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A theory is developed for stimulated scattering in intersecting light beams with arbitrary wave 
fronts in a nonlinear medium. It is shown that, in the optical ring cavity configuration, the 
stimulated scattering process exhibits absolute instability with a very low threshold that 
corresponds to a convective gain on the order of unity. The wave front structure is determined 
for the scattered radiation produced during emission. Conditions are found for which the 
scattered and pump beams are nearly phase conjugate. 

1. Stimulated scattering in the field of two light waves is 
attracting considerable attention mostly because, under 
these conditions, stimulated scattering can give rise to abso- 
lute instability (generation) with a very low threshold.'-' 
Processes of this kind can be used, when powerful laser radi- 
ation interacts with plasmas, in order to interpret the low 
stimulated scattering threshold and to explain the observed 
angular and spectral parameters of the scattered radi- 
ation.'~~ In nonlinear optics, such processes are promising 
for the excitation of stimulated scattering in media with a 
low breakdown threshold, the development of efficient laser 
frequency converters, and the dynamic correction of the 
wave fronts of powerful light beams. 

Phase conjugation by stimulated scattering (PCSS) has 
been examined in detail, both theoretically and experimen- 
tally, in the convective case.9 Highly energy-efficient low- 
threshold phase conjugation systems (the optical ring cav- 
ity) that rely on generation by stimulated scattering have 
recently been proposed.10311 Despite the difference between 
the physical mechanisms employed, the common feature of 
Refs. 10 and 11 is that stimulated scattering occurs in 
crossed light beams (Fig. I ) ,  one of which is the incident 
beam and the other is the initial beam returned by mirrors 
after passing through a nonlinear medium. Emission by sti- 
mulated scattering in the region in which the two light beams 
cross one another is essentially a two-dimensional problem 
because the longitudinal and lateral dimensions of the inter- 
action region in the plane of intersection are generally com- 
parable, and the interacting waves propagate in different di- 
rections. 

The last point was not previously taken into account, so 
that existing theory'.6 cannot predict the lateral structure of 
the scattered field, and cannot therefore deal with the quality 
of phase conjugation in emission by stimulated scattering. 

In this paper, we develop a theory of emission by stimu- 
lated scattering in the region of interaction between two 

crossed light beams, assuming that the size of this region is 
small in comparison with the Fresnel length of each of the 
beams (this is the experimental situation"). 

We shall use the example of Mandel'shtam-Brillouin 
stimulated scattering (MBSS) to show that Stokes radiation 
propagating opposite to the pump beam is generated in the 
optical ring cavity (Fig. 1) in which stimulated scattering 
takes place on refractive index perturbations whose wave 
vector is equal to the sum of the wave vectors of the incident 
waves. We shall show that the generation threshold is not 
very dependent on the structure of the pump wave front, and 
will determine the spatial structure of the scattered radiation 
near the generation threshold. 

2. Consider stimulated scattering in a nonlinear medi- 
um in the region in which two light beams cross. We shall 
assume that the two pump beams have the same frequency 
w, and that they cross at an angle 28. The electric field of two 
light beams in the medium will be represented by 

x exp ( ic ik ,~'  sin O+ikayl cos 0 - h a t ) +  C.C. ( 1 ) 

where k, = w,n/c, n is the linear refractive index of the me- 
dium, and the amplitudes E, * , ( r )  describe the field distri- 
butions across the direction of propagation. We shall confine 
our attention to processes occurring in the interaction re- 
gion, and will neglect nonlinear effects along the propaga- 
tion path in the medium outside this region. This assumption 
is justified when stimulated scattering in the field of the two 
waves exhibits absolute instability, and its threshold lies be- 
low the stimulated scattering threshold in a single beam. 

In the beam overlap region, we can have MBSS corre- 
sponding to the stimulated scattering of both pump waves by 
a single sound wave (Fig. 2) with wave vector k, = k,, 

M 

FIG. 1. OpticaI ring cavity with three (a)  and two (b)  mirrors 
M; C is the nonlinear medium. 
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FIG. 2. Disposition of the wave vectors of the pump ( k ,  + , ) and scattered 
Stokes ( k -  , . , ) waves; k, is the wave vector of the sound waves. 

