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A nonlinear theory of particle drift is proposed. Factors taken into account include light- 
induced drift, radiation pressure, and negative radiation pressure. The nonlinearity of the 
theory is due to the dependence of the drift velocity of the absorbing particles on the radiation 
intensity which, in turn, depends on the density of the absorbing gas. An analogy is found 
between particle drift in the radiation field and shock waves. In particular, it is shown that, in 
the case of an optically thin medium, light-induced drift and radiation pressure effects are 
described by the Burgers equation. Different types of particle-bunch drift are investigated, the 
conditions for the appearance of solitary waves are analyzed, and collisions between such 
waves are studied. It is shown that, in contrast to solitons, collision between the solitary waves 
investigated in this paper are entirely inelastic. 

1. INTRODUCTION 

The phenomenon of light-induced drift (LID) in gasesL 
has recently attracted increasing attention among research- 
ers, and a substantial number of theoretical and experimen- 
tal papers have appeared in this field (see the bibliography in 
Ref. 2) .  The essence of the phenomenon is that resonant 
particles interacting with a traveling light wave, and collid- 
ing with buffer-gas particles, exhibit directed motion (drift) 
relative to the buffer gas. Calculations show that the drift 
velocity can reach values equal to the thermal velocity. The 
drift velocity attained experimentally3 is 1.3 X lo3 cm/s. 

Theoretical papers devoted to LID have been largely 
concerned with studies of the effect under time-independent 
conditions. At the same time, from the point of view of ex- 
perimental studies of LID and its possible practical applica- 
tions (e.g., in isotope separation), there is considerable in- 
terest in the theoretical description of the dynamics of the 
variation in the macroscopic parameters of the absorbing gas 
during LID. 

Consider a clump of the absorbing gas in a long cell 
filled with a buffer gas. Radiation propagates along the cell 
axis (z-axis) and brings the absorbing gas into motion. It 
then follows from the continuity equation (dp/dt + dj/ 
dz = 0)  and the expression for the current of the absorbing 
particles ( j = up - Ddp/dz) that the density of the absorb- 
ing particles in space and its dependence on time are de- 
scribed by the equation 

wherep =p  (z,t) is the density, u is the LID velocity, and D is 
the diffusion coefficient of the absorbing particles in the 
buffer gas. When u = const, D = const, the solution of ( 1.1 ) 
subject to the initial condition p (z,t = 0) = p (2) is 

p ( % , t ) =  J ~(q)exp[-(E-q)'/W)tI 
(4nDt) '" 

dq, g=z-ut, (1.2) 
- m 

which describes the drift of the gas clump with velocity u, 
and its simultaneous spreading by diffusion. The light-in- 
duced drift of the particle clump was investigated experi- 

mentally in Ref. 3 for u and D varying slowly along the 
clump. The spreading of the clump by diffusion during the 
drift process was found to be satisfactorily described by 
(1.2). 

In fact, the condition u = const is practically never sat- 
isfied exactly because the drift velocity varies across the 
clump as a result of absorption of radiation. The departure 
from the condition u = const should cause a departure from 
the spreading of the particle clump by diffusion in accor- 
dance with ( 1.2). In the experiments described in Ref. 3, the 
drift velocity varied slowly within the clump, and deviation 
from the diffusion-type spreading could be neglected. How- 
ever, it is possible to experimentally establish conditions in 
which the drift velocity varies slowly and has a radical effect 
on the evolution of the particle clump, and so cannot be ne- 
glected. Actually, let us suppose that, for example, the vari- 
ation of the drift velocity within the clump is such that its 
trailing edge (the edge on the side opposite to the direction of 
drift) drifts with a higher velocity than that of the leading 
edge, i.e., the bunch becomes compressed. After a certain 
interval of time, this drift compression and the usual diffu- 
sion spreading completely cancel out. In other words, the 
shape and width of the clump become stabilized and propa- 
gates in the form of a solitary wave. When the sign of the drift 
velocity is reversed, the bunch spreads more rapidly than in 
the case of ordinary diffusion. 

It is important to note that, in general, the diffusion 
coefficient D of the absorbing particles is also a function of 
the radiation intensity. This affects, for example, the shape 
and width of the solitary wave but, in contrast to the case 
where u # const, it cannot give rise to a qualitative change in 
the evolution of the drifting bunch. The change in D is usual- 
ly small, so that quantitative changes in drift parameters are 
also small. 

The present paper is devoted to a theoretical description 
of the drift dynamics of absorbing particles in which the 
change in the drift velocity due to the absorption of radiation 
is taken into account. 

