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The possibility of using magnetic flux compression into infinitesimal volumes by a cylindrically 
symmetric plasma liner to generate ultrahigh magnetic fields is investigated. Self-similar 
solutions are obtained for the single-fluid magnetohydrodynamic equations describing 
cylindrically symmetric plasma singular compression with a frozen-in axial magnetic field. It is 
shown that compression of the magnetic field in plasma can result in much high amplitudes of 
the magnetic field (for given kinetic energy of the plasma sheath) as compared with isotropic 
singular compression. 

1. INTRODUCTION 

Existing  estimate^"^ and the results of early experi- 
m e n t ~ ~ ' ~  suggest that the use of hollow plasma sheaths as 
liners for magnetic field compression is the only way of ad- 
vancing to the next range of ultrahigh magnetic fields, i.e., 
fields between 20 and 100 MG, using existing laboratory 
techniques. 

The zero-dimensional model, i.e., the so-called snow- 
plow model, in which the liner is assumed to be a thin, per- 
fectly conducting shell, provides a qualitative description of 
the dynamics of a plasma liner together with an initial mag- 
netic field . This approach can yield simple qualitative esti- 
mates. The magnetic flux in the interior of the liner is con- 
served, and the liner is compressed under the influence of the 
azimuthal magnetic field B, = 2I(t)/cR ( t )  due to the axial 
current I ( t )  flowing through it (i.e., the liner is compressed 
by a Z pinch). It may be ~ h o w n ~ . ~  that the compression re- 
gime in this model is determined by the values of the follow- 
ing two dimensionless parameters: 

where R, and B, are the initial values of the radius of the 
liner and the axial magnetic field in its interior, p is the mass 
per unit length of the liner, I,,, is the current amplitude, and 
t,,, is the current rise time. The relative radial compression of 
the liner S = Ro/R and the corresponding axial field ampli- 
tude By = B,S2 increase with increasing b. For finite current 
pulse lengths, each value of b has an optimum value of a, i.e., 
liner mass p per unit length, for which the compression of 
the axial magnetic field is a maximum. Thus, for a sinusoidal 
current pulse, the optimal value a E 4  corresponds to the 
compression range Bf = 100Bo - 400B0. This optimum 
compression occurs at time t , =  l.lt,. For the optimum 
choice of the mass per unit length, the sinusoidal current of 
amplitude I, that compresses the axial magnetic field is 
only a few percent less effective than a constant current 
I = I,,, turned on at t = 0. 

The zero-dimensional model leads to the following esti- 
mate for the maximum axial magnetic field compressed by 
the liner in the case of optimum compression: 

We thus obtain a scaling that determines the liner current I 
necessary to generate a magnetic field Bf for a fivefold com- 

pression to final radius Rf, and the corresponding energy 
loss: 

I= (23 MA) (Rf/ l  mm) (Bf/lOO MG), (3)  
E z  ( 6  MJ/cm)(Rf/l mm)2(~ f /100  M G ) ~ .  (4) 

These sample model estimates are confirmed by exact 
analytic solutions for compression dynamics in a diffuse, 
hollow Z-pinch in a longitudinal magnetic field.2 These solu- 
tions belong to the class of so-called self-similar solutions 
with uniform deformation, and describe uniform isotropic 
compression of plasma together with magnetic field, without 
energy redistribution among the plasma particles. During 
this compression, the wall thickness of the initially thin hol- 
low plasma liner remains small compared with its radius. 
The scaling formulas, based on the self-similar ~o lu t i ons ,~ .~  
are therefore identical with (3)  and (4 ) .  

Although for sufficiently small values of the parameter 
b we can formally allow values of the radial compression S 
and final magnetic field that are as large as desired, these 
quantities actually have upper bounds imposed by the insta- 
bility of the cylindrically symmetric implosion. In Z-pinch 
compression, we usually have 8-8-10, but it has been 
shown in Refs. 3 and 6 that an axial magnetic field will stabi- 
lize the compression of the plasma sheath of the Z-pinch, so 
that a stable 12-15-fold compression is observed. In the sta- 
ble compression process, the main limitation for given S is 
the presence of a "turning point" for the infinitesimal com- 
pression regime, since the pressure due to the axial magnetic 
field inside the plasma liner increases as R ( t )  -4, i.e., more 
rapidly than the plasma pressure [ - R ( t )  - 2 Y ,  where y < 2 is 
the adiabatic exponent] and the pressure due to the axi- 
muthal magnetic field compressing the liner [ -R ( t )  -2] .  