+ k, , , directed along the bisector of the angle between the 
incident waves, and frequency w --Q = 2kovscos 8, where v, 
is the velocity of sound (cf. Refs. 4 and 5). Stimulated scat- 
tering of the wave Eo, in the medium produces the Stokes 
wave E- , , propagating against the wave Eo- , whereas stim- 
ulated scattering of the wave Eo- , produces the wave E- , - , 
propagating against E,,. The electric field of the scattered 
waves will be written in the form 

E,, = - ~ - , , ( r )  e x p [ i o k p r  sin 0- ik0yr  cos 0 
2 o=*i 

- i ( o o - a )  t ]  + c.C.. (2) 

where w r n is the frequency shift of the scattered waves. 
The set of truncated equations for the scattered-wave ampli- 
tudes, deduced from the hydrodynamic equations and Max- 
well's equations, is (cf., Ref. 5)  

where p is the density, Y = p (dddp)  is the nonlinear cou- 
pling parameter y, is the sound damping constant, and 
A = ( R  - w)/y, is the detuning of the scattered-wave fre- 
quency from the maximum of the amplification band. 

In deriving ( 3 ) ,  we have discarded time derivatives of 
the amplitudes, assuming that the time taken by light to trav- 
erse an interaction region with linear dimensions - D /sin 28 is small in comparison with the sound damping 
constant, i.e., ysD / c  sin28 1 (D  is the pump beam diame- 
ter). We have also neglected the derivatives at right-angles 
to the direction of propagation of the beam, assuming that 
the typical scale of the lateral structure of the Stokes beams, 
a, is not too small ( I ,  = kg2 ) D /sin 26). Moreover, it is 
assumed in (3)  that 8 > (y,/S1) 'I2, so that we can ignore 
backward MBSS, which is a nonresonant process at the cho- 
sen frequency n .  

3. Equations (3)  describe two coupled processes. The 
terms - IE,, I2E _ , + determine the convective amplifica- 
tion of scattered waves, and the interference terms -Eo0 
E $- ,E - , , , describe the distributed coupling between 
scattered waves propagating in different directions. 

In the special case of scattered waves propagating in 
opposite directions, equations similar to (3) describe the ab- 
solute instability of stimulated scattering, i.e., when the 
pump wave amplitudes are large enough, the scattered 
waves grow exponentially if the amplitudes vanish at entry 
into the interaction region (see Refs. 1-6 and 12). 

On the other hand, when the scattered waves propagate 
at an angle to one another, the distributed feedback is insuffi- 
cient for the onset of absolute instability because perturba- 
tions are then transported out of the interaction region in the 
direction of they' axis. This means that stimulated scattering 
in crossed beams, with zero scattered-wave amplitudes at 
entry to the interaction region, exhibits convective amplifi- 
cation. To produce generation, a proportion of the energy 
transported by the waves out of the interaction region must 
be returned to it along a different direction. This can be done 
with a system of mirrors which, together with the nonlinear 
medium, form an optical ring cavity. The configurations il- 
lustrated in Fig. l were implemented in Ref. 10 to produce 
low-threshold generation and phase conjugation (Fig. la) ,  
using MBSS in an optical fiber; photorefractive crystals were 
used in Ref. 1 1 (Fig. lb) .  

Let us substitute 

x=xf  cos 0+y' sin 0, y=-x' cos B+y' sin 8. 

If we cut the interaction region with a plane parallel to the 
beam axes, the resulting cross section is rectangular, with 
sides parallel to the coordinate axes and center lying at the 
origin, which is also the point of intersection of the beam 
axes (Fig. 3) .  We can then rewrite (3)  in the form 

d 
- E- l - l  (x, y, Z) = - 
dx 

XEo-i ( I ,  Z )  E-11 I ,  (5)  

where K = koY 2n/64~n2p v: y, sin 28. The pump wave E,, 
propagates along thex-axis, the function E,, ( y,z) describes 
the shape of its wave front, and Eo- , (x,z) describes the wave 
front of the second pump wave, propagating along they-axis. 
Thez-coordinate is measured along the axis perpendicular to 
the plane of intersection of the two beams, and appears in 
(4) and (5)  as a parameter. 