2. QUALITATIVE DESCRIPTION OF DRIFT DYNAMICS 

Let us examine the dependence of drift velocity on radi- 
ation intensity. For completeness, we shall take into account 
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the effect of radiation pressure, although this is usually sev- 
eral orders of magnitude weaker than the LID effecL4 In the 
case of homogeneous absorption-line broadening (r ) kc), 
it follows from the results reported in Ref. 5 that LID and 
light pressure effects cause the absorbing gas to drift with 
velocity 

where 

uo=-c - k5P r1 ttk Av i3 - Y,=".-, 
2~ ( ~ + - p ' ~ ) ~  r2+v ' 2~ m 

In these expressions, i? is the most probable velocity of the 
absorbing particles, w, k, E are, respectively, the frequency, 
wave vector, and electric field amplitude in the light wave, r 
is the homogeneous width of the absorption line, r, is the 
quenching constant in the excited state, v, and v, are the 
collision frequencies of excited and unexcited particles with 
buffer-gas particles, w,, is the frequency of the transition 
between the ground (0)  and excited (1)  states, d l ,  is the 
matrix element of the dipole moment for the 1 -0 transition, 
and m is the mass of the absorbing particle. For simplicity, 
Eqs. (2.2) are written for the case I Avl/v 1. 

The drift velocity (2.1 ) consists of two terms. The first 
is proportional to S1 and describes the LID effect. The sec- 
ond is proportional to the recoil velocity v, and is due to the 
radiation pressure. It describes both the radiation pressure 
effect proper6 [first term in the function Q, ( x ) ]  and the 
negative radiation pressure effect5 [second term in Q, ( x )  1. 
Figure 1 shows typical dependence of the drift velocity on x 
in the case of LID [@,(x) ] and in the case of light pressure 
[@,(XI I .  

The radiation pressure effect can be neglected when 
R#O. The situation is then dominated by the LID effect. 
Figure la shows the LID velocity as a function of radiation 
intensity, represented by the function Q,(x). For small x, 
we have @,(x) x ( 1 + fl 1 / 2 ) 2 ,  which depends linearly on 
the radiation intensity. As x increases, the magnitude of the 
drift velocity becomes a maximum at x, = fl - 'I2 and be- 
haves as I u, 1 ( 1 + fl ' I 2 )  2/flx for x % 1/P. Depending on the 
sign of Rhv, the drift of resonant particles can occur either 
in the direction of the light beam (RAY < 0), or in the oppo- 
site direction ( ~ A Y  > 0) .  We note that this description of the 
behavior of the @,(x) curve is typical for LID and remains 
qualitatively valid for any ratio of the homogeneous to the 
Doppler absorption linewidth.' 

LID is absent in the case of precise resonance (0 = O), 
and the particle drift is then due to the light pressure alone 
(Figs. Ib and c ) .  The drift velocity becomes saturated for 
x %  1 (if AY = 0)  or for x )  l/fl (if Av #O). When Av/ 
2 r ,  < 1, the drift velocity u always points along k, and its 
dependence on the radiation intensity is described by curves 
1, 2, or 3 (Fig. lb),  depending on the sign of Av. When 

FIG. 1. Drift velocity as a function of radiation intensity: (a )  LID effect, 
P = 0.1; ( b )  radiation pressure effect for Av/2Tl < 1 .  Curve I-Av/ 
v = - 0.1, Av/2T, = - 1 ,  fi = 1/21, 2-Av = 0, 3-Av/v = 0.1, Av/ 
2T, = 0.5, P = 1 / 1 1 ;  ( c )  radiation pressure effect for Av/2T, > 1 ,  Av/ 
v=O. l ,  Av/2rI = 1.5 ,P= 1/31. 

Av<O, the velocity u is found to increase with increasing x, 
whereas, for Av > 0, the drift velocity reaches a maximum at 
x = x,, and then decreases. The latter effect is due to the 
fact that negative radiation pressure becomes significant5 for 
Av > 0. When Av/2r1 < 1, this pressure partially cancels the 
usual radiation pressure. On the other hand, the situation is 
qualitatively different when Av/2I', > 1 (see Fig. lc) ,  and 
the drift velocity u then points along k for small x. However, 
as the intensity increases, the usual light pressure is exactly 
cancelled by the negative light pressure at the point 

i.e., the drift is shut off. A further increase in x is accompa- 
nied by the drift of absorbing particles5 in the direction anti- 
parallel to k. 

Let us consider separately the special cases of small 
(optically thin medium) and large (optically dense medi- 
um) changes in drift velocity across the clump. 

For the optically thin medium, the radiation intensity 
and, consequently, the drift velocity varies little from one 
end of the clump to the other. Let us suppose that R#O, i.e., 
LID is the predominant effect and the dependence of the 
drift velocity on x is determined by the function a,(%) (Fig. 
la) .  We shall see presently that the cases ( 1 ) k*u > 0, x,<x, 
and (2 )  k.u < 0, x, > x, correspond to the same evolution of 
the particle cloud (x, is the saturation parameter for radi- 
ation entering the clump), whereas (3)  k-u < 0, x , < ~ ,  and 
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(4 )  k-u > 0 ,  x0 > x ,  are associated with a different type of 
evolution. 