Moreover, singular implosive compression regimes are 
known in hydrodynamics, e.g., axial convergence of shock 
waves, the collapse of hollow shells, and so on (see Ref. 7) ,  
in which the pressure rises without limit near the point of 
maximum compression. The infinite increase in the energy 
density in the cumulation process is due to the fact that the 
volume in which the energy is confined decreases more rap- 
idly than the energy supplied to it. When the Reynolds num- 
ber is high enough, viscous dissipation does not then restrict 
singulars compression.' It has been argued that the instabili- 
ties that arise during compression can destroy cylindrical 
symmetry while retaining axial symmetry, i.e., singular 
compression is again unrestricted. Experimentally, one ob- 
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serves stable tenfold compression in cylindrical singular 
compressive implosion of a gas (see, for example, Ref. 8) .  
This means that, when the pinch current is suitably distrib- 
uted, it is possible to achieve ultrahigh compression of the 
magnetic field in which the magnetic field initially rises as 
R ( t )  -' during uniform compression by the thin plasma lin- 
er, followed by singular compression in which the magnetic 
field rises as R ( t )  -" (it will be shown below at a < 1 ). The 
physical conditions for the latter compression stage require a 
plasma flow in which the energy introduced into the plasma 
volume is concentrated in the axial region. In this paper, we 
shall use examples of exact self-similar solutions of the mag- 
netohydrodynamic equations to demonstrate the possibility 
of compression of the magnetic field by the implosion of 
plasma liners, and will describe their principal properties. 

2. FORMULATION OF THE PROBLEM 

The singular compressive flows in which we are inter- 
ested are described by the equations of ideal magnetohydro- 
dynamics of single-fluid single-temperature plasmas. Let us 
direct the z-axis along the magnetic field, and write these 
equations in terms of cylindrical coordinates in the case of 
cylindrically symmetric radial motion. The equations of 
continuity, induction, adiabaticity, and motion are 

dT dT ~a 
-+u-S(y-I) -- (ru) =O, 
at ar r dr 

where n is the particle number density of the plasma 
(n = n, = ni ), u is the radial component of the plasma ve- 
locity, B is the axial component of the magnetic field, 
p = mi n is the mass density of the plasma, T is the plasma 
temperature in energy units ( T  = T, = Ti ), P = 2nTis the 
pressure, and y is the adiabatic exponent (all numerical cal- 
culations were performed for y = 5/3). 

To obtain the self-similar solutions, we write each of the 
variables as the product of a power function of the dimen- 
sionless compression a ( t )  = R (t)/Ro and a function of the 
self-similar coordinate f = r/R ( t )  [R ( t )  is the time-depen- 
dent spatial scale of the problem and R,E R (t,), where to is a 
fixed, but otherwise arbitrary time) : 

wherex, A, andp  are, for the moment, arbitrary exponents, 
and no, To, and Bo are arbitrary normalizing constants. Uni- 
form self-similar flows are determined by taking the time 
dependence of the compression function in the form 

and the following relation between the indices: 

The self-similar solutions form a two-parameter family 
with independent indices II and X. For our particular range 
of problems, solutions with A > 0 are particularly interesting 
and describe, as can be seen from (13), the unlimited in- 
crease in the compression rate as we approach the collapse 
time t = 0 at which the radial scale R ( t )  tends to zero. The 
exponents A and x are determined by the initial and bound- 
ary conditions in each particular case. For many problems, 
the choice A = x is of special significance and, as can be seen 
from ( 12) and ( 14), the scale of the axial magnetic field does 
not then depend on time. In the analysis of magnetic corn- 
pression and plasma flow in @pinches, this choice of pararn- 
eters in analogous to the choice x = 0 in pure gas-dynamic 
problems, in which the density scale is often taken to be time- 
independent. 7.9 