The fieldE- , , of the scattered Stokes wave propagating 
in the negative y direction will be sought in the form 

FIG. 3. Section through the interaction region by a plane parallel to the 
pump-beam axes. 
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The field of the second scattered wave propagating in the 
negative x direction can then be found from (4)  : 

Y 

whereas (5)  gives us the equation for the function f ( x ,  y,z) : 

The solution of this equation (cf., Ref. 13) determines the 
values of the function f in the interaction region in terms of 
its values and the values of its first derivatives on the bound- 
ary of the region:14 

d 

f (3, y ,  z) =f ( x ,  d ,  z )  + dx' 8 (1, Y ;  x', d ;  z )  f (x ' ,  d ,  2 )  

X 

We now impose the boundary conditions outside the beam 
interaction region, near its boundary. Without loss of gener- 
ality, we can assume that the boundary conditions are de- 
fined on planes parallel to the z axis, i.e., we assume that d is 
independent of z. The function 9 in ( 9 )  is given by 

Y( 

2K 
B ( x ,  y ;  x', y';  z )  = (-[I dy'' (y",  z )  1 ' I-iA 

where I, is the modified Bessel function. 
We note at once that the absence of absolute instability 

mentioned above follows from ( 9 )  if the amplitudes of the 
two scattered waves at entry to the interaction region are 
zero. Actually, ( 9 )  has a nontrivial solution if f(x,d,z)  $0 or 
df (d ,  y,z)/dy #O. However, the function f(x,d,z) is shown 
by ( 6 )  to be proportional to the wave amplitude E- at 
entry to the interaction region ( y = d ) ,  and df (d ,  y,z)/dy is 
proportional to the amplitude of the second scattered wave 
on the boundary x = d.  The condition for generation is that 
at least one of these two functions is not zero. Next, since we 
are interested in the optical ring cavity (Fig. I ) ,  we shall 
assume that E ,, (x,d,z) = 0, i.e., f(x,d,z)  = 0. 

4. The wave amplitudes E- , -, and En-, at entry to the 
nonlinear interaction region are determined by the propaga- 
tion conditions in the optical channel. Consider the case 
where the channel length L is small in comparison with the 
Fresnel length of the pump beam: L 91, = k,a2. 

If the rays in the ring resonator are confined to a plane, 
as is the case, for example, for the three-mirror scheme of 
Fig. la, the boundary conditions become 

where q, is the relative phase gain of the Stokes wave along 
the cavity length and r is the reflectivity of the mirror sys- 

tem. From ( 1 1 ), we then have the following boundary con- 
dition: 

where 

is the mean MBSS convective gain over the interaction 
length, averaged over the beam cross section. This relation 
and f(x,d,z)  = 0 together define the function f ( x ,  y p )  in ( 9 )  
throughout the interaction region. When y = - d ,  we ob- 
tain the following equation for f ( x ,  - d j )  : 

K I r l 2  f (x, -d, z) = 7 eiq 
I-LA 
d 

XI d y f B  ( s ,  -d;  d ,  y ' ;  z )  / Eo1  ( Y ' ,  z )12f  ( Y ' ,  d. 2 )  

-d 

~ e x p  [x + K ( 1 - I r 1 2 )  1 dy" I ~ o l ( y f f ,  z )  1'1. ( 1 2 )  
1-iA I-iA -, 

This is a linear Fredholm equation of the second kind, which 
has a solution only for a discrete set of eigenvalues x, A, 
defining the absolute instability thresholds and pump-wave 
frequencies. 

Let us first consider the solution of ( 1 2 )  in the two- 
dimensional neglecting the dependence on z. The 
first step is to introduce the function F ( s )  = f ( x ,  - d ) ,  
where 

d 

S = K  Sdy '  IEo t ( y r )  1 2 ,  
X 

which, according to ( 6 ) ,  defines the shape of the wave front 
of the wave E- ,, leaving the interaction region. The equa- 
tion for F ( s )  does not depend on the lateral structure of the 
pump field, and is determined by the total intensity alone: 

d 

It has a denumerable set of distinct eigenvalues P'"'(s). 
Let us demonstrate this in the case of low reflectivities 

Irl g 1 ,  so that, in the limit as ?c Irl g 1 ,  we can expand the 
Bessel function in the kernel of ( 1 3 )  into a power series. 
Since the dependence on s in ( 13 ) involves only the Bessel 
function, the function F ( s )  is also a power series in this limit: 

The coefficients F, can be found from ( 13),  and are given by 
the following set of linear algebraic equations: 
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The dispersion relation det(a, - 6 ,  ) = 0 has a denumer- 
able set of solutions. The first three are: 

Ir12 exp[icp+x,/(l-iA,,)] =I, 

lr14 exp[icp+x,/(l-iA,)] =-I, (15) 

lrI6 erp [icp+x,l(l-iA2)] =I. 