In case ( 1 ), the particles drift parallel to k and the drift 
velocity decreases across the clump, i.e., the trailing edge 
drifts faster than the leading edge (indicated by the arrows in 
Fig. 2a). When the difference between the drift velocities of 
the two fronts, ( A u ( ,  is initially greater than the diffusion 
spreading velocity udif  - D / a  ( a  is the characteristic width 
of the clump), the trailing edge will catch up with the leading 
edge. The compression of the particle clump continues until 
the drift compression is balanced by diffusion spreading, i.e., 
until I Au / - D / a .  It follows that the shape and width of the 
particle clump will become stabilized after a finite time, and 
will then propagate in the form of a solitary wave, with the 
width remaining smaller than the original width of the 
clump. It will be shown below (see Section 4 )  that, in an 
optically thin medium, all the absorbing particles accumu- 
late in the solitary wave. The characteristic size af of the 
resulting solitary wave is 

where il is the mean free path of the absorbing particles. 
Also, the time taken to form the solitary wave obviously 
satisfies: 

where a,  is the initial characteristic width of the clump. 
However, when the situation is such that, initially, 

u,,, > 1 Au 1 ,  the clump will initially spread out, reducing the 
velocity udif and, in the final analysis, the cancellation of the 
diffusion spreading by drift compression. This results in the 
formation of a solitary wave of width af (2.4) that is larger 
than the initial clump width a,. The evolution time is 

When u,,, - / Au / at the initial instant of time, the initial 
parameters of the clump will obviously change little during 
this process. 

In case (2 )  (k-u < 0 ,  x ,  > x ,  ), the clump drifts in the 
direction opposite to that of k, and the drift velocity of the 
leading edge is less than that of the trailing edge, just as in 
case ( 1 ) (indicated by the arrows in Fig. 2a). It follows that, 
here again, the shape and width of the drifting clump of par- 
ticles are stabilized. 

In the cases (3)  (k.u<O, x , > x , )  and ( 4 )  (k.u>O, 
x ,  > x ,  ), the drift velocity of the leading edge is greater than 
that of the trailing edge (see Fig. 2b), which contrasts with 

FIG. 2. Illustration of the stabilization ( a )  and spreading ( b )  of a drifting 
particle clump. 

cases ( 1) and ( 2 ) .  The gas bunch will therefore spread out 
more rapidly than in the case of ordinary diffusion (with 
velocity udif  + I Au 1 > udif  ) . 

In this situation, when the particle drift is exclusively 
due to the radiation pressure effect (a = 0), the dependence 
of u on x is determined by the function @, ( x )  (Fig. l b  and 
c) .  Proceeding in a similar way, we arrive at the following. 
When Av<O and Av > 0 ,  x ,<x , ,  the shape and width of the 
particle clump become stabilized. On the other hand, when 
Av > 0, x ,  > x ,  , the spreading of the clump is faster than 
that in ordinary diffusion (it occurs with velocity u,,, 
+ l A u i  > U d ~ f .  

New features arise as we pass from an optically thin to 
an optically thick medium. Let us suppose, for example, that 
the dependence of u on x is described by the function @, (x) 
with A v / 2 r ,  > 1 (Fig. l c )  and that x,> x , ,  xf tf x , ,  where 
xf is the saturation parameter as the radiation leaves the gas 
clump. The particle drift velocity within the clump will vary 
as follows. The drift velocity of the trailing edge (where 
x - x , )  points in the opposite direction to that of k. As the 
radiation intensity decreases inside the clump, the drift ve- 
locity eventually vanishes and then, having changed its di- 
rection, begins to increase, reaching a maximum in the part 
of the clump in which x = x ,  . The drift velocity then falls in 
the direction of the leading edge (where x - xf ). The trailing 
edge (where x > x ,  ) is thus seen to spread out more rapidly 
than in ordinary diffusion. Moreover, the region in this part 
of the clump in which x > x ,  will drift antiparallel to k, 
whereas the region with x < x ,  will drift in the direction of k. 
The front of the clump (in which x < x ,  ) will propagate in 
the form of a solitary wave after a certain interval of time. 
However, this wave will not collect all the particles of the 
initial clump (when x ,<x , ,  the solitary wave will, of 
course, capture all the particles). 

When we analyze the dependence of u on x ,  we readily 
see that, in an optically thick medium, in which 
x ,  > x ,  > x f ,  the original clump partly changes into a soli- 
tary wave both in the case of the radiation pressure effect 
with Av>  0 and in the case of the LID. The only exception is 
the case of drift under radiation pressure for Av<O. In the 
latter case, the solitary wave always collects all the particles 
of the original bunch. 