3. PROPERTIES OF SELF-SIMILAR SOLUTIONS 
DESCRIBING SINGULAR COMPRESSION 

The methods for obtaining and investigating self-simi- 
lar solutions of this class have been described in sufficient 
detail, and we shall not pause here to examine these ques- 
tions (the reader is referred, for example, to Refs. 7, 9, and 
10). We confine our attention to listing the main properties 
of the compressive solutions that we shall study. 

1. In the first instance, we are interested in solutions in 
which singular energy concentration on the axis is not ac- 
companied by a singular mass density. In other words, at the 
collapse time t = 0, the plasma particles remain at finite dis- 
tance from the axis. The corresponding solutions take the 
form of power-type asymptotic profiles of hydrodynamic 
variables at inifinity (r/t--+ co ): 

At the instant of collapse, t = 0, the self-similar profiles are 
wholly of the power type, i.e., they are given by ( 15) for all 
r > 0. 

2. The requirement that the mass, energy, and current 
densities be integrable near the axis at the time of collapse is 
shown by ( 15 ) to lead to the inequalities 

for the self-similarity indicesx and A. Hence, it follows that 
these densities give rise to divergences in the total mass and 
energy per unit length, and also the current, for r +  W .  This 
means that self-similar solutions are meaningful only at fin- 
ite distances from the axis. A solution is naturally cut off on 
the surface of a piston that maintains the compression. This 
can be, for example, a magnetic piston, i.e., the current 
sheath of the 2-pinch, in which the current is confined by the 
skin effect to the outer surface of the plasma liner. The law of 
motion of the piston is determined by the motion of the plas- 
ma particles in the self-similar solution, and is not of the 
power type. We note that singular compression is, in general, 
characterized by "loss of control": if the compression is ini- 
tially maintained by a converging piston, then, after a certain 
time, the law of motion of the piston becomes unimportant 
and, in a finite neighborhood of the axis, the compression 
process reaches the limiting self-similar state. 

3. When the axial magnetic field is present, the phase 
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space of the self-similar problem is no longer two-dimen- 
sional, as in gas  dynamic^,^ and becomes three-dimension- 
al.'' Accordingly, the shape of the spectrum of eigenvalues 
( i l , ~ )  changes, i.e., while in gas dynamics the requirements 
of existence and analyticity of solution can often be used to 
isolate either a unique solution or a discrete spectrum of 
values of il for givenx, here we are dealing with continuous 
eigenvalue spectra of il and x (Ref. 10). The values of the 
similarity indices for which the profiles obtained below be- 
long to these continuous spectra are in no sense special. In 
particular, they cannot be obtained by dimensional analysis 
because we are confining our attention here to the so-called 
self-similar solutions of the second kind (see Ref. 7).  

4. BASIC TYPES OF SELF-SIMILAR SOLUTION 

The solutions examined below describe the asymptotic 
compression of plasma with a frozen-in axial field that takes 
place inertially when the influence of the external pressure 
due to the azimuthal magnetic field of the Z-pinch, acting on 
the periphery of the liner, is no longer significant in compari- 
son with the geometric concentration factor, i.e., conver- 
gence to the axis. 

To construct the required solutions, we must proceed as 
in Ref. 10 and find the solutions of the set of ordinary differ- 
ential equations for the self-similar profiles of the hydrody- 
namic variables U ( { ) ,  N ( { ) ,  (0, and H ( { ) ,  obtained by 
substituting (9)-( 12) into the original set of equations (5)- 
(8) .  The asymptotic behavior of the solutions near singular 
points representing the state of the plasma near the axis, on 
the free surface, at infinity, and so on, is then examined ana- 
lytically. The specific profiles of hydrodynamic variables are 
determined by numerical integration, using the known 
asymptotic behavior. In particular, the asymptotic behavior 
given by ( 15) is valid when r-t  CXJ for all the profiles exam- 
ined here. 