The corresponding eigenfunctions are 

The equations in (15) are transcendental. Each has a 
denumerable set of solutions, i.e., to each eigenfunction 
F '"' (s) there corresponds a whole set of wavelengths with 
different frequencies A,, and pump thresholds x,,. The 
index m will be referred to as transverse because it labels 
solutions with different functions F(s),  i.e., solutions with 
different transverse structure of the excited wave field. 
Waves with different n (but the same m)  have similar trans- 
verse structures, but different frequencies, i.e., different 
wave vectors in the direction of propagation. We shall there- 
fore refer to n as the longitudinal index. From ( 15), we then 
have 

x,,= (I+AOn2)ln(1/1rl2), A,,,= (2nn-cp)ln-'(l/lr12), 

The minimum threshold x, = ln( l/l rI2) is achieved for 
q, = 2m0. Since ~ " ' ( s )  =const by ( 16), the scattered 
Stokes wave produced in this case is phase conjugate with 
respect to the pump wave, i.e., it has a reversed wave front. 
The pump threshold for the ( 1,O) mode, for which the quali- 
ty of phase conjugation is less good [ ~ ' " ( s )  -s 1, is higher by 
a factor of approximately two ( x l o ~ 2 x o , ) .  

The generation threshold can be reduced, and the rela- 
tive separation between the pump thresholds for different 
modes can be increased, by reducing Irl. When Irl = 1, 
p = 0, we have 

A qualitatively similar situation obtains for the two-mirror 
arrangement (see Fig. lb),  for which the boundary condi- 
tions can be written in the form [see ( 1 1 ) ] 

When Irlg 1, the dispersion relation for the principal lateral 
mode (m = 0)  is again given by ( 15 ), whereas for Irl = 1, 
e, = 0, the minimum threshold corresponds to 
x, = O.52.I3.l5 

.We must emphasize at this point that the phase conju- 
gation of the pump beam in the field of the scattered radi- 
ation, deduced above, applies only to the coordinate y in the 
plane of intersection of the beams because (12) does not 
enable us to determine f as a function of z. 

Nonlocal coupling in z between the waves entering and 
leaving the interaction region must be produced for the 
structure of the Stokes beam in both directions to be deter- 
mined by the pump field. In other words, the beam path in 
the cavity must not be confined to a plane. This can be 
achieved, for example, by rotating the beam cross section 
through an angle differing from zero or 180", or by changing 
the scale of the beam cross section in the feedback channel. It 
will be shown below that this gives rise to a discrete set of 
nondegenerate modes in z, i.e., we have the possibility of 
field structure selection. 

5. As an example, consider the case where the cross- 
section of the light beam leaving the nonlinear interaction 
region is turned through 90" by four mirrors arranged in 
pairs into two two-sided corner reflectors with crossed edges 
(see Ref. 16, Section 3.6). Neglecting diffraction in the feed- 
back channel, we find that the conditions on the boundary of 
the nonlinear interaction region are [cf., ( 1 1 ) ] 

Eo-, (x, z )  =rEot (z, x) , E-'-' (a, y, z )  =rewE-I, (2, -a, Y )  . 
Using (6)  and (71, this immediately yields the boundary 
condition for the functionf: 

Substitution of this in (9) ,  together with f(x,d,z) = 0, deter- 
mines the function f(x, y,z) throughout the interaction re- 
gion. Next, assuming that y = - d, we obtain the integral 
equation [cf., ( 12) 1 

f (x, -d, z) = e Z q j  dy e(z, -d; d, y; z )  I-ZA -d 

Its eigenfunctions determine the lateral structure of the scat- 
tered beams, and the corresponding eigenvalues determine 
the generation thresholds and pump wave frequencies. In 
particular, the structure of the beam E-, - , ( - d, y,z) leav- 
ing the interaction region is determined by the form factor 
F( y,z) -E-,-, ( - d,y,z)/E& ( y,z), which is related to 
the function f(x, - d,z) by 
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We first note that both ( 18) and the form factor ( 19) depend 
only on the intensity distribution IE,, ( y j )  1' over the cross- 
section of the pump beam, and do not depend on the phase 
distribution over the beam cross section. Hence, it follows 
that the backscattered field has the complex conjugate 
phase, but the intensity distribution over the cross section of 
the scattered beam may, in general, be different from the 
corresponding distribution over the cross section of the 
pump beam. 

To illustrate the last point, let us consider a pump beam 
of square cross-section (2d X 2d) with uniform intensity dis- 
tribution (phase-modulated pump). Equation ( 18) then as- 
sumes the form 

where x = 2K 1EOl2d is the convective amplification of the 
scattered waves within the beam thickness. 