3. BURGERS EQUATION 

Let us now consider the one-dimensional problem. This 
is valid when the radiation intensity is distributed uniformly 
across the gas-filled cell. The radiation propagates along the 
cell axis (z-axis). The drift of the absorbing gas is described 
by the continuity equation 

where the current of absorbing particles (see Appendix) is 
given by 

and the drift velocity u is given by (2.1 ) and (2.2). Since the 
drift velocity (2.1 ) depends on the radiation intensity, Eqs. 
(3.1) and (3.2) must be supplemented by the equation for 
the radiation intensity, or the saturation parameter4 x ,  
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where r.7 is the photoabsorption cross section. 
The solution of ( 3 . 3 )  is 

In ------ X ( z 9  t ,  + x ( z l  t )  - x,,=--ON ( z l  t ) ,  
xo 

z 

The value x,  of the saturation parameter for z  = - a, is 
independent of time since we are interested in finite times for 
which the gas bunch has not reached the point z  = + a,. 
For the same reason, the particle current will be zero at 
z  = - a, i.e., j (  - co , t )  = 0. This also means that the other 
physical parameters are time-independent at z  = + W .  We 
shall therefore omit the argument t  for z  = + W ,  e.g., we 
shall write 

Since the saturation parameter x ( z , t )  depends on 
N ( z , t ) ,  it will be useful to transform from the density p ( z , t )  
to N ( z , t )  in ( 3 . 1 ) .  Bearing (3 .2 )  in mind, we therefore inte- 
grate (3 .1 )  with respect to z :  

This is a nonlinear equation because u  ( z , t )  is shown by (2.1 ) 
and (3 .4 )  to be a function o f N ( z , t ) .  We have not been able to 
solve this equation in the general case. There is, however, a 
physically important limiting case for which an exact solu- 
tion of ( 3 . 5 )  is available. This is the limit of an optically thin 
medium: 

When this condition is satisfied, the radiation intensity and, 
consequently, the drift velocity depend weakly on N ( z , t ) .  
We can therefore expand u  ( z , t )  in powers of a N ( z , t ) .  To 
first order in the small parameter (3.6), we have 

where we have introduced the velocity jump 

across the gas clump. Expressions for u(  - w ) and a are 
obtained directly from (2.1 ), (2.2), and ( 3 . 4 ) :  

Multiplying (3.5 1 by du ( z , t ) / d N ( z , t )  and recalling that 
d 2 ~ ( ~ , t ) / d ~  2 ( z , t )  = 0  by virtue of ( 3 . 7 ) ,  we find that 

a u ( z 9  t ,  + u ( z ,  t )  w z ,  t )  aLu (z, t )  = D  . (3 .10)  a t az a zZ 

physics. It is clear from ( 3 . 7 )  that an equation identical to 
(3 .10)  is valid for N ( z , t ) .  It is readily seen that the total 
number of particles 

is an integral of (3 .10) .  
Using the Cole-Hopf transf~rmation*.~ 

we can reduce the Burgers equation (3 .10)  to the diffusion 
equation 

The solution of this equation, subject to the initial condition 
s 

where we have introduced the drift velocity of the center of 
gravity of the absorbing particles, u, , and the coordinate z,  
in the center-of-gravity system: 

The solution given by (3 .15)  enables us to find the drift ve- 
locity (3 .12)  and the density distribution of the absorbing 
gas: 

It is important to note that ( 3 . 8 )  and (3 .17)  were used to 
obtain the expression for u, given by (3 .16) .  

4. EVOLUTION OF A SINGLE PARTICLE CLUMP 

Before we investigate the propagation of an individual 
clump of absorbing particles, let us examine the behavior of 
the solution of (3 .10)  for large t .  The solution given by 
(3 .15)  contains three time scales, namely, 

This is the well-known Burgers equation8.%f shock-wave where a is the characteristic scale of the density gradient. If 
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we have a sufficiently narrow initial distribution of absorb- 
ing particles with effective size a,, such that 

then, 

When (4.2) is valid and 

the solution given by (3.15) assumes the following asympto- 
tic form: 

Let us express this integral in terms of the error integral 

and transform in (3.12) and (3.17) to the dimensionless 
variables x and T :  

In the frame in which the center of gravity of the bunch is at 
rest, we then have the following expressions for the drift 
velocity u l ( x , r )  and density p ( x , r )  of the absorbing parti- 
cles: 

u' (5, z)/u,=[ ~ ( x ,  T )  -u,llu,=a(l-Q)I(i+Q), 

where 

It is clear from (4.1) and (4 .4)  that (4.5) and (4.7) 
become exact as a, -0,  i.e., for a 6-function initial condition 
[see, however, the explanation of (A3 ) ] : 

p ( z ,  0 )  =N6 ( z - f )  , N=p,a,n'". (4.9) 

Let us examine our solution in greater detail. I t  is im- 
portant to note the symmetry property of the asymptotic 
expression (4.7) 

which is exact for all T,  provided the initial distribution is 
symmetric, i.e., provided p (z,O) = p ( - z,O). The value of 
u' andp  at  the center of gravity of the bunch is an important 
parameter of (4 .7 ) :  
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2 exp ( - ~ a ' / 4 )  
uf(O,T)=O, p(O,.c)=- a +  

41 [ (nz)"( l+erf (r 'a /2)  ) 

(4.11) 