Compression of a continuous column of coldplasma. A 
possible self-similar regime of singular compression of plas- 
ma with an entrained magnetic field is the compression of 
cold plasma (P = 8#/B = 0).  Figure 1 shows profiles of 
the flow variables (here and henceforth, we shall be using 
arbitrary units). Near the axis (r-+O), the asymptotic pro- 
files are 

FIG. 2. velocity, magnetic field, density, and temperature profiles for the 
singular compression of a continuous column of hot plasma: /Z = 0.18, 
x = 0. 

self-similar solution predicts that the magnetic field becomes 
infinite on the axis [see ( 15) ] although this happens rela- 
tively slowly, i.e., according to ( 16), slower than r-I. 

Compression of a continuous column of hot plasma. The 
opposite limiting case occurs when hot plasma is compressed 
in an axial magnetic field and P$1 throughout the volume 
of the plasma. Figure 2 shows the profiles for this case, and 
the corresponding asymptotic forms near the axis are 

Convergence of a shock wave to the axis. Self-similar 
solutions in which an MHD shock wave converges to the 
axis through the quiescent plasma in an axial magnetic field 
exist for A = X. The undisturbed part of the plasma is char- 
acterized for such solutions by a uniform magnetic field 
B = const and power-law density and temperature profiles 
that ensure uniform pressure: 

(In the special case of cold plasma, const, = 0 and the diver- 
gence in temperature near the axis is absent.) The corre- 
sponding self-similar profiles are shown in Fig. 3. For the 
converging shock wave, the acoustic and Alfven Mach 
numbers are now M,, = 4.4, MA , = 4.0, i.e., the density and 
magnetic field compression in this type of shock wave is n,/ 
n ,  = B,/B, = 2.9, and the temperature discontinuity is T2/  
T I  = 5.2 (see Ref. 11 ). The adiabatic compression of the 
magnetic field behind the converging shock-wave front is 
1.2, i.e., the magnetic field is compressed by this type of flow 

Isentropically compressed plasmas remain cold down to the 
point of collapse, at which 8- 1 in the shock wave reflected 
from the axis. We note that, at the instant of collapse, the 

FIG. 1. Velocity, magnetic field, and density profiles for the singular com- 
pression of a continuous column of cold plasma: /Z = 0.15, x = 0. 

FIG. 3. Profiles of hydrodynamic variables for a shock wave convergiiig 
to the axis: /Z = x = 0.5. The point r = R ( t )  corresponds to the converg- 
ing shock wave front. 
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FIG. 4. Profiles of hydrodynamic variables for a shock wave reflected 
from the axis under the conditions of Fig. 3. The point r = R ( t )  corre- 
sponds to the reflected shock wave front. 

by a factor of 3.5. We note that the Mach numbers remain 
constant despite the amplification of the shock wave during 
the convergence process because the density profile ( 19) en- 
sures the necessary increase in the velocity of the fast magne- 
toacoustic wave as the axis is approached. 

Reflection of a shock wave from the axis. Singular self- 
similar solutions of this class admit continuation beyond the 
point of collapse ( t  = 0)  at which shock waves reflected 
from the axis appear. When t > 0, the flow includes a region 
of compressing plasma, ahead of the reflected shock wave 
front, and a region of shock-compressed plasma between the 
front and the axis. Figure 4 shows the self-similar profiles 
describing the flow discussed in the last example for t > 0. In 
this case, il = X, and the plasma behind the reflected shock 
wave front is at rest, the magnetic field is uniform, and the 
density and temperature profiles are given by (19) (where, 
of course, const, > 0).  The compression of the magnetic field 
in the reflected shock wave (M,, = 1.2, MA , = 2.0) is 1.7, 
and the adiabatic compression ahead of the front is 1.4. In 
this example, therefore, the magnetic field on the axis, after 
the convergence and reflection of the shock wave, is greater 
by the factor 3.5 ~ 2 . 3  = 8.0 than that in the undisturbed 
plasma. 