Equation (20) is similar to ( 13 ) in having a set of differ- 
ent eigenfunctions f ( x ,  - d,z) (lateral modes). To deter- 
mine them, let us expand the Bessel function in the kernel of 
(20) into a power series. The solution of (20) then assumes 
the form 

m 

f (x, -d, z) = exp 

where the coefficientf,, are given by the set of linear equa- 
tions 

m 

whose elements av are given by ( 14). However, in contrast 
to ( 14), the eigenvalues of (2 1 ) and, accordingly, the eigen- 
values of (20) are now labeled by two indices, namely, m,ml. 

Only the first few elements a, need be taken into ac- 
count in the limit as Irl4 1. The following dispersion rela- 
tions are then obtained for the first four eigenstates in (2 1 ): 

As in the case of ( 15), each of the equations in (22) has a 
denumerable set of solutions differing by the pump-wave fre- 
quency. In particular, ( 17) is again valid for x,,, , A,, x ,,,, , 
and A,  ,,, . Similarly, the generation thresholds are reduced 
as Irl is increased. The minimum generation threshold x,,, 
= 0.54 occurs for I rl = 1, p = 0. 

According to ( 19), in the case of the modes (22), we 
obtain the following expressions for the form factors 
~ ( m , m ' )  ( y,z) f ( m , m o  (z, - d, y) ,  which define the differ- 
ence between the wave front of the escaping beam and the 
complex conjugate pump beam: 

F(0.l) (y, z) m - 
2(1-iAol) 

% i t 2  z X l i  F ( ~ ~ ~ )  (Y, Z) - 4(1-iAil) 4 1 - % ) (  I--) - d 2(1-iAii) 

The principal-mode form factor is practically constant over 
the beam cross-section, i.e., it corresponds to phase conjuga- 
tion. Since the principal-mode thresholds lie below the 
thresholds for the other modes by a factor of about 1.5-2 
[cf., ( 17) 1, the Stokes radiation should be nearly phase con- 
jugate for a small excess above the generation threshold. 

The above analysis can be extended to the case of a 
pump with an arbitrary intensity distribution over the beam 
cross-section. However, it is then important to note that the 
above example is "ideal." For a beam with an arbitrary in- 
tensity distribution over the cross-section, the form factor of 
the radiation leaving the cavity is no longer constant even for 
the principal mode: it is determined by the specific form of 
the intensity distribution and by losses in the cavity. 

6. Let us now use our theory to examine phase conjuga- 
tion in an optical ring cavity without rotation of the beam 
cross section, but assuming that the beam is compressed in 
the optical channel in the direction perpendicular to the 
plane in which self-crossing occurs. We shall now use the 
configuration of Fig. la, for which, if there are lenses in the 
channel, the boundary conditions can be written in the form 

Eo-t (Y, 2) =(r/(aP)'")Eoi (YIP, zla), (23) 

E -,-, (d, y, z)=reiq(ap)'"E-,,(py, -d, az). 

The coefficients a and f l  then determine the variation in the 
scale of the beam cross-section in z and y, respectively. Using 
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(6)  and (7),  we obtain the following boundary conditions 
for f: 

Substituting this and f(x,d,z) = 0 in (9) ,  we obtain the rela- 
tion between the function f in the interaction region and its 
values on the boundary f( fly, - d,az) = Y ( y,z). Next, 
substituting y = - d in  (9) ,  we obtain the integral equation 
for \y: 

d 

Although the parameter B is formally present in the kernel 
9, the use of its explicit form ( 10) and of the boundary con- 
ditions (23) shows that 9 does not depend on P. It follows 
that the variation in the scale of the beam in the plane of 
intersection has no influence on the generation conditions or 
the structure of the scattered beam. Equation (24) becomes 
identical with ( 12) when a = 1. 

In contrast to (12), when a < 1, Eq. (24) determines Y 
as a function of both coordinates as a consequence of the 
scaling transformation with respect to z. Substituting z = 0 
in (24), we obtain a closed equation for 

d 

Y (y, O)=F(s), s = ~ . l  dyf I EOl(yf, 0) 1 2 ,  
u 

which is analogous to ( 13), but differs from it by the fact 
that the exponentials and the argument of the Bessel func- 
tion contain (rl/al" instead of Irl and, moreover, x = x (0). 
Consequently, the generation threshold is determined by the 
gain in the beam layer in which the ray paths are planar. The 
analysis of the equation for \Y( y,O) can be performed by 
analogy with the corresponding analysis of ( 13 ). When the 
radiation is strongly attenuated in the optical system 
( lrI2 (a ), the generation conditions for the mode with later- 
al index m = 0 are determined by the first formula in ( 17). 
For the m = 1 threshold, we have 

whereF'O'(s) -- 1, F'"(s) =s. Consequently, in this case, the 
threshold for the principal lateral mode does not depend on 
the compression of the beam, whereas the threshold for the 
first mode decreases logarithmically with decreasing a. 