When 7a2/4 < 1, the clump amplitude 

increases without limit as T-0. This behavior of the density 
distribution is explained by the fact that, as is clear from 
(4.1 ) and (4 .4 ) ,  the limit as r - 0  corresponds to a 6-func- 
tion initial distribution (4 .9) .  As time increases, the clump 
density p ( 0 , ~ )  begins to depend strongly on the sign of a. In 
fact, it follows from (4.11 ) that 

2 y I,,. a=o, 

The case a = 0 corresponds to ordinary diffusive ( 1 / r 1 I 2 )  
spreading of the drifting particle clump. If the drift velocity 
increases over the thickness of the gas clump, the velocity 
jump Au is negative, i.e., a <O. The trailing edge of the 
clump then lags behind the leading edge, and the initial dis- 
tribution spreads out more rapidly than in the case of ordi- 
nary diffusion, and follows the drift law 1 / r .  The reduction 
in the drift velocity from one side of the clump to the other 
( a  > 0 )  signifies that the trailing edge of the clump must 
catch up with the leading edge. However, diffusion will en- 
sure that the clump shape will be stabilized, and its maxi- 
mum density will tend to a constant value (see Fig. 3 ) .  A 
detailed qualitative picture of the drift spreading and com- 
pression of a particle clump is given in Section 2. 

I t  follows directly from (4.7) that the solitary wave 

will evolve out of any initial distribution for a > 0. This dis- 
tribution was first obtained by KuSEer and Nienhuis" for 

FIG. 3. Particle clump amplitude as a function of time: T = uf t /D. Curve 
1-a = 0.5; 2--a = 0; 3--a = - 0.5. 
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FIG. 4. Evolution of a single particle clump. The width a, of the initial 
distribution is less than the width D / A u  of the solitary wave: solid curve- 
a = 0.5; dot-dash curve-a = 0; dashed curve-a = - 0.5. 

the LID effect under weak-field conditions. 
Figure 4 shows the time-dependence of the density of 

the absorbing particles, calculated from (4.7). This figure 
and (4.7) correspond to the limit of a narrow initial distribu- 
tion (4.2). Comparison of (4.14) with (4.2) will readily 
show that we have examined the situation in which the width 
of the initial distribution a, was smaller than the width D / 

/ Au / of the solitary wave (4.14). 
Figure 5 shows the evolution of the solitary wave when 

its width D /IAul is smaller than the width a, of the initial 
distribution. The calculations were based on (3.12) and 
(3.17) with the Gaussian initial distribution 

P (2, 0) = p o  exp (-z21aoz), (4.15) 

for which the function $(z,t) in (3.15) is given by 

+ exp (-$/a,') - 1 
X 8 ~ t  (4.16) 

It is clear from Fig. 5 that, when a > 0, the Gaussian 
distribution (4.15 ) shrinks and deforms into the solitary 
wave (4.14). The question is whether it is possible to choose 
an initial distribution p(z,O) that will remain unchanged 
during the particle drift process. The answer to this question 
is that this is possible. When a > 0, (4.14) is a distribution of 
this kind (see also Section 6).  The Gaussian distribution 
(4.15 ) with a, = 8 0  /T''~Au will also exhibit a very small 
change. 

To conclude this Section, we note the following impor- 

FIG. 5. Evolution of a single particle clump. The width a, of the initial 
distribution is greater than D/Au  of the solitary wave, a = 0.1; u,a/ 
2D = 50; t ' = tAu/a,. Curve 1-t ' = 0; 2-t ' = 1 ;  3-t ' = 2; 4-4 '> 10. 

tant point. It follows directly from (4.14) that the area un- 
der the solitary wave is equal to N (3.1 1 ). In other words, for 
an optically thin medium (3.6) with u (z,t)/N(z,t) #O, the 
solitary wave captures all the absorbing particles. It is clear 
that this result does not follow from particle number conser- 
vation ( N  = const). It was shown in Section 2 that the only 
possible situation is that involving the partial capture of par- 
ticles by the solitary wave. The remaining particles that are 
not confined by the radiation are then found to spread out 
along the entire length of the cell. 

5. SIMULTANEOUS PROPAGATION OF TWO PARTICLE 
CLUMPS 

Let us consider the evolution of two clumps of absorb- 
ing particles 

whose centers of gravity at t = 0 lie at T, and 2,. We shall 
assume that the distance L = Z, - 5, between the centers of 
gravity of the clumps fort = 0 is much greater than the char- 
acteristic width a, of the individual clumps. The initial dis- 
tributions p,  (z,0) and p,(z,O) will be assumed to be suffi- 
ciently narrow to ensure that (4.2) is satisfied. It can be 
shown that, when t$a;/D, the solution (3.15) of the 
Burgers equation subject to the initial condition (5.1) has 
the following asymptotic form: 

21j (2, t )  = 1-erf *'-tu- ) ] ex" - %( 2 - +) } [ ( a t ) '  -- 

Z,Au,S-Z2Au, f (2-tu+/2) U ,  
x exp {- 

2 0  

where 
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FIG. 6. (a)  Drift velocity u(z,r) as a function ofz for (3.6);  L ,a,, 5> 0. 
(I )  t = 0; (11) t % L / A u .  (b) Analogy with the collision between two 
shock waves. 