Collapse of an empty plasma sheath. This flow is analo- 
gous to the classical Rayleigh bubble collapse problem. The 
pressure and axial magnetic field vanish on the inner bound- 
ary of the plasma. This ensures that the boundary conditions 
on the free surface, i.e., the continuity of pressure and of the 
tangential component of the electric field, are satisfied. The 
corresponding profiles are shown in Fig. 5. As in the case of 
compression of a continuous column of cold or hot plasma, 
the magnetic field on the axis becomes infinite at the time of 
collapse. We note that there are no self-similar solutions de- 

scribing the unrestricted concentration of the magnetic field 
in the empty cavity. Actually, because the magnetic flux in 
the cavity must be conserved, the magnetic field in the interi- 
or must increase as R ( t )  -', whereas the magnetic field in the 
plasma surrounding the cavity is shown by ( 16) to grow no 
faster than R ( t )  -', so that the total pressure cannot be con- 
tinuous across the free surface. In other words, an arbitrarily 
small magnetic flux trapped in the cavity of the plasma liner 
will necessarily stop the compression, i.e., it will lead to the 
situation described by the zero-dimensional model. Singular 
compression of the magnetic field is possible only for the 
field frozen into the plasma. 

CumuIation of a fast magnetoacoustic wave. Finally, we 
have the possibility of a peculiar self-similar compression of 
plasma with a trapped magnetic field, in which the compres- 
sion front is a fast magnetoacoustic wave, i.e., a weak discon- 
tinuity propagating in stationary plasma and trapping it in a 
radial implosion. An analogous type of solution for singular 
compression in the absence of an external field has been in- 
vestigated in the theory of laser fusion. The solution can be 
obtained, for example, by time-reversing the solution given 
in Ref. 12 (see also Ref. 13). 

This regime occurs for il = x < 0. The density and tem- 
perature profiles in the undisturbed plasma have the form 
given by ( 19) and, because il < 0, the plasma density in- 
creases toward the axis. An increase in the mass of the plas- 
ma brought into motion by the compression wave slows 
down the wave, whose velocity vanishes at t = 0. Figure 6 
shows the corresponding profiles of hydrodynamic vari- 
ables. 

The types of self-similar solution enumerated above do 
not exhaust all the possible solutions in this geometry. For 
example, we have not considered solutions describing plas- 
ma compression in a 8-pinch (i.e., compression by an axial 
magnetic field that grows toward the periphery), solutions 
involving focusing the entire plasma mass on the axis, solu- 
tions with ionizing shock waves, and so on. Such solutions 
can be constructed by the same method, but this lies outside 
our framework here. 

5. CONCLUSION 

The self-similar solutions that we have obtained dem- 
onstrate the basic possibility of singular compression of an 
axial magnetic field together with the plasma. As R ( t )  de- 
creases, this compression proceeds more slowly than uni- 
form compression. The singular compression process is 

I 

0 I 2 3 r/RltJ 

0 1 2 r/R(tl FIG. 6. Singular compression by a fast magnetoacoustic wave: 
1 = x = - 0.4. The point r = R  ( 1 )  corresponds to the converging com- 

FIG. 5. Collapse of a hollow plasma sheath: 1 = 0.15, x = 0. The point pression wave front, marked by the broken line. The hydrodynamic vari- 
r = R ( t )  corresponds to the inner boundary of the sheath. ables undergo a weak discontinuity on the front. 
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therefore more conveniently implemented on the final stage 
of compression of plasma with an entrained magnetic field. 
The transition to the limiting regime after completion of uni- 
form compression can increase the final magnetic field by 
more than an order of magnitude. The stabilization of the 
first stage, i.e., uniform compression, by a combination of an 
axial magnetic field and the compressing aximuthal field of 
the Z-pinch, was demonstrated in Refs. 3 and 6,  both theo- 
retically and experimentally. The same stabilization factor 
operates on the final stage of singular compression. A com- 
plete discussion of dynamic stability at all stages of compres- 
sion of a plasma together with magnetic field, including an 
analysis of the conditions imposed on the pinch current pro- 
file that are necessary to achieve singular compression, will 
be given in a separate paper. 
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