In the other limiting case, i.e., a( lr12, the principal- 
mode generation threshold no longer depends on a :  

where 

Since the thresholds for modes with m#O are much 
higher than the principal-mode threshold, we turn to the 
analysis of \y as a function ofz for the modem = 0. We shall 
use the fact that the eigenfunction is then practically inde- 
pendent ofy for any Irl and a .  Moreover, we shall allow for 
the fact that, in (24), we can then neglect the departure of 
the kernel 19 from unity. From (24), the equation for the 
function \y'O'( y,z) =Y'O'(z) then assumes the form 

1 r 1 2ei' 
'4 ( a )  (z) = Y (" (ar) erp [ 

(4- 1 r12/a) a(1-iA) 

Its solution under the normalizing condition Y'O'(0) = 1 is - 

and determines the lateral structure of the scattered beam 
both in the ring cavity at entry to the interaction region, 
E - d ,  y , and after leaving the cavity, 
E-l-i( - ~ , Y J )  : 

The expression for Y'O'(z) is particularly simple when 
a( 1. If we use the approximation x("z) = ~ ( 0 )  
+ anzx'(0), we then have 

(28) 
It follows from (25)-(28) that the structure of the 

wave fronts of the scattered radiation (26)-(27) depends on 
the degree of compression of the beam. When a 5 lrI2, the 
function ~ " ' ( z )  given by (28) and, together with it, the ratio 
E-,-, ( f dy,z)/E$ (y ,z ) ,  are very dependent on z over 
the cross-section of the beam. The quality of phase conjuga- 
tion is then poor. If, on the other hand, 

the function Y'O'(z) is a slowly-varying function of z, and 
E- , - ,  (d, y j )  - E  & ( y j ) ,  i.e., the scattered radiation in 
the ring cavity is phase conjugate to the pump. The scattered 
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field E-,  - , ( - d, y j )  at exit from the nonlinear interaction 
region does not then reproduce the complex conjugate wave 
front of the pump, E,*, ( y,z), because of the distortions that 
arise during the second crossing of the interaction region, 
which are described by the second term in braces in (27). 
These distortions are localized in a narrow band Az-ad 
near the right-hand edge of the beam y-d, where they can 
reach the substantial figure -ap' In( l/l rI2) $1. Despite 
the fact that the localization region is narrow, the distorted 
part of the backscattered beam leaving the interaction region 
contains practically all the energy. This means that, when 
the coefficients of the scaling transformation and the reflec- 
tivities are low and satisfy (29), a beam with high-grade 
phase conjugation cannot be extracted from the nonlinear 
interaction region in the backward direction, but it can be 
extracted from the interior of the optical channel through 
one of the semitransparent mirrors. 

When attenuation in the system is low ( r  - 1 ), formulas 
(25)-(27) show that the formfactor \V will vary appreciably 
with z over the cross section of the beam. In general, the 
explicit form of Y (z) does not then depend on the intensity 
distribution over the beam cross section, or on the magni- 
tude of a. For example, when a = 1 - S, where S <  1, the 
function \V (z) varies from unity at z = 0 to exp( Ax/% (0)s )  
for (z( -d, where Ax = x(d )  - x (0 ) .  When a < 1, the func- 
tion \V (z) varies from Y (0)  = 1 to exp( Ax lrj2/a) - l / a  for 
I z I  - d  On the other hand, when lrI2 = a ,  and the beam has 
the parabolic gain distribution x(z)  = x (0)  ( 1 - z2/d '), 
the smallest distortions occur for a-0.33 and Y(z) 
-exp( - 1.3z2/d '). Accordingly, we reach the more gen- 
eral conclusion that distortions AY/T- 1 occur when r- 1 
for a-0.3-0.5. 

7. The above theory of generation by stimulated scatter- 
ing in a self-intersecting beam enables us to examine the 
structure of the amplitude and phase distributions in the 
scattered field, and indicates the conditions under which this 
field structure can be fully determined. This enables us to 

consider the quality of phase conjugation in different possi- 
ble systems exploiting this phenomenon for generation, us- 
ing self-crossing light beams. 

I am greatly indebted to I. M. Bel'dyugin and I. G. Zu- 
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