G F  to disap- 
pear. In Refs. 20 and 21 we show that in this case 

536 Sov. Phys. JETP 65 (3), March 1987 Gutin etal. 536 



Since we are interested in the case of low concentrations 
Z i  , let us separate out from the whole set of diagrams for Zij 
the ladder diagrams as being of the lowest power in Ei among 
all others, and then sum them in all orders of perturbation 
theory. Then we have 

The effective triple vertex entering into ( 2 4 )  can be found 
from the equation 

Let us, setting 

write ( 2 5 )  in analytic form: 

( k , ,  k,: ( 0 )  = W ( k j )  + Di (kj, k l + k 2 )  U,z(kj)  

Here and below the symbol [GG], corresponds to the Four- 
ier transform of the product of two GF. From the form of 
expression ( 2 6 )  we obtain the following relation between the 
effective vertices: 

with (cf. ( 13) ) 

Comparing the diagrammatic equations ( 2 4 )  and ( 2 5 ) ,  we 
easily see that 

The expressions ( 19), ( 2 6 ) ,  and ( 2 7 ) ,  taken together, con- 
stitute a closed system of equations for the determination of 
the GF's. 

The quantities Xi,  are small, since they are proportional 
to the mean concentrztions of the reacting particles, and 
their contribution to G ( k , w )  is significant only at small k  
and w  values, i.e., in the vicinity of the singular point of the 
GF. Therefore, we shall replace the Zij entering into ( 19) by 
their values at k ,  w  = 0: 

and solve the equation R ( k , w )  = 0 for w: 

o ,  ( k )  =-iDel,k2, ( 2 8 )  

where D,, = (DIEl  + D,E,) / (Z,  + Z , )  is the effective dif- 
fusion coefficient. 

Let us consider the behavior of the local particle density 
fluctuations in the steady state. Specifically, we shall be in- 
terested in the quantity 

The angle brackets in the present case denote averaging over 
the steady state. Using (Sn,Sn,) as an example, we show 
how the correlators ( 2 9 )  are related with the GF. By means 
of the operator formulation and the relation ( 6), we obtain 

Note that the terms of the diagrammatic expansions of the 
second and third terms on the right-hand side of ( 3 0 )  always 
contain at least two condensate lines. Therefore, in the case 
of small steady-state values of the reacting-particle densities 
these terms are of order Z 2 ,  and are small compared to the 
first term, in which it is not difficult to distinguish the GF. 
Consequently, 

(<f i iz j (r ,  t)(?n, ( 0 ,  0) >>-EiG,,(r, t ) .  ( 3 1 )  

Hence, taking account of ( 2 8 ) ,  we obtain in the case when 
( E l  + Z,)K,,t 1 the approximate result 

In a one-component system, the damping of the density fluc- 
tuations proceeds differently. From ( 2 3 )  it follows that 

< < 6 n ( 0 ,  t ) 6 n ( 0 ,  O ) ) ) - - E ( L > t ) - '  esp (-2rtK,,,t), 

i.e., a local-density fluctuation that arises at some point of 
the system dissipates according to an exponential law. This 
difference is explained by the fact that the special type of 
fluctuations that takes place in a system with two reactants: 
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the fluctuations in the local-density difference 

fin-(r, t )  =Sn,(r, t )  -6n,(r, t ) ,  

do not occur in a one-component system. The role played by 
these fluctuations in the behavior of a system supporting a 
reaction and diffusion has been repeatedly noted in the liter- 
ature (see Refs. 10,25, and 26). Since in the absence of disin- - 
tegration processes (i.e., for y, = y, = 0 )  E l  - n, = const, 
there arises in the course of the evolution of the system a 
situation that, in a sense, is similar to the one described by 
the quantum-mechanical Goldstone theorem, which asserts 
that the energy spectrum of the local fluctuations of a quan- 
tity that is conserved as a whole in the system is gapless. 
Indeed, using (28) and (3 1 ), we find that, for small k and w 
in the steady state, 

Let us note that, to take account of extermely weak dis- 
integration processes (i.e., those for which y,<E,Ke,, 
y2<E,Ke,, we need make only one change: the quantity 
w ,  ( k )  from the relations (28) will assume the form 

where ye, = (E,y, + E,y,)/(E, + E,). Therefore, each 
term in the estimate (32) will have an additional factor, spe- 
cifically, the factor exp( - y,,t). 