The physical significance of the drift velocities 

in (5.2) can readily be understood by examining Fig. 6a. The 
drift-velocity jumps Au,, Au,, and Au, introduced in (5.4), 
and shown in Fig. 6a, are defined by 

They are the velocity jumps across the first, second, and the 
two clumps together, respectively. 

Let us begin with the case 

This corresponds to the situation where the widths of the 
two solitary waves, D /Aui, are small in comparison with L. 
In other words, for times in the range 

we can speak of the evolution of individual clumps of the 
form (4.14) that have not as yet collided with one another. It 
is clear that, so long as (5.7) and t s a i / D  are satisfied, the 
density distribution p(z,t) takes the form of the sum of the 
two nonoverlapping distributions [ p ,  (z,t) p,(z,t) = 01 

P(Z, t)=pt(z, t)+pz(z, t) ,  (5.8) 

whose shape is described by (4.14). However, the centers of 
gravity of each of the clumps, Zi ( i  = 1.2), and the param- 
eters 

that appear in (4.14) are then different for the two distribu- 
tions p ,  (z,t) and p,(z,t). By analogy with (3.16), we can 
readily show that 

uCl= (u-+u) /2=u--Au,/2, u,,= (u+u+) /2=u++Au2/2. 

(5.10) 

It is clear that a new solitary density wave (4.14) will arise 
after the two clumps collide [this follows from the exact 
solution (5.2)] for which the parameters of the center of 
gravity are 

The single-wave situation described by (4.14) and (5.10) 
occurs for times t % L /Au. 

It is appropriate to note here the analogy with the colli- 
sion of two shock waves. It is clear from (5.10) that, prior to 
collision between the clumps, their velocities uCi are equal to 
the half-sum of the drift velocities before and after the clump 
pi (z,t). The result of the collision is that the particle clumps 
coalesce and the resulting single clump propagates with ve- 
locity u, equal to the half-sum of the drift velocities before 
the first clump, u -, and after the second clump, u + (see Fig. 
6b). The amplitude of the resulting clump p(0,t) = AuN/ 
8D is then greater than the amplitude of the initial clumps 
pi (0,t) = Aui Ni /8D, and its width D /Au is smaller than the 
width D /Aui of the initial clumps. It follows from Fig. 6b 
that the two solitary waves coalesce into one at time t * at the 
pointz*. These quantities are given by the following approxi- 
mate formulas: 

As indicated in the derivation of (5.2), this formula is 
asymptotic (t)a:/D). It is important to note that (5.2) is 
the exact solution of the diffusion equation (3.13) for S- 
function initial distribution 

The expressions for u (z,t) and p(z,t), deduced on the 
basis of (5.2), are relatively complicated and we shall there- 
fore confine our attention to the special case 

Using this condition, we find that the formula for the drift 
velocity can be obtained from (5.2), (3.12), and (3.17) in 
the form 

and the density of the absorbing particles is 

+ N E 
2A (nz) '" [ e x ~ ( r ' ) + ~ { e x p ( - b ~ ) - e r p ( f ) ) ] ,  (5.16) 

where 
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FIG. 7. Evolution of two particle clumps: LAu/D% 1 ,  r = uf t / D ,  L / 
I = 200, 1 = D /u ,  , a = Au/Zu,. Solid curve-a = 0.1, dot-dash curve 
a = 0, dashed curve--a = - 0.1. 

A=i-R+?B+E (F-B), R=erf (r), 

F=erf (f) ,  B=erf (b), 

The remaining quantities in (5 .15 )  and (5 .16 )  are given by 
( 5 . 1 1 ) .  

Figure 7 shows the results of calculations based on 
( 5 . 1 6 ) .  The special case a = 0 corresponds to the usual dif- 
fusive spreading of the two clumps that are at rest relative to 
each other in the frame in which the center of gravity is at 
rest. When a = 0 ,  the second clump lags behind the first. In 
this situation, the two clumps "repel" and spread out by 
diffusion. When a > 0, the velocity of the second clump is 
greater than that of the first, and the former catches up with 
the latter. The clumps collide and coalesce. The collision 
results in a single clump ( 4 . 1 4 ) ,  which is narrower and has a 
higher density. Its area is equal to the sum of the areas of the 
initial clumps. Figure 7 demonstrates the qualitative differ- 
ence between the collision of clumps (for a > 0 )  and the col- 
lision of ordinary  soliton^.^.^ In contrast to solitons, which 
collide perfectly e l a~ t i ca l l y ,~~~  the collision between the soli- 
tary waves considered here is perfectly inelastic. 

