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The evolution of electron current in a thin plasma sheet located in a vacuum is discussed. It is 
shown that the nonlocal nonlinear integro-differential equation that describes this process 
admits of an exact analytic solution. 

Studies of electron magnetic hydrodynamics (EMH) 
(MHD electron flows against a stationary ion background) 
have revealed in recent years a number of nontrivial effects 
associated with the evolution of the magnetic field in the 
plasma, namely, penetration of the field into the region for- 
bidden by the usual skin-effect theory,' stabilization of neck- 
ing instability of the z-pinch,' restricted generation of the 
electric field due to the thermal emf,3 decay of the initial 
perturbation of B into individual v~ r t i c e s ,~  and so on. How- 
ever, as a rule, all these treatments have been confined to the 
two-dimensional slabs (x,y) or cylindircal (r,z) situation 
with a single magnetic-field component (B, or B, ), whereas 
the essentially vector nature of the EMH equations suggests 
there should be a considerable difference between the gen- 
eral three-dimensional and the degenerate two-dimensional 
cases. It is therefore desirable to look for analytically solua- 
ble three-dimensional models. 

A possible candidate for this is the flow of electrons in a 
thin layer (sheet) of plasma in a vacuum. This pseudo-two- 
dimensional situation (the magnetic field is essentially 
three-dimensional) is not only methodologically valuable, 
but may serve as a qualitative analog of a semi-infinite plas- 
ma for which the interaction between currents through the 
vacuum magnetic field is also significant. 

Thus, let us suppose that the z = 0 plane contains a plas- 
ma sheet of small thickness S - 0, but finite "surface" density 
N-nS ,  conductivity 2 -06, and current density J-jS. The 
EMH equations inside the layer can be written in the stan- 
dard form14 

1 j dB 
E=-[jxB]+-, -=-ccurlE. 

nec a d t  
(1) 

We are mostly interested in the z-component of the 
magnetic field frozen into J (for Z = m ) :  
B, (x,y,O) rb (x ,y )  (because the sheet is thin, i.e., S <6,,, or 
S <c/w,, , the tangential components of B are not frozen into 
the current'v4). If the bulk characteristics n, a ,  and j of the 
electron flow have no gradients along the z-axis inside the 
plasma layer (the tangential components would otherwise 
begin to transform into the normal components of B and vice 
versa), then, in the two-dimensional equation forb that fol- 
lows from ( 1 ), we can replace bulk characteristics every- 
where with surface characteristics: 

ab e, - = - curl [JXe,]b c J - curl - . 
at Ne B 

The entire information on the latent three-dimensional na- 
ture of the problem is contained in the relationship between b 
and J (Biot-Savart law): 

1 I [ J ( r ' ) ~ ( r - - r ' ) l  be, = - 
c lr - 

where the integral at r' = r is taken in the sense of the princi- 
pal value. Actually, we shall have to invert (3),  which is 
readily done by means of Fourier transformations. 

It is therefore clear that the three-dimensional nature of the 
problem is now shown by the nonlocal relation between b 
and J (see Ref. 1 ) . 

1. JET FLOWS 

Let J = J(x)e,, b = b(x) ,  in which case, instead of 
(2),  we have 

db d 1 Ib c d l  -=------ 
dt dy N e X dx ' 

and b and 2 r J / c  are related by the Hilbert transformation 
[cf. ( 3 )  and (4 ) l :  

1 2nJ(x1) 2n 1 (x) 
b(x)=-J n c(xf-x) dzl, = - - I  1 - bb ' )  dx,, 

C n XI-x 
( 6 )  

where the integrals must be interpreted as principal values. 
As an example of this kind of coupling, we may mention the 
functions ( 1 + x2/1 ') ' and (x/l) ( 1 + x2/1 ') - ', or COS(X/ 

I) and sin(x/l), which we shall use below. 
The analog of the usual skin problem follows from (5 )  

and (6)  when N = const. It is readily seen that, in this case, 
any initial distribution b (x)  with A 5 Sb (x)dx # 0 eventual- 
ly evolves to the self-similar solution with Lorentz profile 

The clear singularity of this solution, which distinguishes it 
from the usual skin effect, i.e., the linear dependence of the 
scale I on time, is due to the essentially three-dimensional 
nature of the problem and follows even from the simple esti- 
mate IS - c2t /4ru. 

When N = N ( y ) ,  Eq. (5 )  becomes nonlinear, and the 
magnetic field is significantly transported by the currentIv2 
(in this particular case, the nonlinearity has a peculiarly 
nonlocal character). In order to emphasize the difference 
from the paper cited above still further, which ensues from 
the geometry of the problem, let us begin by considering the 
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linear limit of (5), when we can substitute b = B = const 
(strong external field) and Z = oo on the right-hand side, 
which correspond to the usual drift oscillations of the plas- 
ma. Because of its specific dispersion (w -sign k, dw/dk - 0 
for k #O), the drift oscillations on the plasma plane do not 
propagate, which leads to the characteristic "flicker" of the 
initial perturbation bo(x) : 

' I bo"l? dx' sin (pBt) , b=b, (x) cos (pBt) 4- - - 
n x-x 

Here and below, we shall neglect the function p(y) ,  
which is valid for a /ayga  /ax and is definitely valid when 
N- (y +yo) - '. Nonlinear effects still ensure that the b pro- 
file is brought into motion but, in contrast to the usual planar 
situation,'.' this motion occurs without "breaking," which is 
clear even from the following special soliton-like solution 
(5)  (B = oo ): 

i.e., the nonlocal nonlinearity has dispersive properties as 
well. 