4. DEVIATIONS FROM THE POISSON DISTRIBUTION 

In the absence of reactions, the particle number distri- 
bution inside a fixed volume element will be a Poisson distri- 
bution. For such a distribution we have the relation 

~ e r e N i s  the average number of particles in the region of the 
volume a and SN = N-3. 

A reaction and a potential interaction between the par- 
ticles give rise to deviations from the law (33), i.e., to the 
suppression or enhancement of the particle-number fluctu- 
ations, as compared to the fluctuations dictated by the Pois- 
son law. It is not difficult to verify that these deviations are 
determined by the pair correlation function for the particles 
of one species: 

The Fourier transform of the correlation function is given by 
the expression 

~ t t  (k) - - 2 S G ~ ,  (k, r )4 , ( -k ,  T)~TC + .  ( 3 5 )  

We shall choose as the volume element f l  a sphere of radius 
R that is large compared to the reaction radius r,(R ) r,) . As 
follows from (34), to find the mean fluctuation intensity in 
such a large region, it is sufficient to know only g,, (k) for 
small values of k. Therefore, we can approximately set 
I ,  -Io = K,, in Eq. (35). 

Let us first consider a system in which particles of the 

same kind annihilate each other (i.e., in which a reaction of 
the type A + A -0 occurs). In this case the G F  has the form 
(23), and for g ( r )  in the region r$ro we have 

where rc = (D  /2EK,, ) ' I2  is the correlation length. Substi- 
tuting (36) into (34), and performing the integration, we 
find 

where the function F ( x )  is defined as 

In particular, for r, 4 R (r, , we have 

whereas for regions of large radius (R ) rc ) we have 

A comparison of the expressions found above with the for- 
mula (33) shows that the annihilation of particles of the 
same kind leads to the suppression of the large-scale fluctu- 
ations in comparison with the fluctuations described by the 
Poisson distribution. At the same time the particle number 
fluctuations inside a region with dimension smaller than the 
correlation length rc are close to being Poisson fluctuations, 
i.e., at these scales the particles behave as independent parti- 
cles. 

Another situation obtains in the case of annihilation of 
unlike particles (A + B-0) .  Let us first give the results for 
the case when the two kinds of particles have the same aver- 
age concentration (i.e., when E, = E, = E )  in the steady- 
state regime, and their diffusion coefficients are equal 
(D, = D, = D) .  We shall also take account of the weak 
single-particle disintegration processes ( A  + 0, B -+ 0)  , as- 
suming that the disintegration rate y is low (i.e., that 
y<EKe,). Under these assumptions the pair correlation 
function is given by the expression 

where, = (D /y) ' I 2  andr, = ( D  /2EKe, ), withr, )rc . The 
mean fluctuation of the particle number in a region of radius 
R is 

where the fluctuation F ( x )  is defined above. 
In the case of the annihilation reaction between unlike 

particles the spatial fluctuations are enhanced in comparison 
with the Poisson fluctuations. As follows from (42), this 
deviation is enhanced in the region r o ( R  (r,, but is still 
fairly small: 

The deviations increase sharply when we go over into the 
region3' rc (R ( r, : 
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Finally, in the region R %r, the deviations cease to grow, 
and settle at a constant fairly high level: 

The sharp increase in the spatial fluctuations in the par- 
ticle number (the "clustering effect"), that occurs in the 
process of annihilation of unlike particles was observed ear- 
lier in numerical experiments. 16"' The physical cause of this 
effect is fairly simple. In the case of independent random 
generation, more particles of one (for definiteness, the first) 
kind can be produced in some region of the medium than 
those of the other (second) kind. The particles of the second 
kind quickly find for themselves "partners," and undergo 
annihilation; as a result only particles of the first kind will be 
left over in the region. The clusters produced can dissipate 
through diffusion or as a result of a slow single-particle dis- 
integration. There are characteristic differences between 
these two processes: the greater the spatial dimension of the 
cluster, the slower its diffusive spreading, whereas for the 
single-particle disintegrations the size of the cluster is not 
important. We emphasize that the effects of the formation of 
spatial clusters in annihilation reactions involving two kinds 
of particles were first discussed by Zel'dovich and Ovchinni- 
~ o v . ~ ~ , ~ ~  