6. THE CASE C9~(2,t)/C9N(z,t)=O 

So far, we have confined our attention to the situation 
where du ( z , t ) / d N ( z , r )  # O .  The case in which 

is more complicated, but it, too, is amenable to quantitative 
analysis, at least partially. To investigate the state defined by 
( 6 .  I ) ,  it is convenient to rewrite ( 3 . 5 )  in the frame of refer- 
ence moving with constant velocity u: 

Expanding u  ( g , t )  in a series in powers of the small param- 
eter ON ( 3 . 6 ) ,  retaining only the first nontrivial term in this 
expansion, and using (6.1 ), we obtain 

where the expression for Au is reproduced below for the LID 
effect alone: 

Equations ( 6 . 2 )  and ( 6 . 3 )  cannot be solved in the gen- 
eral case. However, the situation is significantly simplified if 
we seek a solution in the form of a traveling wave 
N ( g , t )  = N ( 6 ) .  From ( 6 . 2 )  and ( 6 . 3 ) ,  we then have 

X(5) =N exp {p(E-E0)/2)/[2+exp (P(E-Eo) )I1". ( 6 . 5 )  

Hence, using ( 6 . 3 ) ,  we can readily show that 

where 

1 (NIN (0) ) '- 1 
&--l.{ P 2 

The formulas given by ( 6 . 6 )  become meaningless when 
p < 0 ,  as can be seen from the expression forp ( l ) .  This is so 
because the state withp < 0  corresponds to the situation [see 
( 6 . 3 )  1, in which the trailing edge of the particle clump 
moves more slowly than the leading edge. The initial clump 
then spreads out [ p ( 6 , t )  -0 for t -  cc ] and a stable struc- 
ture, such as ( 6 . 6 ) ,  is not produced. If, on the other hand, 
p > 0, the trailing edge of the clump catches up with the 
leading edge and the solitary wave ( 6 . 6 )  is produced. 

It is important to note that the form of the clumpp (J ) ,  
given by ( 6 . 6 ) ,  is not the same as ( 4 . 1 4 ) .  In contrast to 
( 4 . 1 4 ) ,  the distribution ( 6 . 6 )  is asymmetric (see Fig. 8 )  
and, as can be seen from ( 6 . 5 ) ,  the area of the clump, N (  cc ), 
is equal to N.  It follows that all the absorbing particles are 
trapped in the solitary wave ( 6 . 6 ) ,  as they are in the solitary 
wave (4 .14 ) .  

Clearly, the initial distribution p (z ,O) = p ( z )  with 
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FIG. 8. Shape of solitary wave for 6'u(z, t ) /dN(z, t)  = 0; a = 0.1. 

p > 0 and the functionp(z) given by (6.6) drifts with veloc- 
ity u without changing its shape. Any other initial distribu- 
tion will be deformed forp > 0 in the course of the drift pro- 
cess and will go over to (6.6) only as t+  m. Thus, a 
sufficiently long cell is necessary if the distribution (6.6) is 
to be recorded (see Conclusion). 

7. EFFECT OF THE RADIATION AND MEDIUM PARAMETERS 
ON THE EVOLUTION OF THE PARTICLE-DENSITY 
DISTRIBUTION 

The formulas given by (4.14) and (6.6) show that the 
amplitude ( - Au) and width (D  / I  Au I ) of the solitary wave 
are determined by the drift velocity jump Au, described by 
(3.8), (3.9), and (6.4). When du(z,t)/dN(z,t) ZO, the de- 
pendence of the width and amplitude of the solitary wave on 
the radiation intensity is determined by G and G - I ,  respec- 
tively. The LID effect is characterized by the following de- 
pendence of the width of the solitary wave (4.14): 

which is shown in Fig. 9. 
The evolution of the density depends on the sign of the 

detuning S1 and on its absolute magnitude IS1 1 .  This is due to 
the dependence of the saturation parameter ?t on Cl I. When 
the radiation is not monochromatic, the drift velocity u (z,t) 
and, consequently, the evolution of the density distribution, 
depend on the shape of the spectrum of the radiation." Here, 
it is also appropriate to note the strong dependence of the 
drift velocity on the radiation intensity in the case of periodi- 
cally pulsed excitation (up to the point where the sign of the 
drift velocity changes2'). This effect can be exploited in ad- 

FIG. 9. Width of solitary wave as a function of radiation intensity. Curve 
1-RAv < 0, 2-RAv> 0; solid curve-p = 0.1; broken curve = 1. 

dition to the influence of the nonlinear evolution of the parti- 
cle-density distribution. 

The dynamics of the evolution of the density distribu- 
tion will also depend on the pressure of both the absorbing 
and buffer gases. By varying the absorbing-gas pressure, we 
can vary the nonlinearity parameter a N  (3.6) and thus en- 
sure a continuous transition from an optically thin to the 
optically thick medium. This transition was shown in Sec- 
tion 2 to introduce additional (so far not fully explained) 
qualitative features in the drift dynamics. The dependence of 
the effects discussed here on the buffer-gas pressure can also 
be understood in the light of the fact that the buffer-gas den- 
sity has a considerable influence on the magnitude of the 
drift velocity and on its sign.5113 In the case of the LID effect, 
the dependence of the direction of u on the buffer-gas pres- 
sure is possible owing to the hyperfine level ~plitt ing. '~ In the 
case of the radiation pressure effect, this dependence is possi- 
ble owing to the negative light pressure effect5 (see Section 
2) .  