The equations describing the dynamics of the magnetic 
field on the plasma plane, i.e., (5 )  and (6),  have a complete 
analytic solution despite their nonlinear integro-differential 
character. All we need to do is to consider the complex plane 
and look upon x as a complex quantity. According to (6),  b 
and 2n-J/c are related similarly to the way in which the real 
and imaginary parts of generalized susceptibility5 are related 
(cf. the Kramers-Kronig relations), so that we can intro- 
duce the function w = b + i 2 ~ J / c ,  which is analytic in the 
upper half-plane of x. Equation (5)  and the other equation 
for J ,  deduced from (5)  by applying the Hilbert transforma- 
tion, can be combined into a single equation for w: 

the integration of which over the characteristics is a trivial 
matter. Analysis of the different solutions of ( 7 )  leads to the 
conclusion that there is a hierarchy of nonlinearities and 
diffusion, which is essentially different from the usual planar 
case. ' When the problem is completely homogeneous in z, 
the local nonlinearity is necessarily balanced by the local 
dissipative term in the course of time; the steepening of the 
magnetic-field profile unavoidably leads to a higher rate of 
diffusion. In this particular geometry, this is generally not 
the case: there are regimes in which dissipation is always 
small, despite the increase in the derivatives of b, e.g., in the 
case of the explosive contraction of the current, described by 

where A < - v/p, i.e., for a sufficiently large current pro- 
duced by the motion of electrons toward regions of higher 
density. 

2. VORTEX FLOWS 

Let us now suppose that N = const and B = m, but that 
the flow of electrons over the plane; is arbitrary. In the usual 
planar geometry, the equation analogous to (2) then degen- 

erates to the identity 5'Bz/atr0 (Refs. 1 and 4), and any 
current distribution is stationary. In our geometry, because 
of a different relation between the incompressible current J 
and the frozen-in quantity b (J-V) b$O, the stationarity con- 
dition 

curl [ JxeJ b=O 

is no longer trivial. Using (4) ,  we can rewrite this in the form 

(r') a?rl=F ( b )  , Jm 
where F is an arbitrary function. In particular, all circular 
vortices b = b(r) ,  J =  J(r)e,  are stationary. In other 
words, in this pseudo-two-dimensional geometry, and in 
contrast to the cases examined in Ref. 4, interesting station- 
ary solutions exist even when we neglect the electron inertia, 
which is omitted in (1 )  (this is valid when 1 % ~  = c2/ 
Ri, , a %  = 4n-Ne2/m). A further characteristic feature of 
pseudo-two-dimensional vortices is that they are nonlocal: 
the magnetic field due to the current J, , which is bounded in 
r, penetrates into the vacuum and falls off at infinity only as a 
power law as a-0. This is a situation similar to Debye 
screening in a plane plasma layer.6 

When the dynamics of b is investigated, it may be useful 
to identify the class of stable solutions whose analysis is par- 
ticularly simply performed in terms of the integrals of mo- 
tion, which, in turn, following Lamb, are conveniently writ- 
ten in terms of frozen-in quantities (in the present case, b) .4,7 
There are four such integrals, namely, energy, momentum, 
angular momentum, and the frozen-in integral (cf., Ref. 4):  

= const j J (') ( r f )  ( ~ r  h r r ,  I r-r' 1 

where A is the vector potential of B and F is an arbitrary 
function. 

Analysis of (8) show that circular vortices with d J b  J/ 
dr<O are stable. They have maximum energy Z? and mini- 
mum magnitude of the angular momentum M, for constant 
I; stable additional pairs of vortices with different signs of b 
are also p~ss ib le .~  

Vortex flows can also be generalized to the situation 
where the electron inertia is significant (for 1 5  a ) ,  in which 
case J contains the frozen-in quantity w = b + mce, 
curl J/Ne. All that needs to be done in the integrals of 

motion (8)  is to replace b with w ,  and the charge interaction 
potential in the expression for with Ho(r /a)  - No(r/a), 
where Ho is the Struve function and No the Neumann func- 
tion. When l g a ,  the relation between the current and the 
quantity (curl J) frozen into it degenerates to a local rela- 
tionship, the system ceases to "feel" its final size inz, and the 
situation reduces to the usual two-dimensional flow of a per- 
fect fluid.4 

It follows that the model we have proposed provides an 
analytic description of the above effects, which is just as 
complete as the simple two-dimensional system, despite the 
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more complicated integral relationship between J and 6 .  On 
the one hand, this enables us to understand in specific cases 
the dependence of EMG effects on the geometry, and, on the 
other, to use this object as an example of a medium with a 
nonlocal nonlinearity for which our exact solution can be 
found. 
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