In conclusion, we give the expression for the pair corre- 
lation function in the more general case when the two kinds 
of particles have different diffusion coefficients D, and D,, 
as well as different average steady-state concentrations: 

I , ;  j f i ,  (46) 

where 

Here it is implied that the disintegration rate is low (i.e., that 
y, 4 E,K,, and y, 4 E ,K,, ) , and therefore r, % r,, Tc . For the 
particle-number fluctuations in a volume with R % r, we ob- 
tain 

In the case when r, , T, 9 R 4 r, we have 

It is easy to see that, if the diffusion coefficients Dl  and D, are 
of the same order of magnitude, then r, and I., will also be 
quantities of the same order of magnitude. In the opposite 
case (e.g., in the D, )D, case), when the particles of one 
kind diffuse much faster than the particles of the other kind, 

the inequality 7., Br, is satisfied. In this case, at the scale 
R 4 r c ,  the deviations of the fluctuations from the Poisson 
fluctuations are small. 

The authors are grateful to Ya. B. Zel'dovich and A. A. 
Ovchinnikov for a discussion of the results obtained. 

APPENDIX 

With the set {P,,, is associated the system's state vec- 
tor 

w 

where 

We can, using the identity 

(01 v-(N+M)12 JJn 6, (~i);~(y,) I @  ( t )  ) 

write the system ( 2 )  in the form of the Schrodinger equation 
with imaginary time: 

h 

where the operator H is expressed in terms of $i (x )  and 
$? (x) .  We obtain the expression (4)  after carrying out a 
standard expansion of the operators $i and $i+ in terms of 
plane waves: 

and similarly for $,, 4; and $,, 6 ,,? . 
The ensemble average 

rn N M 

for an arbitrary quantity A can be written in the form 

where the quantity A is associated, in accordance with rules 
gmilar to the quantum-mechanical rules, with the operator 
A and I@)  is a fixed normalization vector: 

The normalization condition ( 1 ) can be represented as 
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The normalization vector I @) possesses the property 
that 

Therefore, the following identities always obtain 

where x, is the mean total number of the i-particles in the 
system. 

The double-time correlation function for the quantities 
A and B has the form (for definiteness t ' > t )  : 

< ( A ( t ' ) H ( t ) ) ) = ( @ l A  e s p ( ~ ( t ' - t ) ) ~ l @ ( t ) )  

= < @ I F  { h ( t ' ) 3 ( t ) s ( t r ,  -00)) j 6 ( - - ~ ) )  

- < T  { j r ( t f ) B ( t )  8 ( t ' ,  -m)) > o r  (A.9) 

where ?( t  I ,  - m ) = ̂ T enp [l:' gin, ( 7 )  d r  and the tilde 
m I 

indicates the operators and state vector in the interaction 
representation. 

"Below, in order to simplify the rather unwieldy perturbation-theory 
expressions, we shall sometimes call the particlesA and B particles of the 
kinds 1 and 2, respectively, and label the quantities characterizing them 
by the indices 1 and 2. 

similar expression is obtained in Ref. 12 in an analysis of the "mixed" 
mechanism of excitation quenching in solutions. 

"The intermediate asymptotic form (44) was recently obtained also by 
Burlatskii and Ovchinnikovz9 on the basis of macroscopic kinetic equa- 
tions for the fluctuating concentrations with allowance for the random 
spread in the production rates. 

'V. M. Agranovich and M. D. Galanin, Perenos inergii ilektronnogo 
vozbuzhdeniya v kondensirovannykh sredakh (Electronic Excitation 
Energy Transfer in Condensed Matter), Nauka, Moscow, 1978 (Eng. 
Transl., Elsevier, New York, 1982), Chaps. 5 & 6. 

'V. L. Vinetskii and G. A. Kholodar', Radiatsionnaya fizika poluprovod- 
nikov (Radiation Physics of Semiconductors), Naukova dumka, Kiev, 
1979, Chaps. 6 & 7. 

'V. V. Antonov-Romanovskii, Kinetika fotolyuminestsentsii kristallo- 
fosforov (Kinetics of the Photoluminescence of Phosphor Crystals), 
Nauka, Moscow, 1966, Chaps. 2 & 4. 