Finally, we note the following important point. The 
main parameter governing the dynamics of the evolution of 
the absorbing-particle distributionp (z,t) is the drift velocity 
jump Au. We have calculated the specific form of Au in the 
limit of collisional broadening r kiS. However, in principle, 
the parameter Au can be found for an arbitrary ratio of the 
collisional ( T )  to Doppler (k*v) absorption linewidths (for 
example, in the model of strong collisions7 or for the Keil- 
son-Storer collision integralI4). Up to the stage at which Au 
is calculated, our theory is valid for any ratio of l? and kc. 

8. CONCLUSION 

Let us now examine the possible experimental detection 
of the effects discussed above. We shall confine our attention 
to an analysis of the conditions for the appearance of the 
solitary wave (4.14). We shall consider the case where the 
width a, of the initial distribution p(z,O) is less than the 
width D / I  Au I of the solitary wave (4.14): 

In this expression, I,, - l/ap, and I = D /u, are, respec- 
tively, the photoabsorption length and the effective thick- 
ness of the layer in which the absorbing particles are com- 
pressed under the influence of the LID phenomenon. When 
a, < D / I  Au 1, the initial distributionp (z,0) is deformed into 
the solitary wave (4.14) in a time 

It is readily shown from (8.1) that, in the time (8.2), the gas 
clump will drift over the distance hz = tu, )Iph . For the D- 
lines of alkali metals, a- 10-l2 cm2. When a,- 10" ~ m - ~ ,  
this photoabsorption cross section corresponds to I,, -- 1 
cm, The solitary wave (4,14) is thus seen to succeed in evolv- 
ing in a cell of length of the order of Az- 10lPh - 10 cm. 

Experimental studies of the LID phenomenon in sodi- 
um ~ a p o r ~ * ' ~ - ' ~  have confirmed the existence of the two ef- 
fects that weaken LID to a greater or lesser extent. They are 
physical adsorption of alkali metal vapor by the cell 
 wall^'^.'^ and loss of alkali metal atoms due to chemical 
binding of these atoms to chemically active 
The first of these was practically completely excluded by 
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using special coatings on the cell We must now 
estimate the contribution of the second effect, which can be 
formally taken into account by adding the terms N(z,t)/ro 
(Ref. 17) or u(z,t)/ro to the left-hand side of (3.5) or 
(3.10). When the gas-filled cell is carefully freed from harm- 
ful impurities, one can readily obtain an alkali metal atomic 
vapor lifetime rO - 1 S. The necessary condition for observing 
the solitary wave is that the effective length Az- 101,, over 
which the solitary wave evolves not exceed the length of the 
region in which the alkali metal atoms are present ( - u, r,), 
i.e., Az < u, r,. The value u, - 1000 cm/s was achieved in the 
experiment with sodium vapor,"rom which we find that 
ucrO-lOOOcm>Az-10cm. 

It is our pleasant duty to thank S. N. Atutov, A. E. 
Bakarev, S.P. Pod'yachev, and A. M. Shalagin for valuable 
suggestions and help with this research. 

APPENDIX 

The matrix elements of the densitiesp, ( u )  =pii ( u )  and 
p,,(u) in the two-level absorbing gas obey the following set 
of equationsI4: 

wherep(u) =p,(u) + p ,  ( u )  and the subscripts 0 and 1 re- 
fer, respectively, to the ground and excited states of the ab- 
sorbing particles. In the limit considered here ( pgp , ,  
where pb is the buffer-gas density), S, ( u )  is the collision 
integral for particles of type i = 0, 1 and buffer-gas particles. 
The integral operator 

describes the recoil effect in the spontaneous decay of the 
excited state. 

In this paper, we have been concerned with the macro- 
scopic properties of the absorbing gas as a whole, namely, 

which remained practically constant over microscopic times 
I?;', Y-I, and T-I. This enabled us to neglect the time de- 
rivative in the first and second equations in (A  1 ). In the case 
of collisional broadening, I? > kE and, if we use the simplify- 

ing assumptions T,  < r, Avgv, we obtain4 the following hy- 
drodynamic equations from (A  1 ) : 

In this equation, u is the drift velocity (2.1 ) and D = ii2/2v is 
the diffusion coefficient. The last term in the expression for 
the current density j describes the diffusional injection or 
extraction of particles into the light beam.'' We shall not 
take this term into account, which is valid whenever the 
characteristic scale a of the spatial gradient satisfies the in- 
equality 

This scale must be understood as the smaller of the two 
quantities a, and af, where a, is the initial longitudinal size 
of the gas clump and a, is its final size, -D/lAul (see 
(4.1411. 
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