4A. I. Burshtein, Usp. Fiz. Nauk 143, 553 (1984) [Sov. Phys. Usp. 27, 
579 (1984)l. 
*H. Eyring, S. G. Lin, and S. M. Lin, Basic Chemical Kinetics, Wiley- 
Interscience, New York, 1980 (Russ. Transl., Mir. Moscow, 1983), 
$59.2 & 9.3. 

'T. R. Waite, Phys. Rev. 107, 463 (1957). 
'A. Suna, Phys. Rev. B 1, 1716 ( 1970). 
RO. Wilemsky and M. Fixman. J. Chem. Phys. 58,4009 ( 1973). 
9A. I. Onipko, Fiz. Mnogochast. Sistem (Physics of Many-Particle Sys- 
tems), No. 2, 60 ( 1982). 

"Yu. Kh. Kalnin' and F. V. Pirogov, Preprint No. 083, LAFI, Salaspils, 
1985. 

"A. B. Doktorov and A. I. Burshtein, Zh. Eksp. Teor. Fiz. 68, 1349 
(1975) [Sov. Phys. JETP 41,671 (1975) 1. 

I2A. B. Doktorov, A. A. Kirpriyanov, and A. I. Burshtein, Zh. Eksp. 
Teor. Fiz. 74, 1184 (1978) [Sov. Phys. JETP 47,623 ( 1978)l. 

I3V. Kuzovkov and T. Kotomin, Phys. Status Solidi B 105, 789 ( 1981 ); 
108, 37 (01981). 

I4A. A. Ovchinnikov, S. F. Tumashev, and A. A. Belyi, Kinetika diffu- 
sionno-kontrolireumykh khimicheskikh protsessov (Kinetics of Diffu- 
sion-Controlled Chemical Processes), Khimiya, Moscow, 1986. 

I5S. Chandrasekhar, "Stochastic problems in physics and astronomy," 
Rev. Mod. Phys. 15, 1-89 (1943) (Russ. Transl., IIL. Moscow, 1947), 
Chap. 3, § 6. 

I6F. V, Pirogov and E. I. Palagishvili, Izv. Akad. Nauk Latv. SSR Ser. 
Fiz.-Tekh. Nauk No. 4,46 (1984). 

I7Yu. Kh. Kalnin' and Yu. Yu. Krikis, Izv. Akad. Nauk Latv. SSR Ser. 
Fiz.-Tekh. Nauk No. 1, 104 (1983). 

IRA. S. Mikhailov, Phys. Lett. A 85, 214 (1981). 
I9A. S. Mikhailov, Phys. Lett. A 85, 427 (1981 ) .  
20A. S. Mikhailov and V. V. Yashin, J. Stat. Phys. 38, 347 (1985). 
"A. S. MikhaTlov and V. V. Yashin, Fiziko-khimicheskie protsessy v niz- 

kotemperaturnoi plazme (Physico-Chemicl Processes in a Low-Tem- 
perature Plasma), Nauka, Moscow, 1985, p. 168. 

"M. Doi, J. Phys. A 9, 1465, 1479 ( 1976). 
23Ya. B. Zel'dovich and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 74, 1588 

(1978) [Sov. Phys. JETP 47,829 (1978) 1. 
24E. M. Lifshitz and L. P. Pitaevskii, Statisticheskaya fizika, Chast' 2: 

Teoriya Kondensirovannogo sostoyaniya (Statistical Physics, Part 2: 
Theory of the Condensed State), Nauka, Moscow, 1978 (Eng. Transl., 
Pergamon, Oxford, 1980), Chap. 3. 

"Ya. B. Zel'dovich and A. A. Ovchinnikov, Pis'ma Zh. Eksp. Teor. Fiz. 
26,588 (1977) [JETP Lett. 26,440 (1977)l. 

26D. Toussaint and F. Wilczek, J. Chem. Phys. 78,2642 (1983). 
27Ya. B. Zel'dovich, Elektrokhimiya 13, 677 ( 1977). 
2%. A. Ovchinnikov, and Ya. B. Zeldovech, Chem. Phys. 28,215 ( 1978). 
29S. F. Burlatskiiand A. A. Ovchinnikov, Pis'ma Zh. Eksp. Teor. Fiz. 43, 

494 (1986) [JETP Lett. 43,638 (1986)l. 

Translated by A. K. Agyei 

540 Sov. Phys. JETP 65 (3), March 1987 Gutin etal. 540 


